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Recap

First-order logic is developed in the common logical symbols and specific mathematical
symbols. Major logical symbols are propositional connectives, quantifiers Vx and Jz
and equality =. The set of mathematical symbols to use is called a language.

A structure in language £ (simply, a L-structure) is defined as a non-empty set A
equipped with an interpretation of the symbols in L.

A term is a symbol string to denote an element of a structure. A formula is a symbol
string to describe a property of a structure. A formula without free variables is called a
sentence.

“A sentence ¢ is true in A, written as A = ¢" is defined by Tarski's clauses. The
truth of a formula with free variables is defined by the truth of its universal closure.

A set of sentences in the language L is called a theory. A is a model of T, denoted
by AET,ifVoeT (AE ).

We say that ¢ holds in T, written as T |= ¢, if VAAET — A E ¢).




s Definition (Gentzen-Tait system GT(T") of a theory T)
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A sequent @1, ..., ¢, (i.e.,, a multi-set of formulas) intuitively means ©1 V - -V ¢,,.

Fecap A formula ¢ is automatically transformed into the negation normal form, i.e., constructed
from atomic formulas or their negations by means of A, V, V, and 3.

Axioms
(0) @ (where ¢ € T)

(1) Law of excluded middle: —p, 1) (where ¢ is an atomic formula)

(2) axioms of equations: (i) z = =z, (ii)  # y,y = z, etc.

Inference rules

Lo, 9 L T\y L, (1) L, o(z) : :
d4), ——— (V t f T
TV V), T,oNY (A), T, 3zp(x) @), T, Vrp(x) W) B e (e i 1E)
I-A TA
% (weak)(T is a subsequence of A), % (cut)
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® A proof tree in the system GT(T) is a finite tree in which each vertex is labelled with
a sequent so that a sequent at each top vertex (leaf) is an axiom, and the sequents of
adjacent nodes express an inference rule. See an example below.

Recap

® |f there is a proof tree rooted at a sequent I', we write it as 7'+ I'. Such a tree is
called a proof of T T (or a proof of " in T).

o |[f T'=@ or T is clear from the context, we omit 7" and write - T".

Example 5
For any term ¢,

tAtt=t

it O
Jo(eFa)t=t oo

Lemma

F =, @ for any formula .
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Definition
T is said to be inconsistent if T (i.e., T' proves the empty sequent). Otherwise, T is
said to be consistent.

Lemma

For any sentence @, T'U {—¢} is inconsistent < T F .

Lemma (complete Henkin extension)

Let T be a consistent theory in a language L. Then, there are a set C' of new constants
(called a Henkin constants) and a theory S in L' = L U C such that:

(0) T'C S and S is also consistent.

(1) For each L'-sentence Jxp(x), there exists a ¢ € C such that —3x¢(x) V p(c) (called
a Henkin axiom) belongs to S. In other words, if S+ 3xp(x), there exists a ¢ such
that S+ ¢(c).

(2) For any sentence ¢ in L', p € S or =p € S.

By Zorn's lemma, S exists as a maximal consistent set D T'U H (the Henkin axioms).
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Any consistent theory has a model.
Recap
Proof.

® For a consistent theory T', we will construct a model of T" using the set of Henkin
e constants C' and the complete Henkin extension S.

® First, define the congruence relation cadon C by (c=d) € S

® We define L-structure 2 = (A4, £%,...,R¥,...) as follows:

A:=C/ = : the set of equivalence classes {[c] : c € C},
£%([col, [e1]; - - [em—1]) = [d]
R*([co], [e1],- - [en—1])

® Then, for any formula ¢(xg, x1,

4 (f(C07C1,.

& Rfco, c1,

em)=d) €S,
--~7Cn—1) €8S.

. -73771—1) in [.‘,,

o([cols [e1]s -y [en—1]) € Th(R4) <  ©(co,C1,.--5Cn1) € S.

® Therefore, 2 is a model of S, and it is also a model of T.
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Proof.
(=). Suppose there exists a proof tree P of T F ¢.

® \We can easily show that all sequents that appear in P are true in any model 2l of T'.
(«). Assume T F . We also assume that ¢ is a sentence.
® Then, T'U {—¢p} is consistent, and so T'U {—p} has a model, i.e., T}~ ¢. O

Theorem (Compactness theorem)

A theory T' has a model if and only if any finite subset of T' has a model.

Proof. = is obvious. So we only show <.

® By way of contradiction, suppose T has no model. Then, T |= (the empty sequent).
By the completeness theorem, we also have T'F . Since a proof tree includes only
finitely many axioms, there is a finite set 7" C T such that T’ . Therefore, by the
completeness theorem, T' |= , that is, some finite subset of T' has no model. O
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Theorem (Lowenheim-Skolem's downward theorem)

A consistent theory in the language L has a model whose cardinality is less than or equal
to the cardinality of L or the countable infinity.

Proof. By the Completeness Theorem and lemmas, the cardinality of the Henkin constants
is no larger than the cardinality of £ and the countable infinity. Since 2( is constructed
from the equivalence classes, the cardinality of |2| is less than or equal to them. O

Theorem (Lowenheim-Skolem-Tarski's upward theorem)

If a theory T}y in a language L has an infinite model, then it has a model with an arbitrary
cardinality k greater than or equal to the cardinality of L.

Proof. Let 2 be an infinite model of the theory Tj in £ and x a cardinal number greater
than or equal to the cardinality of £. Let C' be a set of new constants with size «.

Let T =Ty U{c #d: c and d are two distinct constants belonging to C'}. Then, any
finite subset 7" of T' has a model 2A with an appropriate interpretation of constants in C so
that a finite number of ¢ # d contained in T” hold. Therefore, by the compactness
theorem, T" has a model. However, due to the properties of T, the cardinality of any model
is greater than or equal to k. On the other hand, by the downward theorem, since T has a
model with cardinality < k, it follows that there exists a model with exact cardinality k. [
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Definition
Let T and T’ be theories in languages £ and L', respectively, and £ C £’. Then, T" is
called a conservative extension of T' if for any sentence 0 in £, T+o0 & T'Fo.

Theorem

If an L-theory T &= Vxy - - -V, Iyp(r1, ..., Tn,y), then T' ;== TU

{ Va1 Vae,p(z1,. .., 20, £(21,...,2n))} in LU{£} is a conservative extension of T.
Proof

® Suppose T+ Vaq -+ -Vo,Jy o(x1,...,2,,y). Let A be any model of T'. By axiom of
choice, we construct a function £2 on 2 such that

AEVe Vo, o(x1,..., 0, £(T1,...,2p))

® Then 20* = AU {£*} is a model of T". Take any theorem & of T" in the language L.
Though it is true in 2*, its truth value is irrelevant to 2%, So, o should hold in 2.
® Since 2 is an arbitrary model of T, by the completeness theorem we have T Fo. [



Lo e If a formula ¢ is quantifier-free, Vi - - -V, is called a V-formula or II;-formula.
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Every theory T' has a conservative extension theory T’ consisting only of V-sentences.

Conservative
extension

Proof.
® For each formula Jyp(x1,...,z,,y) in a language £ with no free variables other than
T1,...,2T,, we add a new function symbol f3,,(4, ... 4, ) and collect them as F;. Put

Sl - {Vl‘l t an(ﬂy@(xla cee 7$n7y) x4 90(5517 vy T,y fﬂycp(ml,,..,:cn,y)(xla cee 7xn)>) :
Fyo(z1,...,Tn,y) is a formula in L}
By the last theorem, for any theory T' of £, T'U S is a conservative extension of 7.

® Next, for each formula of the form Jyp(z1,...,z,,y) in the language £ U Fy, we add
a new function symbol and collect them as F5 and similarly define Ss.

® By repeating this process, we finally put
F=JF, s={Js
ieN ieN
® Then, for any L-theory T', T U S is a conservative extension of T', called an (iterated)
Skolem extension of T". A symbol belonging to F' is called a Skolem function.



Logic and ® Under the Skolem axioms S, any formula ¢ in £ = LU F is equivalent to a

Foundation . . . .
K Tan:ka V-formula, which can be shown by induction on the construction of (.

® Moreover, in order to prove that any formula is equivalent to a V-formula, we may
SIEEER restrict the Skolem axioms S to the following set.

extension
S = {Vay.. Ve, Vy(e(x1, ..., 20, Y) = @(T1, - Ty T3yp(ay,mn,y) (T1, -1 Tn)))
o(x1,...,2n,y) is a quantifier-free formula of L'}
Note here that all formulas in S” are V-sentences.
® | et us consider an example, we first transform a formula into prenex normal form by

pushing an inner quantifier forward. For instance, change 0 A Vz&(x) to Vz(0 A £(2))
by replacing the bound variable = with a new variable z if necessary.

® Now take a formula 3zVy3z60(z,y, z) or Jx—Iy—3z0(x,y, z) as an example. First
replace z in 0(x,y, 2) with f3.9(z4,»)(2,¥) € F1 and put the following into S}

VZE, Y, 2(9(1’, Y, Z) — 0(567 Y, fEIzO(w,y,z) (Iv y)))

® For simplicity, we write 01 (z,y) for 0(x,y,£3.9(2,y,2)(%,y)). Next, replace y in
=61 (x,y) with £3, ¢, (5.4)(x) € F> and put the following into Sy

VI, y(_'al (Iv y) — _‘01 (SC, fﬂyﬁel (z,y) (I))
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Again for simplicity, we write 62 (x) for =01 (z, f3,-6, (2,4)(x)). Replace x in =0, (x)
with a constant £3,4,(,) € F3 and put the following into S3

V.’E(—‘eg(l') — ﬁgg(fgxﬁgﬂx)).
Then under the assumption S3, we have
FeVy3Iz0(x,y, 2) < TxVybi(x,y)
Fr=Jy—01 (2, y)
Jz—0(x)

< 202(£30-05(x))-

T2

Thus, JzVy3z0(z,y, z) is equivalent to a quantifier-free sentence.

For each axiom (sentence) in the theory T', we rewrite it as a quantifier-free sentence
in LU F and collect all of them as T".

Then T = T" U S’ is a conservative extension of T consisting of only V-sentences. [
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Next, we will consider an interpretation of a theory into a theory of a different language.

® First of all, we discuss a function symbol introduced by definition, which is a special
case of interpretation as we will see later.

Assume T FVxq - - -Va,yp(x1,...,2,,y). Here, y(y) means “there exists a unique y
that satisfies ¢ (y)."

Then the theory TV = T U {Vx1 - - - Va,Vy(p(z1,. .., Tn, y) < £(T1,...,2,) =y)} is called
an expansion of T by definition. T” is a conservative extension of T.

Given a formula ¢ of LU {£}, we construct 1)~* in £ by the following procedure.

(1) If ¥ does not include £, then terminate this process by setting 1)~% = ).

(2) If ¥ contains £, take an atomic subformula @ containing it, and choose a
subterm £(tg,...,t,—1) in it such that no ¢; contains f.

(3) In 6, replace the subterm selected in (2) with a new variable y and call it 6, (y).

(4) Replace 6 in ¢ by Jy(e(to, .- tn-1,y) AbB1(y)), and then we regard it as a new
v, and then go to (1).

It is easy to see that T" I ) <+ o~ *
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Lemma

Let 6 be a subformula of p. Assume T' =60 <> 0. Let ¢’ be a formula obtained from ¢ by
replacing some (or all) occurrences of 6 in @ with @'. Then T = ¢ <> .

Proof. By the completeness theorem, it is enough to show that in any model 2 of T', ¢
and ¢’ have the same truth value. This is obvious from Tarski's truth definition clauses. []

Relational expansion
4 P N

® Expand a theory by a new relational symbol R as follows:
T =TU{Vzy Ve (p(z1,...,20) < Rz, ..., 20))},

It is also a conservative extension of T'.

e Let ¢y~ F denote a formula obtained from 1 by replacing all occurrences of
R(t1,...,tn) with ©(t1,...,t,). Then

T F R
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~ Homework (difficult)

-

Let X be a theory in a language £ including an n-ary relation symbol R and some others.
Then, R is said to be explicitly definable in %, if there exists a formula ¢(xq, ..., 2p—_1)
in £ — {R} such that

SEVz, ..., zn—1(R(zoy ... Tno1) < @(x0y ...y Tpe1))-

Now, we construct ¥’ from X by replacing all occurrences of R by a new symbol R'.
Then, R is said to be implicitly definable in X, if the following hold

YU P VLEQ, A 7$”_1(R(I0, e ,.Z‘n_l) s R/(Io, A ,In,_l)).

Show that R is explicitly definable in X iff R is implicitly definable in 3.
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Now we are ready to define a language interpretation.

Definition
Given two languages £, £’ and a theory 7" in the language £’. A pair (U, I) that satisfies
the following is called a interpretation (translation) of language £ (in 7).

(1) U is a one-variable formula in £’. (It represents the domain of the theory in L.)

(2) Iis a function from £ to formulas in £’, and if £ is a n-ary function symbol, I(£f) is
an (n + 1)-ary formula; if R is an n-ary relation symbol, I(R) is also an n-ary formula.

(3) 7" F FzU(x).
(4) For each functional symbol f,

T' EVzy - Voo (U(z) A AU (zn) = MyI(£)(21, .. ., 20y y) AU(®))).
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Next, we want to interpret the £-formulas.

However, we should notice that Vx; - - - Vo, 3yl (£f)(z1,...,zn,y) may not hold
outside of U. So, we take a new constant a and modify I(f) as follows:

I'(f)(z1,..., o0, y) &
(Uzr) A AU () AN(E) (@1, -5 20, y)) VA (SU(@2) VeV 2U (20)) Ay = a).
Then, let f be a function symbol defined by I'(£).

Also, let R be a relational symbol defined by I(R). Then, after interpretation, the
terms of £ will remain unchanged, and so will the atomic formulas and the
propositional connectives.

We only need to deal with quantifiers. If we denote the interpretation of ¢ in £ by ¢/,
(1) Bap)! is Iz(U(x) Aph).
(2) (Vo)! is Va(U(x) — 7).
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EABTIE ® let T and T" be theories of languages £ and L', respectively. Suppose that (U, I) is
an interpretation of language £ in T".

® Then, (U, I) is said to be the interpretation of the theory T in T”, if for any sentence
oin L,
Thto = T'Fol

e |f there is an interpretation of T in T”, T is said to be interpretable within 7".

® Moreover, if the following holds
Trcoe & T Fol

(U, I) is called a faithful interpretation of 7" in T.
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Example 7

If T is an expansion of T” by defition, then there is a faithful interpretation (U, I) of T
in T'. Let U(z) be x = x. For a defined function £ and relation R, let I(£) and I(R)
be their definitions. The interpretations of other symbols are the same as the originals.

~ Example 8 ~N
Let 1= (N,+,-,0,1,<), 3=(Z,+,-,0,1).
There exists a faithful interpretation (U, I) from Th() to Th(3):
U(z) = dz13weTzsTzg(x =1 - 21 4+ -+ - + T4 - T4)
I(H)(,mn)=l+m=mn, I){I,mmn)=l-m=mn
I0)(n)=n=0, I1)(n)=n=1

I(<)(m,n)=Fx(U(x)Nc#0Am+z=n)
- J
-~ Problem 4

J

Show that there exists a faithful translation (U, I) from Th(3) to Th(91).
. J
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Problem 5
@ Show that Peano arithmetic PA is interpretable within ZF set theory.
® Show that ZF without Infinity axiom is interpretable within PA.

e |f a faithful translation from T to T" exists, provability in T is reducible to that of T".
Therefore, if 7" is decidable, so is 7.

e Conversely, to show the undecidability of T”, it suffices to interpret an undecidable
theory into T".
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® |n first-order logic, quantifiers V and 3 range over the elements of a structure.

S ® Second-order logic enables us to use quantifiers over relations and functions on the
o8 domain. For simplicity, we deal only with quantification over relations, not functions.

ral structur,

Definition
Let ¢(R) be a first-order formula in language £ U {R}. The truth values of second order
logic formulas YRy(R) and 3Rp(R) in a L-structure A is defined as follows.

A EVRo(R) © for any R C A", (A,R) |= ©(R) holds.
A |= 3Rp(R) < there exists R C A™ such that (A, R) |= ¢(R).

® In the following, we do not strictly distinguish among the relation variable R, relation
R, and relation constant (symbol) R.

® The concepts of free and bound variables can be introduced for second-order formulas
as those in first-order formulas.



Logic and ® The critical issue is how to consider the domain of second-order variables.

K. Tanaka ® In the above definition, we use "any R C A™” to mean that “all” subsets of A"
should be considered. A structure with such an interpretation is called a standard
structure of second-order logic, although this cannot be formally defined.

o ® For simplicity, we restrict second-order variables to unary relations, namely subsets of

et the first-order domain. This is called monadic second-order logic (MSO).

Theorem (Godel)

The validity of (M)SO in standard structures is not axiomatizable.

Proof.

® Assume MSO were axiomatized. We can define second-order Peano Arithmetic PA; by
adding axioms of arithmetic such as PA to MSO.

® |n any model M of PAy, since all subsets of the first-order domain M belong to the
second-order domain, then the smallest set N containing 0 and closed under +1 also
belongs to the second-order domain. Here, N is isomorphic to the standard N.

® Assuming PAs includes mathematical induction, N must coincide with the whole M.
In other words, M is isomorphic to N, and so any model of PA; is isomorphic to
N U P(N). Therefore, there is no sentence independent from PAs. This condradicts
with Godel's first incompleteness theorem. O
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® |nstead, L. Henkin considered a general structure of second-order logic, whose
second-order part varies similarly to the first-order logic domain. In other words, such
a logic can be regarded as two-sorted first-order logic.

® \We only define the general structure of monadic second-order logic. The monadic
second-order variables (also called set variables) are denoted by X,Y, Z, ..., and the
atomic formula X (¢) is also written as ¢ € X.

Definition
A general structure of monadic second-order logic B = (A, S) consists of first-order logic
structure A and set S C P(A). The set quantifiers range over B as follows.

BEVXp(X) < forany S € S,B E ¢(S) holds,
B = 3Xp(X) < there exists S € S such that B | ¢(S5).

® A general structure can also be viewed as a first-order structure with two domains (A
and S) (or split into two domains). The formalization such as a derivation system is
almost the same as first-order logic, just by preparing two kinds of variables.
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® Henkin assumed that the general structure should satisfy certain amounts of
comprehension axiom and axiom of choice. The comprehension axiom is an assertion
that for a formula ¢(x) with no free occurrence of X, 3XVz(x € X < ¢(x)), that is,
the set {z : p(x)} exists in the second-order domain, where ¢(z) does not include the

variable X.

Theorem (Henkin's completeness theorem of MSO)
An MSO formula is provable from appropriate comprehension and other axioms in

two-sorted first-order system if and only if it is true in any general structure that satisfies
those axioms.

® This theorem can be proved in the same way as in first-order logic.

® |t can also be generalized to higher-order logics. In fact, Henkin’s proof for the
completeness theorem of first-order logic was made with such a generalization scheme.
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~ Example 1, 2: MSO is more expressive than first-order logic FO

-

FO cannot distinguish (Q, <) and (R, <). In MSO, it can express that “a bounded set
X (# @) has a least upper bound”, and hence (Q, <) and (R, <) are distinguishable.

MSO can express the sentence that determines the parity (even or odd) of the length
of a finite linear order, which is not expressible by FO.

~

J

~ Example 3: SO is more expressive than MSO

-

The MSO theory of (N, 241, 0) is decidable due to Biichi. But SO theory of (N, z+1,0)
is not, since addition m +n = k is defined by

VR([R(0,m) AVz,y(R(z,y) = R(z + 1,y + 1))] = R(n, k),

and multiplication can be defined in a similar way, which means that first-order arith-
metic is embedded into the theory.

~

J




Thank you for your attention!
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