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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 2. Schedule� �
• Oct. 26, (1) First order logic: formal system GT and structures

• Nov. 2, (2) Gödel’s completeness theorem and applications

• Nov. 9, (3) Miscellaneous� �
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Today’s topics

1 Languages and structures

2 Gentzen-Tait formal system GT

3 Model construction
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Introduction to part 2

• In this part, we will introduce the basics of first-order logic (predicate logic) and
investigate properties of mathematical theories in this logic.

• Equational theories in the previous part only dealt with equations, but first-order
theories can treat more general expressions involving relational symbols (e.g. <) and
logical symbols (e.g. ∧, ∀). Most of ordinary mathematical theories can be formalized
in first-order logic.

• We will introduce Gentzen-Tait’s deductive system GT, and proves the Completeness
Theorem (that all valid statements are provable) by Henkin’s method.

• By this method, the compactness theorem and Löwenheim-Skolem theorem can also
be obtained.

• As an application of completeness theorem, we also present the iterpretation of a
theory in another theory.
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In part 1, we presented group theory as an equational theory in the symbol set
L = ( • , e, −1).

Definition (Recall: lec01-01)

Group theory Gp consists of the following three axioms.

G1 : (x · y) · z = x · (y · z) (associativity)
G2 : e · x = x (left identity)
G3 : x−1 · x = e (left inverse)

where x, y and z are variables, e is a constant, and −1 represents a unary function.

Using first-order logic, it may be formalized without the symbols e, −1.

Example 1� �
Group theory can be axiomatized in the language L = ( • ) as follows:{

(x · y) · z = x · (y · z),
∃z(∀x(z · x = x) ∧ ∀x∃y(y · x = z)).� �
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Example 2� �
Various kinds of continuity of a real functions are expressed as follows.

◦ f(x) is continuous at x = a
⇐⇒ ∀ε > 0 ∃δ > 0 ∀x(|x− a| < δ → |f(x)− f(a)| < ε).

◦ f(x) is continuous (at all points)
⇐⇒ ∀a∀ε > 0 ∃δ > 0 ∀x(|x− a| < δ → |f(x)− f(a)| < ε).

◦ f(x) is uniformly continuous
⇐⇒ ∀ε > 0 ∃δ > 0 ∀x∀y(|x− y| < δ → |f(x)− f(y)| < ε).� �

Note that ∀x > 0 is an abbreviation for ∀x(x > 0 → · · · ), ∃x > 0 is for ∃x(x > 0 ∧ · · · ).
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First order logic

• Propositional logic is the study of logical connections between propositions expressed
by ¬,∧,∨,→.

• First-order logic is obtained from propositional logic by adding logical symbols ∀,∃.
∀x expresses “for every element x (of the underlying set)”, and
∃x expresses “there exists an element x (of the underlying set)”.

∀x is called a universal quantifier, and ∃x is called an existencial quantifier.

• Historically, first-order logic was introduced by D. Hilbert as a downsized system of
Russell’s type theory to handle mathematical theories in more algebraic way. He then
asked whether his formulation is complete (i.e., sufficient to prove all the valid
formulas). Gödel answered the question affirmatively in his doctoral thesis.
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Symbols of first-order logic� �
• Common logical symbols of first-order logic

1 propositional connectives: ¬ (not · · · ), ∧ (and), ∨ (or), → (implies),
2 quantifiers: ∀ (for all · · · ), ∃ (there exists · · · ).
3 variables: x0,x1, · · ·
4 equality = and auxiliary symbols such as parentheses (,).

• Mathematical symbols of a specific theory:
function symbols f, · · · ; and relation symbols R, · · · .� �

Definition

A language (signature, alphabet) L of first-order logic is a list or set of function symbols
fi and relational symbols Rj denoted as

L = (f0, f1, . . . ; R0, R1, . . . ).

If fi is an mi-ary function symbol (for each i) and Rj is an nj-ary relation symbol (for each
j), then ρ = (m0,m1, . . . ;n0, n1, . . . ) is called a similarity type of language L.

Note that L may be uncountable.
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Definition

A structure in language L (an L-structure) is defined as a non-empty set A equipped with
an interpretation of the symbols in L, denoted as

A = (A; fA, · · · ,RA, · · · ).

• A = |A| is called the domain (or universe) of the structure A, where A is a non-empty.

• For an m-ary function symbol f∈ L, fA : Am → A.

• For an n-ary relational symbol R∈ L, RA ⊆ An.

A function symbol with no argument (0-ary function) is called a constant.
Since a constant plays a special role distinct from a function, they are often treated
separately. In such a case, a language L may be flexibly written as (c, . . . ; f, . . . ; R, . . . ),
and an L-structure as (A; cA, · · · , fA, · · · ,RA, · · · ), where cA ∈ A.
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Similarly to the algebraic language (lec01-01), a term of first-order language L is a symbol
string consisting of variables and function symbols of L.
A term that includes no variables is called a closed term, which indicates an element of
the structure determined by the following definition.

Definition (Terms)

The terms of the language L are symbol strings defined inductively as follows.

1 variables (and constants in L) are terms of L.
2 If t0, · · · , tn−1 are terms and f is an n-ary function symbol of L, then f(t0, · · · , tn−1)
is a term of L.

Let A be an L-structure. For a term t with no variable, its value in a structure A, denoted
tA, is defined inductively as follows.

1 the value of constant c in L is cA.

2 the value of term f(t0, · · · , tn−1) is f
A(tA1 , · · · , tAn−1).
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Definition (Formulas)

A formula of language L is a sequence of symbols inductively defined as follows.

(1) If s, t, t0, · · · , tn−1 are terms of L, and R is an n-ary relation symbol of L, then

s = t and R(t0, · · · , tn−1)

are formulas of L, which are called atomic formulas.

(2) If φ,ψ are formulas of L, then so are the followings: for any variable x,

¬(φ), (φ) ∧ (ψ), (φ) ∨ (ψ), (φ) → (ψ), ∀x(φ), ∃x(φ).

The bracket ( and ) can be omitted if no confusion might occur.
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Example 3� �
• Let LOR = (+, • , 0, 1;<) be the language of ordered rings, whose similarity type
is ρ = (2, 2, 0, 0; 2).

• The standard structure N = (N; +, • , 0, 1;<) of natural numbers is an
LOR-structure, where +, • , 0, 1;< represents usual functions or relation on
natural numbers. For example, 1 in the structure is not a constant symbol, but
an element of N indicated by constant 1.

• In this language,

(1) (x0 + 1) •x2 is a term.

(2) (x0 + 1) •x2 < x1 is an atomic formula.

(3) ∀x0((x0 + 1) •x2 < x1) ∧ ∀x1∃x3(x1 •x2 = x3) is a formula.� �
A formula that appears in the process of constructing a formula is called its subformulas.
The subformulas of formula (3) in the above example are

• the two atomic subformulas (x0 + 1) •x2 < x1, x1 •x2 = x3,

• ∀x0((x0 + 1) •x2 < x1), ∃x3(x1 •x2 = x3), ∀x1∃x3(x1 •x2 = x3), and the whole
formula.
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• In a formula, a variable x is said to be bound if it occurs in a subformula of the form
∀xφ(x) or ∃xφ(x), and otherwise it is said to be free.

• In (3) ∀x0((x0 + 1) •x2 < x1) ∧ ∀x1∃x3(x1 •x2 = x3) of Example 3,
x0 and x3 are bound, x2 is free, x1 appears both free and bound.

• Focusing on the free occurrence of some variables (say, x, y) in a formula φ, we write
it as φ(x, y).

• Then, we write φ(s) for the formula obtained from φ(x) by substituting a term s into
every free occurrence of x.

• If a variable y included in s will be bound in φ(s), we replace the bound variable y in
φ with a new variable z in advance.

• For example, consider the substitution of x = s for ∀yφ(x, y), where s includes y. In
such a case, change ∀yφ(x, y) with ∀zφ(x, z) for the first. Then by substituting x = s
for ∀zφ(x, z), we obtain ∀zφ(s, z). Such a replacement of variables are automatically
done to avoid confusion.
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Definition

• A formula φ with no free variables is called a sentence or a closed formula.

• A formula φ with no quantifiers is called a quantifier-free formula or open formula.
Obviously, any variable in an open formula is free.

• For a formula φ(x1, · · · , xn) with no free variables unspecified, a sentence of the form
∀x1∀x2 . . . ∀xnφ is called the universal closure of φ.

• A formula and its universal closure are often identified. For example, x < x+ 1 is
interchangeable with ∀x(x < x+ 1).

• Strictly, a theory is a set of sentences. But we may also treat a set of formulas as a
theory by replacing each formula with its universal closure.
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Our next goal is to define the concept of truth/false of sentences. First, the truth/false of
an atomic sentence (an atomic formula with no variables) is defined as follows.

Definition

Let A be a structure in language L.
(1) Let s and t be closed terms. If sA and tA have the same value,

the atomic formula s = t is true in A; otherwise false.

(2) Let R be an n-ary relation symbol in L, and t0, . . . , tn−1 be closed terms. If
RA(tA0 , . . . , t

A
n−1) holds, then

the atomic formula R(t0, . . . , tn−1) is true in A; otherwise false.
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In order to determine the true/false of general sentences, we define an expansion of a given
L-structure A.

Definition

Let A and B be structures in languages L and L′, respectively, and L ⊂ L′.
Then, B is called an expansion of A or A is called an reduct of B if |A| = |B| and for
each symbol f, R of L, fA(x⃗) = fB(x⃗) and RA(x⃗) ⇔ RB(x⃗).

Let C be a subset of the domain A = |A|, and c∗ denote a new constant for each element
c ∈ C. Then, put LC = L ∪ {c∗ : c ∈ C}. Now, the structure A is expanded to a
LC-structure AC with constant c∗ interpreted as c. In particular, A∅ = A.



Logic and
Foundation

K. Tanaka

Languages and
structures

Gentzen-Tait
formal system GT

Model
construction

17

The concept of true/false of a sentence in the structure A is defined via the extended
structure AA. For simplicity, we do not distinguish an element a of |A| and a constant a∗.

Definition (Tarski’s truth definition clauses)

The set of true sentences in the structure AA, denoted Th(AA), is defined inductively by
the following Tarski’s truth definition clauses.

• For an atomic sentence φ of LA, φ ∈ Th(AA) ⇔ φ is true in AA,

• ¬φ ∈ Th(AA) ⇔ φ ̸∈ Th(AA),

• φ ∧ ψ ∈ Th(AA) ⇔ φ ∈ Th(AA) and ψ ∈ Th(AA),

• φ ∨ ψ ∈ Th(AA) ⇔ φ ∈ Th(AA) or ψ ∈ Th(AA),

• φ→ ψ ∈ Th(AA) ⇔ φ ̸∈ Th(AA) or ψ ∈ Th(AA),

• ∀xφ(x) ∈ Th(AA) ⇔ for every a ∈ A, φ(a) ∈ Th(AA),

• ∃xφ(x) ∈ Th(AA) ⇔ there exists a ∈ A such that φ(a) ∈ Th(AA).

Th(AA) is called the elementary diagram of the structure A. The set of atomic sentences
and negations of atomic sentences included in Th(AA) is called the basic diagram, which
is denoted as Diag(A).
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Definition

If an L-sentence φ belongs to Th(AA), we say φ is true in the structure A, written as
A |= φ or φ ∈ Th(A).
For an L-formula φ, if its universal closure ∀x0 · · · ∀xn−1φ is true in A, we write A |= φ.

Definition

If a set T of sentences in language L is a subset of Th(A), the structure A is called a
model of T , written as A |= T .

Definition

Let T be a set of sentences in language L, and φ a formula in L. If A |= φ for any model
A of T , we say that φ is a consequence of T , written as T |= φ.

T |= φ represents that a sentence φ holds in a theory T in the ordinary mathematical
sense. This relationship can be formalized in a formal deductive system.
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• A logical deduction system consists of axioms and inference rules. Depending on
which one is emphasized, two types of systems are defined.

• A deductive system mainly based on axioms is called the Hilbert style, and contrarily
one mainly based on inference rules is called the Gentzen style.

• In the following, we adopt a Gentzen-style system modified by Tait, called GT.

• In GT, treat φ→ ψ as an abbreviation for ¬φ ∨ ψ. Then, any formula φ is
automatically transformed into the negation normal form, i.e., constructed from
atomic formulas or their negations by means of ∧, ∨, ∀, and ∃. Also, ¬s = t is
abbreviated as s ̸= t.

• To keep the negation normal form, the following replacement rules (De Morgan’s
laws) are applied wherever possible:

¬(φ ∨ ψ) := ¬φ ∧ ¬ψ, ¬(φ ∧ ψ) := ¬φ ∨ ¬ψ,

¬∀xφ := ∃x¬φ, ¬∃xφ := ∀x¬φ, ¬¬φ := φ.
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Definition

• A finite sequence of formulas φ1, . . . , φn is called a sequent.

• All sequents formed by rearranging the elements are regarded as the same.

• A sequent is therefore a multiset rather than a sequence.

• For two sequents Γ (= φ1, . . . , φn) and ∆ (= ψ1, . . . , ψm),
Γ,∆ denotes the sequent φ1, . . . , φn, ψ1, . . . , ψm.

The sequent φ1, . . . , φn intuitively means φ1 ∨ · · · ∨ φn. The Gentzen-Tait system is a
deductive system of sequents.
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Definition (Gentzen-Tait system -1/2)

Gentzen-Tait system GT(T ) of a theory T has the following axioms and inference rules:

Axioms

(0) φ (where φ ∈ T )

(1) Law of excluded middle: ¬ψ,ψ (where ψ is an atomic formula)

(2) Equational axiom:

(i) x = x,

(ii) x ̸= y, y = x,

(iii) x ̸= y, y ̸= z, x = z,

(iv) x1 ̸= y1, . . . , xm ̸= ym, f(x1, . . . , xm) = f(y1, . . . , ym),

(v) x1 ̸= y1, . . . , xn ̸= yn, R(x1, . . . , xn),¬R(y1, . . . , yn),
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Definition (Gentzen-Tait system -2/2)

Inference rules

Γ, φ, ψ

Γ, φ ∨ ψ (∨),
Γ, φ Γ, ψ

Γ, φ ∧ ψ (∧)

Γ, φ(t)

Γ,∃xφ(x)
(∃),

Γ, φ(x)

Γ,∀xφ(x)
(∀)(Γ has no free occurrences of x)

Γ
∆

(weak1)(Γ is a subsequence of ∆),
Γ,¬A Γ, A

Γ
(cut)

1weakening
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Definition

• A proof tree in the system GT(T ) is a finite tree in which each vertex is labelled with
a sequent so that a sequent at each top vertex (leaf) is an axiom, and the sequents of
adjacent nodes express the inference rule. See the examples below.

• If there is a proof tree rooted at the sequent Γ, we write it as T ⊢ Γ. Such a tree is
called a proof of T ⊢ Γ (or a proof of Γ in T ).

• If T = ∅ or T is clear from the context, we omit T and write ⊢ Γ.

Example 4� �
A proof of ⊢ ¬φ ∨ (¬ψ ∨ (φ ∧ ψ)), where φ,ψ are atomic formulas, is following.

¬φ,φ
¬φ,φ,¬ψ (weak)

¬ψ,ψ
¬ψ,ψ,¬φ (weak)

¬φ,¬ψ,φ ∧ ψ (∧)

¬φ,¬ψ ∨ (φ ∧ ψ)
(∨)

¬φ ∨ (¬ψ ∨ (φ ∧ ψ))
(∨)� �
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Example 5� �
For any term t, we have ⊢ t = t as follows.

x = x
∀x(x = x)

(∀)

∀x(x = x), t = t
(weak)

t ̸= t, t = t

∃x(x ̸= x), t = t
(∃)

t = t
(cut)

Here, note that ¬∃x(x ̸= x) can be rewritten as ∀x(x = x). Any substitution instance
of other equality axioms can also be proven in the same way as Example 5.� �
Problem� �
Consider the case that R is the equality in the equational axiom

x1 ̸= y1, . . . , xn ̸= yn, R(x1, . . . , xn),¬R(y1, . . . , yn).

Show that the equational axioms (ii) and (iii) can be derived from the above axiom and
the equational axiom (i) in Page 21.� �
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Lemma

⊢ ¬φ,φ for any formula φ.

Proof. By induction on the construction of φ.
If φ is an atomic formula, it is an axiom.
If φ ≡ ψ ∨ θ then ¬φ ≡ ¬ψ ∧ ¬θ and

¬ψ,ψ
¬ψ,ψ, θ (weak)

¬ψ,ψ ∨ θ (∨)

¬θ, θ
¬θ, ψ, θ (weak)

¬θ, ψ ∨ θ (∨)

¬ψ ∧ ¬θ, ψ ∨ θ (∧)

Formulas φ of other forms can be proved in the same way (Exercise).

By this lemma, we can see that in Example 4 in Page 23, φ,ψ may not only be atomic
formulas but any formulas.
To prepare for a proof of the completeness theorem for GT, we will show several lemmas.
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Lemma (Deduction theorem)

Let T be an L-theory, φ a sentence and Γ be a sequent. Then,
T ∪ {φ} ⊢ Γ ⇒ T ⊢ ¬φ,Γ.

Proof.

• Let P be a proof tree of T ∪ {φ} ⊢ Γ. Then let P ′ be a tree obtained from P by
adding the formula ¬φ to all the sequents appearing in the proof tree.

• Any inference rule at adjacent vertices remains as the same kind of inference rule.
(Note: Since ¬φ is a sentence, the condition of the rule (∀) holds.)

• If a sequent at a leaf of P is an axiom ∆ of T , then the corresponding vertex of P ′ is
labelled ¬φ,∆. So, we add a vertex labelled axiom ∆ above it so that they satisfy the
inference rule (weak).

• If a sequent at a leaf of P is φ, the corresponding sequent of P ′ is ¬φ,φ, that is, the
law of excluded middle. So we put an appropriate proof of it above it. Then let P ′′ be
a tree obtained from P ′ by doing all these modifications.

• Thus, P ′′ is a proof tree of T ⊢ ¬φ,Γ.
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Remark on the deduction theorem:
• Be careful of the difference between assuming φ in theory T and assuming T ⊢ φ.
Actually, if we assume T ⊢ φ with T = ZF, φ = AC, this leads to a contradiction.

Definition

T is said to be inconsistent if T ⊢ (i.e., T proves the empty sequent). Otherwise, T is
said to be consistent.

Lemma

Let T be a theory and φ asentence. The following hold.

(1) If there exists a φ such that T ⊢ φ and T ⊢ ¬φ, then T is inconsistent.

(2) T ∪ {¬φ} is inconsistent ⇔ T ⊢ φ.
(3) T ∪ {¬φ} is consistent ⇔ T ⊢ φ does not hold .

Proof.
• (1) can be obtained by using the inference rule (cut).

• (⇒) of (2) is nothing but the deduction theorem. To show (⇐) of (2), assume T ⊢ φ.
Then T ∪ {¬φ} ⊢ φ. Also, T ∪ {¬φ} ⊢ ¬φ. So by (1), T ∪ {¬φ} is inconsistent.

• (3) is the dual of (2).
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Lemma

If T is consistent, T ∪ {φ} or T ∪ {¬φ} are consistent for any sentence φ.

Proof. It is clear from (1) and (3) in the above lemma.

Lemma

Let T ∪ {∃xφ(x)} be consistent and c be a new constant. Then T ∪ {φ(c)} is also
consistent in L′ = L ∪ {c}.

Proof.
• By way of contradiction, assume T ∪ {φ(c)} ⊢.

• By the deduction theorem, we have T ⊢ ¬φ(c).

• Now, let x be a variable that does not appear in the proof of T ⊢ ¬φ(c). If we replace
all c with x in the proof, we have a proof of T ⊢ ¬φ(x).

• If we add an inference rule (∀) at the root of the proof tree, we have a proof of
T ⊢ ∀x¬φ(x), that is, T ⊢ ¬∃xφ(x).

• Therefore, by (2) of lemma in Page 27, T ∪ {∃xφ(x)} is inconsistent, which
contradicts with our assumption.
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Lemma

Let L be a language. Then there exists a set C of constants not included in L and a set H
of sentences in L′ = L ∪ C such that for any consistent L-theory T , the following hold:

(1) T ∪H is consistent.

(2) For each L′-sentence ∃xφ(x) such that T ∪H ⊢ ∃xφ(x), there exists c ∈ C such that
T ∪H ⊢ φ(c).
T ∪H is called the Henkin extension or the Henkinization of T .

• The above lemma is the core of the proof of Gödel’s completeness theorem for GT.

• In the proof of Birkhoff’s completeness theorem, we created a model by dividing the
term algebra by the congruence relation.

• The basic idea to construct a model of first-order logic is the same. But the term
algebra of the given language is not sufficient to be the universal structure.

• So, we extend the language by introducing many new constants called the Henkin
constants. This extension depends on a language, not a theory.
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Proof. We describe how to construct C and H of the lemma. For each L-sentence
∃xφ(x), we add new constant c∃xφ(x), and collect them as C1, i.e.,

C1 = {c∃xφ(x) : ∃xφ(x) is an L-sentence}.
For each constant c∃xφ(x) ∈ C1, we define a sentence of the form ¬∃xφ(x) ∨ φ(c∃xφ(x))
and we collect them as H1, i.e.,

H1 = {¬∃xφ(x) ∨ φ(c∃xφ(x)) : c∃xφ(x) ∈ C1}
From the law of excluded middle ¬φ(x), φ(x), we have

¬φ(x), φ(x)
¬φ(x),¬∃xφ(x), φ(x)

(weak)

¬φ(x),¬∃xφ(x) ∨ φ(x)
(∨)

¬φ(x),∃x(¬∃xφ(x) ∨ φ(x))
(∃)

∀x¬φ(x),∃x(¬∃xφ(x) ∨ φ(x))
(∀)

Similarly, from ∃xφ(x), ¬∃xφ(x), we have

∃xφ(x),∃x(¬∃xφ(x) ∨ φ(x)).
Applying the inference rule (cut), we obtain

⊢ ∃x(¬∃xφ(x) ∨ φ(x)).
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Proof (continued). Since T is consistent, T ∪ {∃x(¬∃xφ(x) ∨ φ(x))} is also consistent.
Thus by the second lemma in Page 27, T ∪H1 is consistent.
Similarly, for each sentence of the form ∃xφ(x) in L1 = L ∪ C1, we add the constant
c∃xφ(x) and collect them as C2 ⊇ C1; collect the sentences ¬∃xφ(x) ∨ φ(c∃xφ(x)) as
H2 ⊇ H1:

C2 = {c∃xφ(x) : ∃xφ(x) is an L1-sentence}.

H2 = {¬∃xφ(x) ∨ φ(c∃xφ(x)) : c∃xφ(x) ∈ C2}

For any consistent theory T , T ∪H2 is consistent. By repeating this process, we construct
two increasing sequences

C0 = ∅ ⊆ C1 ⊆ C2 ⊆ · · · , H0 = ∅ ⊆ H1 ⊆ H2 ⊆ · · ·

and we set
C =

⋃
i∈N

Ci and H =
⋃
i∈N

Hi.

A constant that belongs to C is called a Henkin constant, and a sentence that belongs to
H is called a Henkin axiom.
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Proof (continued). Next we show that C and H constructed above satisfy conditions (1)
and (2) of the lemma.
Let T be a consistent L-theory.
(1) If T ∪H were inconsistent, then the inconsistency results from some finite segment of
T ∪H, that is, there would exist i ∈ N such that T ∪Hi were inconsistent. This
contradicts the construction of {Hi}.
(2) Let L′ = L ∪ C and ∃xφ(x) be an L′-sentence. Then ∃xφ(x) is an Li-sentence of
L ∪ Ci for some i ∈ N. So

¬∃xφ(x) ∨ φ(c∃xφ(x)) ∈ Hi+1 ⊆ H.

Now, we assume T ∪H ⊢ ∃xφ(x). By a simple calculation, we also have
T ∪H ⊢ ∃xφ(x) ∧ ¬φ(c∃xφ(x)), φ(c∃xφ(x)). Then by inference rule (cut), we have

T ∪H ⊢ φ(c∃xφ(x)).
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Homework� �
1 Let L = (<, f). In the structure (R, <, f) of real numbers with ordinary <,
construct a formula expressing “the function f(x) is continuous at x = a”.
(Cf. Example 2, p.6. Here, you are not allowed to use operations +, ·,−.)

2 Let (R, <, f) be the same L-structure as above. Then, show that there is no
formula that expresses “f(x) is differentiable at x = a”.� �
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Thank you for your attention!
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