K. Tanaka

[Recap](#page-3-0)

[Second order](#page-22-0) logic

[General structures](#page-24-0)

Logic and Foundation I Part 2. First-order logic

Kazuyuki Tanaka

BIMSA

November 12, 2023

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

Logic and Foundations I -

- Part 1. Equational theory
- Part 2. First order theory
- Part 3. Model theory
- Part 4. First order arithmetic and incompleteness theorems

✒ ✑

✒ ✑

Part 2. Schedule

- Oct. 26, (1) First order logic: formal system GT and structures
- Nov. 2, (2) Gödel's completeness theorem and applications
- Nov. 9, (3) Miscellaneous

K. Tanaka

[Recap](#page-3-0)

[Second order](#page-22-0) logic

[General structures](#page-24-0)

¹ [Recap](#page-3-0)

2 [Conservative extension](#page-10-0)

3 [Second order logic](#page-22-0) [General structures](#page-24-0)

Today's topics

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

- • First-order logic is developed in the common logical symbols and specific mathematical symbols. Major logical symbols are propositional connectives, quantifiers $\forall x$ and $\exists x$ and equality $=$. The set of mathematical symbols to use is called a **language**.
- A structure in language $\mathcal L$ (simply, a $\mathcal L$ -structure) is defined as a non-empty set A equipped with an interpretation of the symbols in \mathcal{L} .
- A term is a symbol string to denote an element of a structure. A formula is a symbol string to describe a property of a structure. A formula without free variables is called a sentence.
- "A sentence φ is true in A, written as $A \models \varphi$ " is defined by Tarski's clauses. The truth of a formula with free variables is defined by the truth of its universal closure.
- A set of sentences in the language $\mathcal L$ is called a **theory**. A is a **model** of T, denoted by $\mathcal{A} \models T$, if $\forall \varphi \in T$ $(\mathcal{A} \models \varphi)$.
- We say that φ holds in T, written as $T \models \varphi$, if $\forall A(A \models T \to A \models \varphi)$.

Recap

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

Definition (Gentzen-Tait system $GT(T)$ of a theory T)

A sequent $\varphi_1,\ldots,\varphi_n$ (i.e., a multi-set of formulas) intuitively means $\varphi_1\vee\cdots\vee\varphi_n$. A formula φ is automatically transformed into the negation normal form, i.e., constructed from atomic formulas or their negations by means of ∧, ∨, ∀, and ∃.

Axioms

$$
(0) \varphi \text{ (where } \varphi \in T)
$$

- (1) Law of excluded middle: $\neg \psi, \psi$ (where ψ is an atomic formula)
- (2) axioms of equations: (i) $x = x$, (ii) $x \neq y, y = x$, etc.

Inference rules

$$
\frac{\Gamma, \varphi, \psi}{\Gamma, \varphi \vee \psi} \quad (\vee), \quad \frac{\Gamma, \varphi \quad \Gamma, \psi}{\Gamma, \varphi \wedge \psi} \quad (\wedge), \quad \frac{\Gamma, \varphi(t)}{\Gamma, \exists x \varphi(x)} \quad (\exists), \quad \frac{\Gamma, \varphi(x)}{\Gamma, \forall x \varphi(x)} \quad (\forall)(x \text{ is not free in } \Gamma)
$$
\n
$$
\frac{\Gamma}{\Delta} \quad (\text{weak})(\Gamma \text{ is a subsequence of } \Delta), \quad \frac{\Gamma, \neg A \quad \Gamma, A}{\Gamma} \quad (\text{cut})
$$

K. Tanaka

[Recap](#page-3-0)

extension

logic

[General structures](#page-24-0)

Definition

- A proof tree in the system $GT(T)$ is a finite tree in which each vertex is labelled with a sequent so that a sequent at each top vertex (leaf) is an axiom, and the sequents of adjacent nodes express an inference rule. See an example below.
- If there is a proof tree rooted at a sequent Γ , we write it as $T \vdash \Gamma$. Such a tree is called a **proof** of $T \vdash \Gamma$ (or a **proof** of Γ in T).
- If $T = \emptyset$ or T is clear from the context, we omit T and write $\vdash \Gamma$.

Example 5

\nFor any term
$$
t
$$
,

\n
$$
\frac{x = x}{\forall x (x = x)} \quad (\forall)
$$
\n
$$
\frac{x = x}{\forall x (x = x), t = t} \quad (\text{weak})
$$
\n
$$
\frac{t \neq t, t = t}{\exists x (x \neq x), t = t} \quad (\exists)
$$
\n
$$
t = t
$$
\n(cut)

Lemma

 $\vdash \neg \varphi, \varphi$ for any formula φ .

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

Definition

T is said to be **inconsistent** if $T \vdash$ (i.e., T proves the empty sequent). Otherwise, T is said to be **consistent**

Lemma

For any sentence φ , $T \cup {\neg \varphi}$ is inconsistent $\Leftrightarrow T \vdash \varphi$.

Lemma (complete Henkin extension)

Let T be a consistent theory in a language \mathcal{L} . Then, there are a set C of new constants (called a Henkin constants) and a theory S in $\mathcal{L}' = \mathcal{L} \cup C$ such that:

(0) $T \subseteq S$ and S is also consistent.

- (1) For each $\mathcal L'$ -sentence $\exists x\varphi(x)$, there exists a c $\in C$ such that $\neg\exists x\varphi(x)\vee\varphi(\mathsf{c})$ (called a Henkin axiom) belongs to S. In other words, if $S \vdash \exists x \varphi(x)$, there exists a c such that $S \vdash \varphi(c)$.
- (2) For any sentence φ in \mathcal{L}' , $\varphi \in S$ or $\neg \varphi \in S$.

By Zorn's lemma, S exists as a maximal consistent set $\supset T \cup H$ (the Henkin axioms).

K. Tanaka

[Recap](#page-3-0)

extension

- [Second order](#page-22-0) logic
- [General structures](#page-24-0)

Theorem

Any consistent theory has a model.

Proof.

- For a consistent theory T , we will construct a model of T using the set of Henkin constants C and the complete Henkin extension S.
- First, define the congruence relation $c \approx d$ on C by $(c = d) \in S$.
- $\bullet\,$ We define $\mathcal{L}\text{-structure } \mathfrak{A} = (A, \mathtt{f}^\mathfrak{A}, \ldots, \mathtt{R}^\mathfrak{A}, \ldots)$ as follows:

 $A := C / \approx :$ the set of equivalence classes $\{ [c] : c \in C \}$,

$$
\begin{aligned}\n\mathbf{f}^{\mathfrak{A}}([\mathsf{c}_0],[\mathsf{c}_1],\ldots,[\mathsf{c}_{m-1}]) &= [\mathsf{d}] &\Leftrightarrow & (\mathbf{f}(\mathsf{c}_0,\mathsf{c}_1,\ldots,\mathsf{c}_{m-1}) = \mathsf{d}) \in S, \\
\mathbf{R}^{\mathfrak{A}}([\mathsf{c}_0],[\mathsf{c}_1],\ldots,[\mathsf{c}_{n-1}]) &\Leftrightarrow & \mathbf{R}(\mathsf{c}_0,\mathsf{c}_1,\ldots,\mathsf{c}_{n-1}) \in S.\n\end{aligned}
$$

• Then, for any formula $\varphi(x_0, x_1, \ldots, x_{n-1})$ in \mathcal{L} ,

$$
\varphi([\mathtt{c}_0],[\mathtt{c}_1],\ldots,[\mathtt{c}_{n-1}])\in \mathrm{Th}(\mathfrak{A}_A)\quad \Leftrightarrow \quad \varphi(\mathtt{c}_0,\mathtt{c}_1,\ldots,\mathtt{c}_{n-1})\in S.
$$

• Therefore, $\mathfrak A$ is a model of S, and it is also a model of T.

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

Theorem (Gödel-Henkin's completeness theorem)

 $T \vdash \varphi \Leftrightarrow T \models \varphi.$

Proof.

- (\Rightarrow) . Suppose there exists a proof tree P of $T \vdash \varphi$.
	- We can easily show that all sequents that appear in P are true in any model $\mathfrak A$ of T .
- (\Leftarrow). Assume $T \nvDash \varphi$. We also assume that φ is a sentence.
	- Then, $T \cup \{\neg \varphi\}$ is consistent, and so $T \cup \{\neg \varphi\}$ has a model, i.e., $T \not\models \varphi$.

Theorem (Compactness theorem)

A theory T has a model if and only if any finite subset of T has a model.

Proof. \Rightarrow is obvious. So we only show \Leftarrow .

• By way of contradiction, suppose T has no model. Then, $T \models$ (the empty sequent). By the completeness theorem, we also have $T \vdash$. Since a proof tree includes only finitely many axioms, there is a finite set $T' \subset T$ such that $T' \vdash \;$. Therefore, by the completeness theorem, $T' \models \;\;$, that is, some finite subset of T has no model.

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

Theorem (Löwenheim-Skolem's downward theorem)

A consistent theory in the language $\mathcal L$ has a model whose cardinality is less than or equal to the cardinality of L or the countable infinity.

Proof. By the Completeness Theorem and lemmas, the cardinality of the Henkin constants is no larger than the cardinality of $\mathcal L$ and the countable infinity. Since $\mathfrak A$ is constructed from the equivalence classes, the cardinality of $|\mathfrak{A}|$ is less than or equal to them. П

Theorem (Löwenheim-Skolem-Tarski's upward theorem)

If a theory T_0 in a language $\mathcal L$ has an infinite model, then it has a model with an arbitrary cardinality κ greater than or equal to the cardinality of \mathcal{L} .

 \Box ₁₀ **Proof.** Let \mathfrak{A} be an infinite model of the theory T_0 in \mathcal{L} and κ a cardinal number greater than or equal to the cardinality of \mathcal{L} . Let C be a set of new constants with size κ . Let $T = T_0 \cup \{c \neq d : c \text{ and } d \text{ are two distinct constants belonging to } C\}$. Then, any finite subset T' of T has a model $\mathfrak A$ with an appropriate interpretation of constants in C so that a finite number of $\mathsf{c} \neq \mathsf{d}$ contained in T' hold. Therefore, by the compactness theorem, T has a model. However, due to the properties of T , the cardinality of any model is greater than or equal to κ . On the other hand, by the downward theorem, since T has a model with cardinality $\leq \kappa$, it follows that there exists a model with exact cardinality κ .

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

Conservative extension

Definition

Let T and T' be theories in languages ${\cal L}$ and ${\cal L}'$, respectively, and ${\cal L}\subset {\cal L}'$. Then, T' is called a conservative extension of T if for any sentence σ in $\mathcal{L}, T \vdash \sigma \iff T' \vdash \sigma$.

Theorem

If an \mathcal{L} -theory $T \vdash \forall x_1 \cdots \forall x_n \exists y \varphi(x_1, \ldots, x_n, y)$, then $T' := T \cup$ $\{ \forall x_1 \cdots \forall x_n \varphi(x_1, \ldots, x_n, \mathbf{f}(x_1, \ldots, x_n)) \}$ in $\mathcal{L} \cup \{ \mathbf{f} \}$ is a conservative extension of T .

Proof

• Suppose $T \vdash \forall x_1 \cdots \forall x_n \exists y \varphi(x_1, \ldots, x_n, y)$. Let $\mathfrak A$ be any model of T. By axiom of choice, we construct a function ${\tt f}^{\mathfrak{A}}$ on ${\mathfrak{A}}$ such that

$$
\mathfrak{A} \models \forall x_1 \cdots \forall x_n \ \varphi(x_1, \ldots, x_n, \mathbf{f}(x_1, \ldots, x_n))
$$

- Then $\mathfrak{A}^* \equiv \mathfrak{A} \cup \{ \mathtt{f}^\mathfrak{A} \}$ is a model of $T'.$ Take any theorem σ of T' in the language $\mathcal{L}.$ Though it is true in \mathfrak{A}^* , its truth value is irrelevant to $f^\mathfrak{A}$. So, σ should hold in \mathfrak{A} .
- Since $\mathfrak A$ is an arbitrary model of T , by the completeness theorem we have $T \vdash \sigma$.

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

If a formula φ is quantifier-free, $\forall x_1 \cdots \forall x_n \varphi$ is called a \forall -formula or Π_1 -formula.

Theorem

Every theory T has a conservative extension theory T' consisting only of \forall -sentences.

Proof.

• For each formula $\exists y \varphi(x_1, \ldots, x_n, y)$ in a language $\mathcal L$ with no free variables other than x_1, \ldots, x_n , we add a new function symbol $f_{\exists w \varphi(x_1,\ldots,x_n,y)}$ and collect them as F_1 . Put $S_1 = \{ \forall x_1 \cdots \forall x_n (\exists y \varphi(x_1, \ldots, x_n, y) \leftrightarrow \varphi(x_1, \ldots, x_n, f_{\exists w \varphi(x_1, \ldots, x_n, y)}(x_1, \ldots, x_n))) :$ $\exists y \varphi(x_1, \ldots, x_n, y)$ is a formula in $\mathcal{L}\}\$

By the last theorem, for any theory T of $\mathcal{L}, T \cup S_1$ is a conservative extension of T.

- Next, for each formula of the form $\exists y \varphi(x_1, \ldots, x_n, y)$ in the language $\mathcal{L} \cup F_1$, we add a new function symbol and collect them as F_2 and similarly define S_2 .
- By repeating this process, we finally put

$$
F = \bigcup_{i \in \mathbb{N}} F_i, \quad S = \bigcup_{i \in \mathbb{N}} S_i
$$

• Then, for any $\mathcal{L}\text{-theory }T, T \cup S$ is a conservative extension of T, called an (iterated) **Skolem extension** of T. A symbol belonging to F is called a **Skolem function**.

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

- $\bullet\,$ Under the Skolem axioms S , any formula φ in $\mathcal{L}'=\mathcal{L}\cup F$ is equivalent to a \forall -formula, which can be shown by induction on the construction of φ .
- Moreover, in order to prove that any formula is equivalent to a ∀-formula, we may restrict the Skolem axioms S to the following set.

 $S' = \{ \forall x_1 \ldots \forall x_n \forall y (\varphi(x_1, \ldots, x_n, y) \rightarrow \varphi(x_1, \ldots, x_n, f_{\exists y \varphi(x_1, \ldots, x_n, y)}(x_1, \ldots, x_n))) :$ $\varphi(x_1,\ldots,x_n,y)$ is a quantifier-free formula of $\mathcal{L}'\}$

Note here that all formulas in S' are \forall -sentences.

- Let us consider an example, we first transform a formula into prenex normal form by pushing an inner quantifier forward. For instance, change $\theta \wedge \forall x \xi(x)$ to $\forall z(\theta \wedge \xi(z))$ by replacing the bound variable x with a new variable z if necessary.
- Now take a formula $\exists x \forall y \exists z \theta(x, y, z)$ or $\exists x \neg \exists y \neg \exists z \theta(x, y, z)$ as an example. First replace z in $\theta(x, y, z)$ with $f_{\exists z\theta(x, y, z)}(x, y) \in F_1$ and put the following into S_1 $\forall x, y, z(\theta(x, y, z) \rightarrow \theta(x, y, \mathbf{f}_{\exists z \theta(x, y, z)}(x, y))).$
- For simplicity, we write $\theta_1(x, y)$ for $\theta(x, y, f_{\exists z \theta(x, y, z)}(x, y))$. Next, replace y in $\neg \theta_1(x, y)$ with $f_{\exists y \neg \theta_1(x, y)}(x) \in F_2$ and put the following into S_2 $\forall x, y (\neg \theta_1(x, y) \rightarrow \neg \theta_1(x, \mathbf{f}_{\exists y \neg \theta_1(x, y)}(x)).$

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

• Again for simplicity, we write $\theta_2(x)$ for $\neg \theta_1(x, \mathbf{f}_{\exists y \neg \theta_1(x,y)}(x))$. Replace x in $\neg \theta_2(x)$ with a constant $f_{\exists x \neg \theta_2(x)} \in F_3$ and put the following into S_3

$$
\forall x (\neg \theta_2(x) \rightarrow \neg \theta_2(\mathbf{f}_{\exists x \neg \theta_2(x)}).
$$

• Then under the assumption S_3 , we have

$$
\exists x \forall y \exists z \theta(x, y, z) \leftrightarrow \exists x \forall y \theta_1(x, y)
$$

$$
\leftrightarrow \exists x \neg \exists y \neg \theta_1(x, y)
$$

$$
\leftrightarrow \exists x \neg \theta_2(x)
$$

$$
\leftrightarrow \neg \theta_2(\mathbf{f}_{\exists x \neg \theta_2(x)}).
$$

Thus, $\exists x \forall y \exists z \theta(x, y, z)$ is equivalent to a quantifier-free sentence.

- For each axiom (sentence) in the theory T, we rewrite it as a quantifier-free sentence in $\mathcal{L} \cup F$ and collect all of them as T'' .
- Then $T' = T'' \cup S'$ is a conservative extension of T consisting of only \forall -sentences. \Box

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

Next, we will consider an interpretation of a theory into a theory of a different language.

• First of all, we discuss a function symbol introduced by definition, which is a special case of interpretation as we will see later.

Assume $T \vdash \forall x_1 \cdots \forall x_n \exists! y \varphi(x_1, \ldots, x_n, y)$. Here, $\exists! y \psi(y)$ means "there exists a unique y that satisfies $\psi(y)$."

Then the theory $T'=T\cup\{\forall x_1\cdots\forall x_n\forall y (\varphi(x_1,\ldots,x_n,y)\leftrightarrow \mathtt{f}(x_1,\ldots,x_n)=y)\}$ is called an expansion of T by definition. T' is a conservative extension of T .

Given a formula ψ of $\mathcal{L}\cup\{\mathtt{f}\}$, we construct $\psi^{-\mathtt{f}}$ in $\mathcal L$ by the following procedure.

- (1) If ψ does not include f, then terminate this process by setting $\psi^{-f} = \psi$.
- (2) If ψ contains f, take an atomic subformula θ containing it, and choose a subterm $f(t_0, \ldots, t_{n-1})$ in it such that no t_i contains f.
- (3) In θ , replace the subterm selected in (2) with a new variable y and call it $\theta_1(y)$.
- (4) Replace θ in ψ by $\exists y (\varphi(t_0, \ldots, t_{n-1}, y) \wedge \theta_1(y))$, and then we regard it as a new ψ , and then go to (1).

It is easy to see that $T' \vdash \psi \leftrightarrow \psi^{-1}$

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

Let θ be a subformula of φ . Assume $T \vdash \theta \leftrightarrow \theta'$. Let φ' be a formula obtained from φ by replacing some (or all) occurrences of θ in φ with $\theta'.$ Then $T\vdash \varphi \leftrightarrow \varphi'.$

Proof. By the completeness theorem, it is enough to show that in any model \mathfrak{A} of T, φ and φ' have the same truth value. This is obvious from Tarski's truth definition clauses.

Relational expansion

Lemma

• Expand a theory by a new relational symbol R as follows:

 $T' = T \cup {\forall x_1 \cdots \forall x_n (\varphi(x_1, \ldots, x_n) \leftrightarrow R(x_1, \ldots, x_n))},$

It is also a conservative extension of T .

 $\bullet\,$ Let $\psi^{-{\rm R}}$ denote a formula obtained from ψ by replacing all occurrences of $R(t_1, \ldots, t_n)$ with $\varphi(t_1, \ldots, t_n)$. Then

$$
T' \vdash \psi \leftrightarrow \psi^{-R}
$$

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

Homework (difficult)

Let Σ be a theory in a language $\mathcal L$ including an n-ary relation symbol R and some others. Then, R is said to be explicitly definable in Σ , if there exists a formula $\varphi(x_0, \ldots, x_{n-1})$ in $\mathcal{L} - \{R\}$ such that

$$
\Sigma \vdash \forall x_0, \ldots, x_{n-1}(R(x_0, \ldots, x_{n-1}) \leftrightarrow \varphi(x_0, \ldots, x_{n-1})).
$$

Now, we construct Σ' from Σ by replacing all occurrences of R by a new symbol R' . Then, R is said to be implicitly definable in Σ , if the following hold

 $\Sigma \cup \Sigma' \vdash \forall x_0, \ldots, x_{n-1}(R(x_0, \ldots, x_{n-1}) \leftrightarrow R'(x_0, \ldots, x_{n-1})).$

✒ ✑

Show that R is explicitly definable in Σ iff R is implicitly definable in Σ .

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

Now we are ready to define a language interpretation.

Definition

Given two languages \mathcal{L},\mathcal{L}' and a theory T' in the language \mathcal{L}' . A pair $\langle U,I\rangle$ that satisfies the following is called a interpretation (translation) of language $\mathcal L$ (in $T').$

- (1) U is a one-variable formula in \mathcal{L}' . (It represents the domain of the theory in \mathcal{L} .)
- (2) I is a function from $\mathcal L$ to formulas in $\mathcal L'$, and if f is a n-ary function symbol, $I(f)$ is an $(n + 1)$ -ary formula; if R is an *n*-ary relation symbol, $I(R)$ is also an *n*-ary formula. (3) $T' \vdash \exists x U(x)$.
- (4) For each functional symbol f,

 $T' \vdash \forall x_1 \cdots \forall x_n (U(x_1) \wedge \cdots \wedge U(x_n) \rightarrow \exists! y (I(\mathbf{f})(x_1, \ldots, x_n, y) \wedge U(y))).$

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

- Next, we want to interpret the \mathcal{L} -formulas.
- However, we should notice that $\forall x_1 \cdots \forall x_n \exists! y I(f)(x_1, \ldots, x_n, y)$ may not hold outside of U. So, we take a new constant a and modify $I(f)$ as follows:

 $I'(\mathtt{f})(x_1,\ldots,x_n,y) \Leftrightarrow$

 $((U(x_1) \wedge \cdots \wedge U(x_n)) \wedge I(f)(x_1, \ldots, x_n, y)) \vee ((\neg U(x_1) \vee \cdots \vee \neg U(x_n)) \wedge y = a).$ Then, let f be a function symbol defined by $I'(\texttt{f})$.

- Also, let R be a relational symbol defined by $I(R)$. Then, after interpretation, the terms of $\mathcal L$ will remain unchanged, and so will the atomic formulas and the propositional connectives.
- $\bullet\,$ We only need to deal with quantifiers. If we denote the interpretation of φ in $\mathcal L$ by $\varphi^I,$ (1) $(\exists x \psi)^{I}$ is $\exists x (U(x) \wedge \psi^{I})$. (2) $(\forall x \psi)^{I}$ is $\forall x (U(x) \rightarrow \psi^{I})$.

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

Definition

- $\bullet\,$ Let T and T' be theories of languages ${\mathcal L}$ and ${\mathcal L}',$ respectively. Suppose that $\langle U, I\rangle$ is an interpretation of language ${\cal L}$ in $T'.$
- Then, $\langle U,I \rangle$ is said to be the interpretation of the theory T in T' , if for any sentence σ in \mathcal{L} .

$$
T \vdash \sigma \quad \Rightarrow \quad T' \vdash \sigma^I.
$$

- If there is an interpretation of T in T' , T is said to be **interpretable** within T' .
- Moreover, if the following holds

$$
T \vdash \sigma \quad \Leftrightarrow \quad T' \vdash \sigma^I
$$

 $\langle U, I \rangle$ is called a faithful interpretation of T' in T .

$\sqrt{2}$ Example 7 $\sqrt{2}$

Logic and [Foundation](#page-0-0) K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

If T is an expansion of T' by defition, then there is a faithful interpretation $\langle U,I \rangle$ of T in T' . Let $U(x)$ be $x = x$. For a defined function ${\tt f}$ and relation ${\tt R}$, let $I({\tt f})$ and $I({\tt R})$ be their definitions. The interpretations of other symbols are the same as the originals.

✒ ✑

 \sim Example 8 \sim Let $\mathfrak{N} = (\mathbb{N}, +, \cdot, 0, 1, <), \mathfrak{Z} = (\mathbb{Z}, +, \cdot, 0, 1).$ There exists a faithful interpretation $\langle U, I \rangle$ from Th (\mathfrak{N}) to Th (\mathfrak{Z}) :

$$
U(x) \equiv \exists x_1 \exists x_2 \exists x_3 \exists x_4 (x = x_1 \cdot x_1 + \dots + x_4 \cdot x_4)
$$

$$
I(+)(l, m, n) \equiv l + m = n, \quad I(\cdot)(l, m, n) \equiv l \cdot m = n
$$

$$
I(0)(n) \equiv n = 0, \quad I(1)(n) \equiv n = 1
$$

$$
I(<)(m, n) \equiv \exists x (U(x) \land x \neq 0 \land m + x = n)
$$

✒ ✑ \sim Problem 4 \longrightarrow

Show that there exists a faithful translation $\langle U, I \rangle$ from Th(3) to Th(\mathfrak{N}).

K. Tanaka

[Recap](#page-3-0)

[Conservative](#page-10-0) extension

logic

[General structures](#page-24-0)

\sim Problem 5 \longrightarrow

- **1** Show that Peano arithmetic PA is interpretable within ZF set theory.
- ² Show that ZF without Infinity axiom is interpretable within PA.

• If a faithful translation from T to T' exists, provability in T is reducible to that of T' . Therefore, if T' is decidable, so is T .

✒ ✑

 \bullet Conversely, to show the undecidability of T' , it suffices to interpret an undecidable theory into T' .

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

Second order logic

- • In first-order logic, quantifiers ∀ and ∃ range over the elements of a structure.
- Second-order logic enables us to use quantifiers over relations and functions on the domain. For simplicity, we deal only with quantification over relations, not functions.

Definition

Let $\varphi(R)$ be a first-order formula in language $\mathcal{L} \cup \{R\}$. The truth values of second order logic formulas $\forall R\varphi(R)$ and $\exists R\varphi(R)$ in a *L*-structure *A* is defined as follows.

$$
\mathcal{A}\models \forall R\varphi(R)\Leftrightarrow \text{for any } \dot{R}\subseteq A^n, (\mathcal{A},\dot{R})\models \varphi(R) \text{ holds.}
$$

 $\mathcal{A} \models \exists R \varphi(R) \Leftrightarrow$ there exists $\dot{\text{R}} \subseteq A^n$ such that $(\mathcal{A}, \dot{\text{R}}) \models \varphi(\text{R})$.

- In the following, we do not strictly distinguish among the relation variable R , relation \dot{R} , and relation constant (symbol) R .
- The concepts of free and bound variables can be introduced for second-order formulas as those in first-order formulas.

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

- The critical issue is how to consider the domain of second-order variables.
- In the above definition, we use "any $R \subseteq A^{n}$ " to mean that "all" subsets of A^n should be considered. A structure with such an interpretation is called a standard structure of second-order logic, although this cannot be formally defined.
- For simplicity, we restrict second-order variables to unary relations, namely subsets of the first-order domain. This is called monadic second-order logic (MSO).

Theorem (Gödel)

The validity of (M)SO in standard structures is not axiomatizable.

Proof.

- Assume MSO were axiomatized. We can define second-order Peano Arithmetic PA₂ by adding axioms of arithmetic such as PA to MSO.
- In any model M of PA₂, since all subsets of the first-order domain M belong to the second-order domain, then the smallest set N containing 0 and closed under $+1$ also belongs to the second-order domain. Here, N is isomorphic to the standard N .
- Assuming PA₂ includes mathematical induction, N must coincide with the whole M. In other words, M is isomorphic to N, and so any model of PA_2 is isomorphic to $\mathbb{N} \cup \mathcal{P}(\mathbb{N})$. Therefore, there is no sentence independent from PA₂. This condradicts with Gödel's first incompleteness theorem.

 24

K. Tanaka

[Recap](#page-3-0)

extension

logic

[General structures](#page-24-0)

- • Instead, L. Henkin considered a **general structure** of second-order logic, whose second-order part varies similarly to the first-order logic domain. In other words, such a logic can be regarded as two-sorted first-order logic.
- We only define the general structure of monadic second-order logic. The monadic second-order variables (also called set variables) are denoted by X, Y, Z, \ldots , and the atomic formula $X(t)$ is also written as $t \in X$.

Definition

A general structure of monadic second-order logic $B = (\mathcal{A}, \mathcal{S})$ consists of first-order logic structure A and set $S \subset \mathcal{P}(A)$. The set quantifiers range over B as follows.

> $\mathcal{B} \models \forall X \varphi(X) \Leftrightarrow$ for any $S \in \mathcal{S}, \mathcal{B} \models \varphi(S)$ holds, $\mathcal{B} \models \exists X \varphi(X) \Leftrightarrow$ there exists $S \in \mathcal{S}$ such that $\mathcal{B} \models \varphi(S)$.

• A general structure can also be viewed as a first-order structure with two domains (A and S) (or split into two domains). The formalization such as a derivation system is almost the same as first-order logic, just by preparing two kinds of variables.

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

• Henkin assumed that the general structure should satisfy certain amounts of comprehension axiom and axiom of choice. The comprehension axiom is an assertion that for a formula $\varphi(x)$ with no free occurrence of X, $\exists X \forall x (x \in X \leftrightarrow \varphi(x))$, that is, the set $\{x : \varphi(x)\}$ exists in the second-order domain, where $\varphi(x)$ does not include the variable X.

Theorem (Henkin's completeness theorem of MSO)

An MSO formula is provable from appropriate comprehension and other axioms in two-sorted first-order system if and only if it is true in any general structure that satisfies those axioms.

- This theorem can be proved in the same way as in first-order logic.
- It can also be generalized to higher-order logics. In fact, Henkin's proof for the completeness theorem of first-order logic was made with such a generalization scheme.

K. Tanaka

[Recap](#page-3-0)

extension

logic

[General structures](#page-24-0)

Example 1, 2: MSO is more expressive than first-order logic FO

FO cannot distinguish (\mathbb{Q}, \leq) and (\mathbb{R}, \leq) . In MSO, it can express that "a bounded set $X(\neq \emptyset)$ has a least upper bound", and hence $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ are distinguishable.

MSO can express the sentence that determines the parity (even or odd) of the length of a finite linear order, which is not expressible by FO.

✒ ✑

Example 3: SO is more expressive than MSO

The MSO theory of $(N, x+1, 0)$ is decidable due to Büchi. But SO theory of $(N, x+1, 0)$ is not, since addition $m + n = k$ is defined by

 $\forall R([R(0, m) \land \forall x, y(R(x, y) \rightarrow R(x+1, y+1))] \rightarrow R(n, k),$

and multiplication can be defined in a similar way, which means that first-order arithmetic is embedded into the theory.

✒ ✑

K. Tanaka

[Recap](#page-3-0)

extension

[Second order](#page-22-0) logic

[General structures](#page-24-0)

Thank you for your attention!