
Logic and
Foundation

K. Tanaka

Recap

Conservative
extension

Second order
logic

General structures

1

Logic and Foundation I
Part 2. First-order logic

Kazuyuki Tanaka

BIMSA

November 12, 2023



Logic and
Foundation

K. Tanaka

Recap

Conservative
extension

Second order
logic

General structures

2

Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 2. Schedule� �
• Oct. 26, (1) First order logic: formal system GT and structures

• Nov. 2, (2) Gödel’s completeness theorem and applications

• Nov. 9, (3) Miscellaneous� �
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Recap

• First-order logic is developed in the common logical symbols and specific mathematical
symbols. Major logical symbols are propositional connectives, quantifiers ∀x and ∃x
and equality =. The set of mathematical symbols to use is called a language.

• A structure in language L (simply, a L-structure) is defined as a non-empty set A
equipped with an interpretation of the symbols in L.

• A term is a symbol string to denote an element of a structure. A formula is a symbol
string to describe a property of a structure. A formula without free variables is called a
sentence.

• “A sentence φ is true in A, written as A |= φ” is defined by Tarski’s clauses. The
truth of a formula with free variables is defined by the truth of its universal closure.

• A set of sentences in the language L is called a theory. A is a model of T , denoted
by A |= T , if ∀φ ∈ T (A |= φ).

• We say that φ holds in T , written as T |= φ, if ∀A(A |= T → A |= φ).
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Definition (Gentzen-Tait system GT(T ) of a theory T )

A sequent φ1, . . . , φn (i.e., a multi-set of formulas) intuitively means φ1 ∨ · · · ∨ φn.
A formula φ is automatically transformed into the negation normal form, i.e., constructed
from atomic formulas or their negations by means of ∧, ∨, ∀, and ∃.

Axioms

(0) φ (where φ ∈ T )

(1) Law of excluded middle: ¬ψ,ψ (where ψ is an atomic formula)

(2) axioms of equations: (i) x = x, (ii) x ̸= y, y = x, etc.

Inference rules

Γ, φ, ψ

Γ, φ ∨ ψ (∨),
Γ, φ Γ, ψ

Γ, φ ∧ ψ (∧)
,

Γ, φ(t)

Γ,∃xφ(x)
(∃),

Γ, φ(x)

Γ,∀xφ(x)
(∀)(x is not free in Γ)

Γ
∆

(weak)(Γ is a subsequence of ∆),
Γ,¬A Γ, A

Γ
(cut)
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Definition

• A proof tree in the system GT(T ) is a finite tree in which each vertex is labelled with
a sequent so that a sequent at each top vertex (leaf) is an axiom, and the sequents of
adjacent nodes express an inference rule. See an example below.

• If there is a proof tree rooted at a sequent Γ, we write it as T ⊢ Γ. Such a tree is
called a proof of T ⊢ Γ (or a proof of Γ in T ).

• If T = ∅ or T is clear from the context, we omit T and write ⊢ Γ.

Example 5� �
For any term t,

x = x
∀x(x = x)

(∀)

∀x(x = x), t = t
(weak)

t ̸= t, t = t

∃x(x ̸= x), t = t
(∃)

t = t
(cut)� �

Lemma

⊢ ¬φ,φ for any formula φ.
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Definition

T is said to be inconsistent if T ⊢ (i.e., T proves the empty sequent). Otherwise, T is
said to be consistent.

Lemma

For any sentence φ, T ∪ {¬φ} is inconsistent ⇔ T ⊢ φ.

Lemma (complete Henkin extension)

Let T be a consistent theory in a language L. Then, there are a set C of new constants
(called a Henkin constants) and a theory S in L′ = L ∪ C such that:

(0) T ⊆ S and S is also consistent.

(1) For each L′-sentence ∃xφ(x), there exists a c ∈ C such that ¬∃xφ(x) ∨ φ(c) (called
a Henkin axiom) belongs to S. In other words, if S ⊢ ∃xφ(x), there exists a c such
that S ⊢ φ(c).

(2) For any sentence φ in L′, φ ∈ S or ¬φ ∈ S.

By Zorn’s lemma, S exists as a maximal consistent set ⊃ T ∪H (the Henkin axioms).
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Theorem

Any consistent theory has a model.

Proof.

• For a consistent theory T , we will construct a model of T using the set of Henkin
constants C and the complete Henkin extension S.

• First, define the congruence relation c ≈ d on C by (c = d) ∈ S.

• We define L-structure A = (A, fA, . . . ,RA, . . . ) as follows:

A := C/ ≈ : the set of equivalence classes {[c] : c ∈ C},

fA([c0], [c1], . . . , [cm−1]) = [d] ⇔ (f(c0, c1, . . . , cm−1) = d) ∈ S,

RA([c0], [c1], . . . , [cn−1]) ⇔ R(c0, c1, . . . , cn−1) ∈ S.

• Then, for any formula φ(x0, x1, . . . , xn−1) in L,

φ([c0], [c1], . . . , [cn−1]) ∈ Th(AA) ⇔ φ(c0, c1, . . . , cn−1) ∈ S.

• Therefore, A is a model of S, and it is also a model of T .
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Theorem (Gödel-Henkin’s completeness theorem)

T ⊢ φ⇔ T |= φ.

Proof.
(⇒). Suppose there exists a proof tree P of T ⊢ φ.

• We can easily show that all sequents that appear in P are true in any model A of T .

(⇐). Assume T ̸⊢ φ. We also assume that φ is a sentence.

• Then, T ∪ {¬φ} is consistent, and so T ∪ {¬φ} has a model, i.e., T ̸|= φ.

Theorem (Compactness theorem)

A theory T has a model if and only if any finite subset of T has a model.

Proof. ⇒ is obvious. So we only show ⇐.

• By way of contradiction, suppose T has no model. Then, T |= (the empty sequent).
By the completeness theorem, we also have T ⊢ . Since a proof tree includes only
finitely many axioms, there is a finite set T ′ ⊂ T such that T ′ ⊢ . Therefore, by the
completeness theorem, T ′ |= , that is, some finite subset of T has no model.
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Theorem (Löwenheim-Skolem’s downward theorem)

A consistent theory in the language L has a model whose cardinality is less than or equal
to the cardinality of L or the countable infinity.

Proof. By the Completeness Theorem and lemmas, the cardinality of the Henkin constants
is no larger than the cardinality of L and the countable infinity. Since A is constructed
from the equivalence classes, the cardinality of |A| is less than or equal to them.

Theorem (Löwenheim-Skolem-Tarski’s upward theorem)

If a theory T0 in a language L has an infinite model, then it has a model with an arbitrary
cardinality κ greater than or equal to the cardinality of L.

Proof. Let A be an infinite model of the theory T0 in L and κ a cardinal number greater
than or equal to the cardinality of L. Let C be a set of new constants with size κ.
Let T = T0 ∪ {c ̸= d : c and d are two distinct constants belonging to C}. Then, any
finite subset T ′ of T has a model A with an appropriate interpretation of constants in C so
that a finite number of c ̸= d contained in T ′ hold. Therefore, by the compactness
theorem, T has a model. However, due to the properties of T , the cardinality of any model
is greater than or equal to κ. On the other hand, by the downward theorem, since T has a
model with cardinality ≤ κ, it follows that there exists a model with exact cardinality κ.
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Conservative extension

Definition

Let T and T ′ be theories in languages L and L′, respectively, and L ⊂ L′. Then, T ′ is
called a conservative extension of T if for any sentence σ in L, T ⊢ σ ⇔ T ′ ⊢ σ.

Theorem

If an L-theory T ⊢ ∀x1 · · · ∀xn∃yφ(x1, . . . , xn, y), then T ′ := T∪
{ ∀x1 · · · ∀xnφ(x1, . . . , xn, f(x1, . . . , xn))} in L ∪ {f} is a conservative extension of T .

Proof

• Suppose T ⊢ ∀x1 · · · ∀xn∃y φ(x1, . . . , xn, y). Let A be any model of T . By axiom of
choice, we construct a function fA on A such that

A |= ∀x1 · · · ∀xn φ(x1, . . . , xn, f(x1, . . . , xn))

• Then A∗ ≡ A ∪ {fA} is a model of T ′. Take any theorem σ of T ′ in the language L.
Though it is true in A∗, its truth value is irrelevant to fA. So, σ should hold in A.

• Since A is an arbitrary model of T , by the completeness theorem we have T ⊢ σ.
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If a formula φ is quantifier-free, ∀x1 · · · ∀xnφ is called a ∀-formula or Π1-formula.

Theorem

Every theory T has a conservative extension theory T ′ consisting only of ∀-sentences.

Proof.
• For each formula ∃yφ(x1, . . . , xn, y) in a language L with no free variables other than
x1, . . . , xn, we add a new function symbol f∃yφ(x1,...,xn,y) and collect them as F1. Put

S1 = {∀x1 · · · ∀xn(∃yφ(x1, . . . , xn, y) ↔ φ(x1, . . . , xn, f∃yφ(x1,...,xn,y)(x1, . . . , xn))) :

∃yφ(x1, . . . , xn, y) is a formula in L}
By the last theorem, for any theory T of L, T ∪ S1 is a conservative extension of T .

• Next, for each formula of the form ∃yφ(x1, . . . , xn, y) in the language L ∪ F1, we add
a new function symbol and collect them as F2 and similarly define S2.

• By repeating this process, we finally put

F =
⋃
i∈N

Fi, S =
⋃
i∈N

Si

• Then, for any L-theory T , T ∪ S is a conservative extension of T , called an (iterated)
Skolem extension of T . A symbol belonging to F is called a Skolem function.
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• Under the Skolem axioms S, any formula φ in L′ = L ∪ F is equivalent to a
∀-formula, which can be shown by induction on the construction of φ.

• Moreover, in order to prove that any formula is equivalent to a ∀-formula, we may
restrict the Skolem axioms S to the following set.

S′ = {∀x1 . . . ∀xn∀y(φ(x1, . . . , xn, y) → φ(x1, . . . , xn, f∃yφ(x1,...,xn,y)(x1, . . . , xn))) :

φ(x1, . . . , xn, y) is a quantifier-free formula of L′}
Note here that all formulas in S′ are ∀-sentences.

• Let us consider an example, we first transform a formula into prenex normal form by
pushing an inner quantifier forward. For instance, change θ ∧ ∀xξ(x) to ∀z(θ ∧ ξ(z))
by replacing the bound variable x with a new variable z if necessary.

• Now take a formula ∃x∀y∃zθ(x, y, z) or ∃x¬∃y¬∃zθ(x, y, z) as an example. First
replace z in θ(x, y, z) with f∃zθ(x,y,z)(x, y) ∈ F1 and put the following into S1

∀x, y, z(θ(x, y, z) → θ(x, y, f∃zθ(x,y,z)(x, y))).

• For simplicity, we write θ1(x, y) for θ(x, y, f∃zθ(x,y,z)(x, y)). Next, replace y in
¬θ1(x, y) with f∃y¬θ1(x,y)(x) ∈ F2 and put the following into S2

∀x, y(¬θ1(x, y) → ¬θ1(x, f∃y¬θ1(x,y)(x)).
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• Again for simplicity, we write θ2(x) for ¬θ1(x, f∃y¬θ1(x,y)(x)). Replace x in ¬θ2(x)
with a constant f∃x¬θ2(x) ∈ F3 and put the following into S3

∀x(¬θ2(x) → ¬θ2(f∃x¬θ2(x)).

• Then under the assumption S3, we have

∃x∀y∃zθ(x, y, z) ↔ ∃x∀yθ1(x, y)
↔ ∃x¬∃y¬θ1(x, y)
↔ ∃x¬θ2(x)
↔ ¬θ2(f∃x¬θ2(x)).

Thus, ∃x∀y∃zθ(x, y, z) is equivalent to a quantifier-free sentence.

• For each axiom (sentence) in the theory T , we rewrite it as a quantifier-free sentence
in L ∪ F and collect all of them as T ′′.

• Then T ′ = T ′′ ∪S′ is a conservative extension of T consisting of only ∀-sentences.
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Next, we will consider an interpretation of a theory into a theory of a different language.

• First of all, we discuss a function symbol introduced by definition, which is a special
case of interpretation as we will see later.

Assume T ⊢ ∀x1 · · · ∀xn∃!yφ(x1, . . . , xn, y). Here, ∃!yψ(y) means “there exists a unique y
that satisfies ψ(y).”

Then the theory T ′ = T ∪ {∀x1 · · · ∀xn∀y(φ(x1, . . . , xn, y) ↔ f(x1, . . . , xn) = y)} is called
an expansion of T by definition. T ′ is a conservative extension of T .

Given a formula ψ of L ∪ {f}, we construct ψ−f in L by the following procedure.

(1) If ψ does not include f, then terminate this process by setting ψ−f = ψ.

(2) If ψ contains f, take an atomic subformula θ containing it, and choose a
subterm f(t0, . . . , tn−1) in it such that no ti contains f.

(3) In θ, replace the subterm selected in (2) with a new variable y and call it θ1(y).

(4) Replace θ in ψ by ∃y(φ(t0, . . . , tn−1, y)∧ θ1(y)), and then we regard it as a new
ψ, and then go to (1).

It is easy to see that T ′ ⊢ ψ ↔ ψ−f
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Lemma

Let θ be a subformula of φ. Assume T ⊢ θ ↔ θ′. Let φ′ be a formula obtained from φ by
replacing some (or all) occurrences of θ in φ with θ′. Then T ⊢ φ↔ φ′.

Proof. By the completeness theorem, it is enough to show that in any model A of T , φ
and φ′ have the same truth value. This is obvious from Tarski’s truth definition clauses.

Relational expansion� �
• Expand a theory by a new relational symbol R as follows:

T ′ = T ∪ {∀x1 · · · ∀xn(φ(x1, . . . , xn) ↔ R(x1, . . . , xn))},

It is also a conservative extension of T .

• Let ψ−R denote a formula obtained from ψ by replacing all occurrences of
R(t1, . . . , tn) with φ(t1, . . . , tn). Then

T ′ ⊢ ψ ↔ ψ−R� �
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Homework (difficult)� �
Let Σ be a theory in a language L including an n-ary relation symbol R and some others.
Then, R is said to be explicitly definable in Σ, if there exists a formula φ(x0, . . . , xn−1)
in L − {R} such that

Σ ⊢ ∀x0, . . . , xn−1(R(x0, . . . , xn−1) ↔ φ(x0, . . . , xn−1)).

Now, we construct Σ′ from Σ by replacing all occurrences of R by a new symbol R′.
Then, R is said to be implicitly definable in Σ, if the following hold

Σ ∪ Σ′ ⊢ ∀x0, . . . , xn−1(R(x0, . . . , xn−1) ↔ R′(x0, . . . , xn−1)).

Show that R is explicitly definable in Σ iff R is implicitly definable in Σ.� �
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Now we are ready to define a language interpretation.

Definition

Given two languages L,L′ and a theory T ′ in the language L′. A pair ⟨U, I⟩ that satisfies
the following is called a interpretation (translation) of language L (in T ′).

(1) U is a one-variable formula in L′. (It represents the domain of the theory in L.)

(2) I is a function from L to formulas in L′, and if f is a n-ary function symbol, I(f) is
an (n+ 1)-ary formula; if R is an n-ary relation symbol, I(R) is also an n-ary formula.

(3) T ′ ⊢ ∃xU(x).

(4) For each functional symbol f,

T ′ ⊢ ∀x1 · · · ∀xn(U(x1) ∧ · · · ∧ U(xn) → ∃!y(I(f)(x1, . . . , xn, y) ∧ U(y))).
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• Next, we want to interpret the L-formulas.

• However, we should notice that ∀x1 · · · ∀xn∃!yI(f)(x1, . . . , xn, y) may not hold
outside of U . So, we take a new constant a and modify I(f) as follows:

I ′(f)(x1, . . . , xn, y) ⇔

((U(x1) ∧ · · · ∧ U(xn)) ∧ I(f)(x1, . . . , xn, y)) ∨ ((¬U(x1) ∨ · · · ∨ ¬U(xn)) ∧ y = a).

Then, let f be a function symbol defined by I ′(f).

• Also, let R be a relational symbol defined by I(R). Then, after interpretation, the
terms of L will remain unchanged, and so will the atomic formulas and the
propositional connectives.

• We only need to deal with quantifiers. If we denote the interpretation of φ in L by φI ,
(1) (∃xψ)I is ∃x(U(x) ∧ ψI).
(2) (∀xψ)I is ∀x(U(x) → ψI).
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Definition

• Let T and T ′ be theories of languages L and L′, respectively. Suppose that ⟨U, I⟩ is
an interpretation of language L in T ′.

• Then, ⟨U, I⟩ is said to be the interpretation of the theory T in T ′, if for any sentence
σ in L,

T ⊢ σ ⇒ T ′ ⊢ σI .

• If there is an interpretation of T in T ′, T is said to be interpretable within T ′.

• Moreover, if the following holds

T ⊢ σ ⇔ T ′ ⊢ σI

⟨U, I⟩ is called a faithful interpretation of T ′ in T .
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Example 7� �
If T is an expansion of T ′ by defition, then there is a faithful interpretation ⟨U, I⟩ of T
in T ′. Let U(x) be x = x. For a defined function f and relation R, let I(f) and I(R)
be their definitions. The interpretations of other symbols are the same as the originals.� �
Example 8� �
Let N = (N,+, ·, 0, 1, <), Z = (Z,+, ·, 0, 1).
There exists a faithful interpretation ⟨U, I⟩ from Th(N) to Th(Z):

U(x) ≡ ∃x1∃x2∃x3∃x4(x = x1 · x1 + · · ·+ x4 · x4)

I(+)(l,m, n) ≡ l +m = n, I(·)(l,m, n) ≡ l ·m = n

I(0)(n) ≡ n = 0, I(1)(n) ≡ n = 1

I(<)(m,n) ≡ ∃x(U(x) ∧ x ̸= 0 ∧m+ x = n)� �
Problem 4� �
Show that there exists a faithful translation ⟨U, I⟩ from Th(Z) to Th(N).� �
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Problem 5� �
1 Show that Peano arithmetic PA is interpretable within ZF set theory.

2 Show that ZF without Infinity axiom is interpretable within PA.� �
• If a faithful translation from T to T ′ exists, provability in T is reducible to that of T ′.
Therefore, if T ′ is decidable, so is T .

• Conversely, to show the undecidability of T ′, it suffices to interpret an undecidable
theory into T ′.
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Second order logic

• In first-order logic, quantifiers ∀ and ∃ range over the elements of a structure.

• Second-order logic enables us to use quantifiers over relations and functions on the
domain. For simplicity, we deal only with quantification over relations, not functions.

Definition

Let φ(R) be a first-order formula in language L ∪ {R}. The truth values of second order
logic formulas ∀Rφ(R) and ∃Rφ(R) in a L-structure A is defined as follows.

A |= ∀Rφ(R) ⇔ for any Ṙ ⊆ An, (A, Ṙ) |= φ(R) holds.

A |= ∃Rφ(R) ⇔ there exists Ṙ ⊆ An such that (A, Ṙ) |= φ(R).

• In the following, we do not strictly distinguish among the relation variable R, relation
Ṙ, and relation constant (symbol) R.

• The concepts of free and bound variables can be introduced for second-order formulas
as those in first-order formulas.
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• The critical issue is how to consider the domain of second-order variables.
• In the above definition, we use “any Ṙ ⊆ An” to mean that “all” subsets of An

should be considered. A structure with such an interpretation is called a standard
structure of second-order logic, although this cannot be formally defined.

• For simplicity, we restrict second-order variables to unary relations, namely subsets of
the first-order domain. This is called monadic second-order logic (MSO).

Theorem (Gödel)

The validity of (M)SO in standard structures is not axiomatizable.

Proof.
• Assume MSO were axiomatized. We can define second-order Peano Arithmetic PA2 by
adding axioms of arithmetic such as PA to MSO.

• In any model M of PA2, since all subsets of the first-order domain M belong to the
second-order domain, then the smallest set N containing 0 and closed under +1 also
belongs to the second-order domain. Here, N is isomorphic to the standard N.

• Assuming PA2 includes mathematical induction, N must coincide with the whole M .
In other words, M is isomorphic to N, and so any model of PA2 is isomorphic to
N ∪ P(N). Therefore, there is no sentence independent from PA2. This condradicts
with Gödel’s first incompleteness theorem. 2
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• Instead, L. Henkin considered a general structure of second-order logic, whose
second-order part varies similarly to the first-order logic domain. In other words, such
a logic can be regarded as two-sorted first-order logic.

• We only define the general structure of monadic second-order logic. The monadic
second-order variables (also called set variables) are denoted by X,Y, Z, . . . , and the
atomic formula X(t) is also written as t ∈ X.

Definition

A general structure of monadic second-order logic B = (A,S) consists of first-order logic
structure A and set S ⊂ P(A). The set quantifiers range over B as follows.

B |= ∀Xφ(X) ⇔ for any S ∈ S,B |= φ(S) holds,

B |= ∃Xφ(X) ⇔ there exists S ∈ S such that B |= φ(S).

• A general structure can also be viewed as a first-order structure with two domains (A
and S) (or split into two domains). The formalization such as a derivation system is
almost the same as first-order logic, just by preparing two kinds of variables.
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• Henkin assumed that the general structure should satisfy certain amounts of
comprehension axiom and axiom of choice. The comprehension axiom is an assertion
that for a formula φ(x) with no free occurrence of X, ∃X∀x(x ∈ X ↔ φ(x)), that is,
the set {x : φ(x)} exists in the second-order domain, where φ(x) does not include the
variable X.

Theorem (Henkin’s completeness theorem of MSO)

An MSO formula is provable from appropriate comprehension and other axioms in
two-sorted first-order system if and only if it is true in any general structure that satisfies
those axioms.

• This theorem can be proved in the same way as in first-order logic.

• It can also be generalized to higher-order logics. In fact, Henkin’s proof for the
completeness theorem of first-order logic was made with such a generalization scheme.
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Example 1, 2: MSO is more expressive than first-order logic FO� �
FO cannot distinguish (Q, <) and (R, <). In MSO, it can express that “a bounded set
X (̸= ∅) has a least upper bound”, and hence (Q, <) and (R, <) are distinguishable.

MSO can express the sentence that determines the parity (even or odd) of the length
of a finite linear order, which is not expressible by FO.� �
Example 3: SO is more expressive than MSO� �
The MSO theory of (N, x+1, 0) is decidable due to Büchi. But SO theory of (N, x+1, 0)
is not, since addition m+ n = k is defined by

∀R([R(0,m) ∧ ∀x, y(R(x, y) → R(x+ 1, y + 1))] → R(n, k),

and multiplication can be defined in a similar way, which means that first-order arith-
metic is embedded into the theory.� �
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Thank you for your attention!
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