
Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

1

Logic and Foundation I
Part 1. Equational system

Kazuyuki Tanaka

BIMSA

October 21, 2023

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

2

Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 1. Schedule� �
• Sep. 21, (1) Formal systems of equation

• Sep. 28, (2) Free algebras and Birkhoff’s theorem

• Oct. 12, (3) Boolean algebras

• Oct. 19, (4) Computable functions and general recursive functions� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

3

Recap: Boolean algebra & disjunctive normal form
• The theory of Boolean algebra (BA) is defined as a lattice (L,∨,∧) with the
negation operation ¬ and constants 0, 1.

• φ1 ∨ φ2 ∨ · · · ∨ φn is also written as
∨

i=1,...,n φi.

We also write x1 for x and x0 for ¬x.

Theorem (Disjunctive normal form)

BA ⊢ φ(x1, x2, . . . , xn) =
∨

fφ(b1,...,bn)=1

xb11 ∧ xb22 ∧ · · · ∧ xbnn .

If there is no b1, . . . , bn such that fφ(b1, . . . , bn) = 1, then the right-hand side is put as 0.

• To make the disjunctive normal form unique up to equality, we discard the unnecessary
variables and rewrite it in the minimal number of variables. Such a form is called the
strict disjunctive normal form. For instance, (x1 ∧ x2) ∨ (x1 ∧ ¬x2) should be
rewritten as x1. If all the variables are unnecessary, it should be written as 1.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

4

Recap: Free Boolean algebra & completeness

• Let Term(X) be the set of terms of Boolean algebra with variables in X.
Let T (X) be the term algebra and ≡E a congruence relation on Term(X) defined by
s ≡E t⇔ BA ⊢ s = t. Then,

Theorem� �
T (X)/≡E is the free Boolean algebra.� �

• Term(X)/≡E can be viewed as the set of strict disjunctive normal forms in X.

• From propositional logic to Boolean algebra. We eliminate the operation → in a
proposition by φ→ ψ := ¬φ ∨ ψ. Then we have

(prop. logic) |= φ ⇔ T (X)/≡E |= [φ] = 1 ⇔ BA ⊢ φ = 1.

• Homework. Can you prove (prop. logic) ⊢ φ ⇔ BA ⊢ φ = 1?

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

5

Today’s topics

1 Recursive functions

2 Introduction to Turing machines

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

6

Introduction

• Roughly speaking, a function that can be realized as a
relationship between input and output using a computer is
called a computable function.

• Here, we will consider computable functions from (sets of)
natural numbers to natural numbers (so-called
number-theoretic functions).

• Research on such families of functions began with Gödel’s
paper on the incompleteness theorem (1931), but his
lectures in 1934, Gödel (borrowing an idea from Herbrand
(1931)) used equation theory to define general recursive
functions.

• Later, Kleene (1936), who had attended Gödel’s lectures,
gave the definition of today’s recursive function and proved
its equivalence with general recursive functions.

Kurt Gödel

Jacques Herbrand

Stephen C. Kleene

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

7

Kleene’s definition of recursive functions

Definition (Recursive function - 1/3)

The recursive functions are defined as follows.

1. Zero function Z() = 0, Successor function S(x) = x+ 1, Projection
Pn
i (x1, x2, · · · , xn) = xi (1 ≤ i ≤ n) are recursive functions.

2a. Composition. If gi : Nn → N, h : Nm → N(1 ≤ i ≤ m) are recursive functions, the
composed function f = h(g1, · · · , gm) : Nn → N defined by

f(x1, · · · , xn) = h(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn))

is recursive, where

h(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn)) = z

means gi(x1, · · · , xn) = yi and h(y1, · · · , ym) = z.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

8

Kleene’s definition of a recursive function

Definition (Recursive function - 2/3)

2b. Primitive recursion.
If g : Nn → N, h : Nn+2 → N are recursive functions, the function f : Nn+1 → N
defined by

f(x1, · · · , xn, 0) = g(x1, · · · , xn)
f(x1, · · · , xn, y + 1) = h(x1, · · · , xn, y, f(x1, · · · , xn, y))

is recursive.

Note that the functions obtained from the above condition 1, 2a, 2b are called primitive
recursive function.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

9

Kleene’s definition of recursive functions

Definition (Recursive function - 3/3)

2c. Minimization.

• Let g : Nn+1 → N be a recursive function.

• Suppose that for all x1, . . . , xn, there exists y such that g(x1, . . . , xn, y) = 0.

• Then f : Nn → N satisfying

f(x1, · · · , xn) = µy(g(x1, · · · , xn, y) = 0)

is recursive. Here, µy means “the minimum y such that”.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

10

Example 15� �
Predecessor function: M(x) = x−1 (x > 0), M(x) = 0 (x = 0) is (primitive) recursive,
by the following definition.{

M(0) = 0,
M(x+ 1) = x = P2

1(x,M(x)).� �
Example 16� �
Addition: plus(x, y) = x+ y is (primitive) recursive.{

plus(x, 0) = x,
plus(x, y + 1) = S(plus(x, y)).� �

Example 17� �
Subtraction: x−̇y is (primitive) recursive.{

x−̇0 = x,
x−̇(y + 1) = M(x−̇y).� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

11

Problem 9� �
Prove x · y, xy, x!, max{x, y}, min{x, y} are primitive recursive functions.� �
Problem 10� �
Let f(x1, . . . , xn, y) be a primitive recursive function. Prove the following functions are
also primitive recursive.

F (x1, . . . , xn, z) = Σy<zf(x1, . . . , xn, y),

G(x1, . . . , xn, z) = Πy<zf(x1, . . . , xn, y).� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

12

The following function f is called the Ackermann function. f(0, y) = y + 1,
f(x+ 1, 0) = f(x, 1),

f(x+ 1, y + 1) = f(x, f(x+ 1, y))

W. Ackermann
(1886 - 1962)

• Although it is easy to see from the definition that the Ackermann
function is a computable function, it is not so easy to show that it is a
recursive function.

• A function defined by an equation in this way is called a general
recursive function, and we can ultimately show that it is equivalent to
a recursive function.

• Ackermann function is not primitively recursive.

Problem 11 (Hard)� �
Let f(x, y) be a Ackermann function. Show that for any primitive recursive function
g(x, y) there exists a c such that g(x, y) < f(c,max{x, y}). Then show that f(x, y) is
not primitive recursive.� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

13

To define a general recursive function, we fix the language consisting of constant 0, the
successor symbol S(x) and countably many function symbols f0, f1, From now on, a
“term” means a term in this language.

Definition (Herbrand-Gödel general recursive function)

f : Nn → N is said to general recursive if there is a finite set of equations E and a function
symbol f(x1, . . . , xn), and for any a1, . . . , an, b ∈ N, the following holds

f(a1, . . . , an) = b⇔ E ⊢ f(a1, . . . , an) = b.

Here, a =

a times︷ ︸︸ ︷
S(S(S(· · · S(0) · · ·))).

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

14

Example 18� �
• f(x, y) = x+ y is general recursive.

• Let E = {f(x, 0) = x, f(x, S(y)) = S(f(x, y))}. Then

a+ b = c⇔ E ⊢ f(a, b) = c

• If we consider that + on the left side is defined as in Example 16 in Page 10, this
definition is nothing but the interpretation of E on N.

• Thus, for each number a, b, c, the equation f(ā, b̄) = c̄ holds in N iff it is provable
from E.� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

15

• A structure M = (N; 0,S, fi)i∈N is called a standard structure if 0 ∈ N and
S: N → N are interpreted in the standard way, while fi is arbitrary.

• In the standard structure M, the interpretation of the numeral ā is

(ā)
M

= a.

• However, it is not generally true that an equation is provable in E iff it holds in the
standard structure satisfying E.

• For instance, even if E is consistent, it may not have a standard model.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

16

Theorem

All recursive functions are general recursive.

Proof. It is sufficient to show that the entire general recursive function includes Z,S,Pn
i

and is closed with composition, primitive recursion, and minimization.

Zero function� �
Let E = {f() = 0}. We show that for any b ∈ N, Z () = b⇐⇒ E ⊢ f () = b̄.

(⇒) If Z() = b, then b = 0. Since E ⊢ f() = 0 and 0 = 0̄, we have E ⊢ f () = b̄.

(⇐) By contraposition, let Z() ̸= b.
Then, in the standard structure M that satisfies E, fM() = 0 = ZM() ̸= b̄M = b.
So by the completeness (soundness) theorem of the equation theory, E ̸⊢ f() = b̄.� �

Successor function� �
Let E = {f(x) = S(x)}. For any a, b ∈ N, prove S (a) = b⇔ E ⊢ f (ā) = b̄ as above.� �
Projection� �
Let E = {f(x1, . . . , xi, . . . , xn) = xi}. For any a⃗ ∈ Nn, b ∈ N, prove Pn

i (⃗a) = b ⇔
E ⊢ f

(
⃗̄a
)
= b̄ also as above.� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

17

Composition(1)� �
Let f : Nn → N, gi : Nn → N (1 ≤ i ≤ m), h : Nm → N satisfy

f (⃗a) = h (g1 (⃗a) , . . . , gm (⃗a)) (∀ a⃗ ∈ Nn).

By the induction hypothesis, we may assume that for gi (1 ≤ i ≤ m) and h, there exist
equational theories Egi(1 ≤ i ≤ m) and Eh such that the following hold:

gi (⃗a) = b⇔ Egi ⊢ gi
(
⃗̄a
)
= b̄ (for a⃗ ∈ Nn, b ∈ N, 1 ≤ i ≤ m);

h (⃗a) = b⇔ Eh ⊢ h
(
⃗̄a
)
= b̄ (for a⃗ ∈ Nm, b ∈ N).

We may also assume that no function symbols appear in common in two or more of
Egi(1 ≤ i < m) and Eh. Then, using a new function symbol f, we set

E = Eg1 ∪ · · · ∪ Egm ∪ Eh ∪ {f (x⃗) = h (g1 (x⃗) , . . . , gm (x⃗))}

Here, x⃗ represents the variable sequence x1, . . . , xn, Then we will show f (⃗a) = b ⇔
E ⊢ f

(
⃗̄a
)
= b̄ in the following slides.� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

18

Composition(2)� �
(⇒) Take any a⃗ ∈ Nn, b ∈ N such that f (⃗a) = b. For each 1 ≤ i ≤ m, by the
definition of Egi and gi (⃗a) = gi (⃗a), we have

Egi ⊢ gi
(
⃗̄a
)
= gi (⃗a) (⃗a ∈ Nn).

Also, by the definition of Eh and f (⃗a) = h (g1 (⃗a) , . . . , gm (⃗a)) = b, we have

Eh ⊢ h
(
g1 (⃗a), . . . , gm (⃗a)

)
= b̄.

Then, by substitution rule (sub),

E ⊢ h
(
g1

(
⃗̄a
)
, . . . , gm

(
⃗̄a
))

= b̄.

Finally, by the last equation in E,

E ⊢ f
(
⃗̄a
)
= h

(
g1

(
⃗̄a
)
, . . . , gm

(
⃗̄a
))
.

So E ⊢ f
(
⃗̄a
)
= b̄. The converse can be shown by contrapositive in the same way.� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

19

Primitive recursion (1)� �
Let f : Nn+1 → N, g : Nn → N, h : Nn+1 → N satisfy{

f (⃗a, 0) = g(⃗a)

f (⃗a, b+ 1) = h(⃗a, f (⃗a, b))
(⃗a ∈ Nn, b ∈ N)

By induction hypothesis, there exist Eg and Eh such that:

g (⃗a) = c⇔ Eg ⊢ g
(
⃗̄a
)
= c̄ (for a⃗ ∈ Nn, c ∈ N);

h (⃗a, b) = c⇔ Eh ⊢ h
(
⃗̄a, b̄

)
= c̄ (for a⃗ ∈ Nn, b, c ∈ N).

By replacing appropriate symbols, we assume there are no function symbols that ap-
pear in common in two or more of Eg and Ek. Then, taking distinct variables
x⃗ = x1, . . . , xn, y and a new function symbol f, we put

E = Eg ∪ Eh ∪ {f (x⃗, 0) = g (x⃗)} ∪ {f (x⃗, S(y)) = h (x⃗, f (x⃗, y))}

Then, for any a⃗ ∈ Nn, b, c ∈ N, we will show

f (⃗a, b) = c⇔ E ⊢ f
(
⃗̄a, b̄

)
= c̄ (∗)� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

20

Primitive recursion (2)� �
• First, we show ⇒ by induction on b ∈ N.
The base case: b = 0
If f (⃗a, 0) = c, then g (⃗a) = c. So by definitions of Eg and E

Eg ⊢ g
(
⃗̄a
)
= c̄, E ⊢ f

(
⃗̄a, 0

)
= g

(
⃗̄a
)
.

Therefore,
E ⊢ f

(
⃗̄a, 0

)
= c̄,

that is, E ⊢ f
(
⃗̄a, b̄

)
= c̄.

Induction step
Assume that (∗) holds with a certain b ∈ N for any a⃗ ∈ Nn, c ∈ N. Also, suppose that
f (⃗a, b+ 1) = c holds. By the induction hypothesis and f (⃗a, b) = f (⃗a, b), we have

E ⊢ f
(
⃗̄a, b̄

)
= f (⃗a, b).

Also, by the definition of E

E ⊢ f
(
⃗̄a, S

(
b̄
))

= h
(
⃗̄a, f (⃗a, b)

)
.� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

21

Primitive recursion (3)� �
In addition, by the substitution rules,

E ⊢ f(⃗ā, b+ 1) = h
(
⃗̄a, f (⃗a, b)

)
.

Furthermore, by the definition of Eh and h(⃗a, f (⃗a, b)) = f (⃗a, b+ 1) = c

Eh ⊢ h
(
⃗̄a, f (⃗a, b)

)
= c̄.

Therefore,
E ⊢ f(⃗ā, b+ 1) = c̄.

Thus we prove (⇒).

• Next, (⇐) will be proved by contrapositive.
Let f (⃗a, b) = d ̸= c. From what was shown above, E ⊢ f(⃗ā, b̄) = d̄, so a certain
standard model M such that M |= f(⃗ā, b̄) = d̄. Hence, M ̸|= f(⃗ā, b̄) = c̄. Therefore,
by the the completeness (soundness) of the equation theory E ̸⊢ f(⃗ā, b̄) = c̄� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

22

Minimization (1)� �
We first check the following operations are general recursive. +: N2 → N (sum),
• : N2 → N (product), and T : N → N (true), F : N → N (false) as defined below:

T (a) =

{
0 (a = 0)

1 (a > 0)
F (a) =

{
1 (a = 0)

0 (a > 0)

In fact, we can easily construct the equational theories E+, E • , ET , EF such that:

a+ b = c⇔ E+ ⊢ +(ā, b̄) = c̄,

a • b = c⇔ E • ⊢ • (ā, b̄) = c̄,

T (a) = b⇔ ET ⊢ T(ā) = b̄,

F (a) = b⇔ EF ⊢ F(ā) = b̄.

The functions +, • , T, F are all simple primitive recursive functions. So by the same
arguments as before, they are general recursive.� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

23

Minimization (2)� �
Now, given a general recursive function g : Nn+1 → N, we assume for all a⃗ ∈ Nn, there
exists b ∈ N such that g(⃗a, b) = 0.
By induction, we may suppose that there exists an equational theory Eg such that:

g(⃗a, b) = c⇔ Eg ⊢ g(⃗ā, b̄) = c̄ (for a⃗ ∈ Nn, b, c ∈ N).

Then, we want to show that f : Nn → N defined by f (⃗a) = µx(g(⃗a, x) = 0), is also
general recursive.
Taking f, h as new function symbols, let

E = E+ ∪ E • ∪ ET ∪ EF ∪ Eg ∪ {φ(x⃗, y), f(x⃗) = h(x⃗, 0)},

where φ(x⃗, y) is the equation h(x⃗, y) = +
(

•
(
T(g(x⃗, y)), h(x⃗, S(y))

)
, •

(
F(g(x⃗, y)), y

))
.

Since the right side is rewritten as T (g(x⃗, y)) •h(x⃗, S(y)) + F (g(x⃗, y)) • y,
it is h(x⃗, S(y)) if g(x⃗, y) > 0, and is y if g(x⃗, y) = 0.

Thus, we note that if g(⃗a, b) > 0 for all b < c, then h(⃗a, b) = h(⃗a, c) for all b < c, that
is, E ⊢ h(⃗ā, b̄) = h(⃗ā, c̄) is also obtained by the definition of E+, E • , ET , EF , Eg, and
rules for equations.� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

24

Minimization (3)� �
It remains to show that for any a⃗ ∈ Nn, c ∈ N

f (⃗a) = c⇔ E ⊢ f
(
⃗̄a
)
= c̄ (∗∗)

• First, let f (⃗a) = c. Then we have µx (g (⃗a, x) = 0) = c. That is, for all b < c,
g (⃗a, b) > 0 and g (⃗a, c) = 0. Hence, E ⊢ h

(
⃗̄a, 0

)
= h

(
⃗̄a, c̄

)
and E ⊢ h

(
⃗̄a, c̄

)
= c̄.

Finally, by the last equation f(x⃗) = h(x⃗, 0) in E, E ⊢ f(⃗ā) = h(⃗ā, 0) = c̄.

• Conversely, let f (⃗a) = d ̸= c. Since E ⊢ f(⃗ā) = d̄, there exists a standard model
M such that M |= f(⃗ā) = d̄. Therefore, M ̸|= f(⃗ā) = c̄. Finally, E ̸⊢ f(⃗ā) = c̄.
Thus, we have shown (∗∗).� �

Exercise� �
Define a function f(x) = k by x ≡ k (mod 3) and k < 3. By constructing an equational
system, show that f is general recursive.� �

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

25

Introduction to Turing machines

• Next, we would like to show that the general recursive function is a
recursive function.

• This was conjectured by Gödel and Church, and finally proved by
Kleene. Since computation models such as Turing machines had not
invented yet, Kleene used very complicated arguments by coding
(Gödel numbers).

• Today, we will first introduce Turing machines, then show a general
recursive function can be realized by a Turing machine. Finally, by
showing that a function computable by a Turing machine is a
recursive function, we establish the equivalence between the general
recursive functions and the recursive functions.

• A Turing machine has an infinitely extendable tape, and it defines a
function by corresponding the symbol strings written on the tape at
the start to the symbol strings that remains on the tape when it
stops.

Alan Turing

Stephen C.
Kleene

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

26

Turing regarded a “computer” as a man who calculates with pencil and paper. To make
the formulation simpler, he assumed the following conditions (Turing 1936).
• I assume then that the computation is carried out on one-dimensional paper, i.e. on a
tape divided into squares. I shall also suppose that the number of symbols which may
be printed is finite.

• The behaviour of the computer at any moment is determined by the symbols which he
is observing and his “state of mind” at that moment.

• We will also suppose that the number of states of mind which need be taken into
account is finite.

• We may suppose that in a simple operation not more than one symbol is altered.
We may now construct a machine to do the work of this computer.

Definition

(Deterministic) Turing machine (TM) is a 5-tuple M = (Q,Ω, δ, q0, F),

(1) Q is a non-empty finite set of states.

(2) Ω is a non-empty finite set of symbols. The blank symbol B ∈ Ω.

(3) δ : Q× Ω → Ω× {R,L,N} ×Q is called a transition function.

(4) q0 ∈ Q is a initial state. (5) F ⊂ Q is a set of final states.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

27

I I I I B B a1 a·>
-

• • • •

ai

A

• I • I

p

an B B • • • •

finite control

infinite tape Read and write head

• δ(p, a) = (b, x, q) means that at state p, if M reads symbol a at the head, then
• the head write b to alter a,
• according to x = R, L, N ,

the head moves to the right or the left or keep still,
the state changes to q

• A configuration of TM, denoted a1 · · · ai−1pai · · · an, describes:
• A string a1 · · · an ∈ Ω∗ is written on the tape. All the symbols outside of a1 · · · an
on the tape are blank while the blank B may be included in the sequence,

• the head is pointed at ai on the tape,
• the current state is p.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

28

We say configuration α yields configuration α′, denoted as α ▷ α′, if there is a legal
transition from configuration α to configuration α′ as follows:

1) if δ(p, ai) = (a′i, L, q),
a1 · · · ai−1pai · · · an ▷ a1 · · · ai−2qai−1a

′
iai+1 · · · an (i > 1),

pa1a2 · · · an ▷ qBa′1a2 · · · an.

2) if δ(p, ai) = (a′i, N, q),
a1 · · · ai−1pai · · · an ▷ a1 · · · ai−1qa

′
iai+1 · · · an.

3) if δ(p, ai) = (a′i, R, q),
a1 · · · ai−1pai · · · an ▷ a1 · · · ai−1a

′
iqai+1 · · · an (i ≤ n),

a1 · · · an−1anp ▷ a1 · · · an−1a
′
nBq.

We write the sequence of computation α0 ▷ α1 ▷ · · · ▷ αn as α0 ▷
∗ αn (n ≥ 0).

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

29

• We say M accepts a1 · · · an ∈ (Ω− {B})∗ if there exists b1 · · · bm and q ∈ F such
that q0a1 · · · an ▷∗ b1 · · · biqbi+1 · · · bm. That is, some final state q ∈ F is visited in the
computation.

• The languages (of the strings) accepted by M is denoted as L(M).

Example

L = {anbn : n ≥ 0}.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

30

Example

L = {anbn : n ≥ 0} is accepted by a TM.

B/BN

a/aN

b/bN

BIBN

a/BR
'

a/aR

blbN

b/bN

B/BN

a/aR

b/bR

B/BN

B/BR

b/bR

B/BL

a/aN

a/aN

b/bN

B/BN

a/aN

B/BN

---------�q«
b!bL

a/al

initial state final state

as

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

31

• Up to now, the TM’s we considered are devices that can decide whether an input is
accepted or not.

• Notice that when the machine enter a final state, it leaves a string on the tape. If we
regard such a string as an output of this TM for a given input, we can naturally define
a function from strings to strings.

• This is called a (Turing) computable function.

Remark

• Such a function is partially defined, since the TM does not always terminate.

• To make the output unique, we define the output of (deterministic) TM as the string
on the tape when the TM enters a final state for the first time, because it might enter
a final state more than once.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

32

• Let N be the set of all natural numbers. f : Nk −→ N is called a number-theoretic
function.

• Turing definable function gives a mapping from strings to strings. It can be translated
into a number-theoretic function.

Definition

A number-theoretic function f : Nk −→ N is computable if there is a Turing machine M
accepts

1m101m20 · · · 01mk := 1 · · · 1︸ ︷︷ ︸
m1

0 1 · · · 1︸ ︷︷ ︸
m2

0 · · · 0 1 · · · 1︸ ︷︷ ︸
mk

and outputs
1f(m1,...,mk).

We also say M realizes the function f .

However, we have

f is computable ⇔ {1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N}
is accepted by a TM with alphabet {0, 1}.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

33

Theorem (Kleene’s normal form theorem)

There exist a primitive recursive function U(y) and a primitive recursive relation
Tn(e, x1, · · · , xn, y) such that any computable function f(x1, · · · , xn) is expressed as
follows: for some e,

f(x1, · · · , xn)∼U(µyTn(e, x1, · · · , xn, y))

µyTn(e, x1, · · · , xn, y) is also expressed as µy((1− χTn(e, x1, · · · , xn, y)) = 0), where
χTn(x⃗) is a charactiristic function of Tn(x⃗), that is, it is 1 if Tn(x⃗) is true, and 0 otherwise.

Note: By f(x1, · · · , xn) ∼ U(µyTn(e, x1, · · · , xn, y)), we mean that either both functions
are undefined or defined with the same value.
Proof idea

• Our method here is different from Kleene’s original proof.

• Since the internal mechanism of a Turing machine is finite, it is possible to encode it
with natural number e, which can reproduce the machine.

• Giving an input sequence (x1, · · · , xn) to a Turing machine with code e, we record the
entire transition of configurations until it stops.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

34

• The computation may not stop in finite steps. But if it does, it is a finite sequence
and can be coded as the natural number y = (y0, · · · , yk).

• To check whether y is a correct computation process by the Turing machine with code
e on the input (x1, · · · , xn), it is sufficient to check whether each transition from yi to
yi+1 is correct or not. So, there exists a primitive recursive relation
Tn(e, x1, · · · , xn, y) ⇔ “y is the code of the computation process of the Turing
machine of code e on input (x1, · · · , xn).”

• Furthermore, since y also contains the information about the output, there is a
primitive recursive function U(y) that extracts the output from y. So,
U(µyTn(e, x1, · · · , xn, y)) is the output of a Turing machine with code e on input
(x1, · · · , xn).

Fixing U and Tn constructed in the above proof, U(µyTn(e, x1, · · · , xn, y)) is called the
n-ary computable (partial) function of index e, which is denoted as {e}n(x1, · · · , xn) or
simply {e}(x1, · · · , xn).
A function defined by a Turing machine is not defined over the whole range. Such a partial
function is also written as {e}(x1, · · · , xn) for convenience.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

35

Corollary

The family of general recursive functions and the family of recursive functions are the same.

Proof. By the theorem in Page 16, all recursive functions are general recursive. On the
other hand, general recursive functions can be realized by Turing machines.
A computable function is a recursive function by Kleene’s normal form theorem in Page 33.
Therefore, these function families coincide. 2

For a general recursive function f(x⃗), there exists a finite equational theory E to define it.
So, for each a⃗, there exists a unique c such that E ⊢ f

(
⃗̄a
)
= c̄. Assuming we know

E ⊢ f
(
⃗̄a
)
= c̄ for some c, we can find out c by breadth-first search on possible proofs of E.

However, it should be noted that it is undecidable whether or not a given equational theory
defines a general recursive function.

Logic and
Foundation

K. Tanaka

Recursive
functions

Introduction to
Turing machines

36

Thank you for your attention!

	Recursive functions
	Introduction to Turing machines

