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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 1. Schedule� �
• Sep. 21, (1) Formal systems of equation

• Sep. 28, (2) Free algebras and Birkhoff’s theorem

• Oct. 12, (3) Boolean algebras

• Oct. 19, (4) Computable functions and general recursive functions� �
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Recap: Birkhoff’s theorems

• For an equational theory T , the following holds.

Birkhoff’s completeness theorem (1935)� �
T |= s = t⇔ T ⊢ s = t.� �

• T |= s = t⇐ T ⊢ s = t (the soundness of T ) is easy. Let
M be any model of T . Then we can show by induction
that all equations appearing in a proof tree for T ⊢ s = t
holds in M. Especially the bottom s = t holds in M.

• To show the contrapositive, we first assume T ̸⊢ s = t, and
construct a structure M such that M |= T and
M ̸|= s = t. Such a structure is obtained as the “free
algebra” generated by the variables appearing in s, t.

Garrett Birkhoff

Variety theorem� �
A class K of structures
is characterized by an
equational theory ⇔
K is closed under
• subalgebras,
• homomorphisms,
• Cartesian products.� �
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Definition

Let K be a class of L-algebras. A ∈ K is a free K-algebra generated by X ⊆ |A| if
1 A is generated by X, that is, it has no proper subalgebra containing X.

2 Every map ϕ : X → |B| with B ∈ K can be uniquely extended to the homomorphism

ϕ̂ : A → B.

X

ϕ   

� � idX // A

ϕ̂
��
B

An L-algebra T (X) = (Term(X), f
T (X)
0 , f

T (X)
1 , . . . ) is a term algebra, if Term(X) is the

set of L-terms with variables in X and for each function symbol f in L,

fT (X)(t0, . . . , tn−1) = f(t0, . . . , tn−1).

Lemma

If a class of L-algebra K contains T (X), then T (X) is a free K-algebra generated by X.
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Definition

A |= s = t if for every homomorphism ϕ : T (X) → A, we have ϕ(s) = ϕ(t).

A homomorphism ϕ : T (X) → A can be viewed as an evaluation function of terms.
The value of a term s is uniquely obtained from the values ϕ(x) for variables x in s.

Lemma

Let E be a set of equations on Term(X), and let ≡E be a relation on Term(X) defined by
s ≡E t⇔ E ⊢ s = t. Then, the following hold:
(1) ≡E is a congruence relation.
(2) For any homom. ϕ : T (X) → T (X), s ≡E t⇒ ϕ(s) ≡E ϕ(t).
(3) For any homom. ϕ : T (X) → T (X)/≡E , there exists a hom. ψ : T (X) → T (X) s.t.

ϕ = π≡E
◦ ψ.
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Lemma

T (X)/≡E is the free Mod(E)-algebra generated by π≡E
(X).

Note. This lemma also holds for any invariant congruence ≡.
Proof.
Claim 1. T (X)/≡E ∈ Mod(E)

• It suffices to show that for any equation s = t in E and any homomorphism
ϕ : T (X) → T (X)/≡E , we have ϕ(s) = ϕ(t).

Claim 2. T (X)/≡E is a free algebra.

• For any A |= E and ϕ : X/≡E→ |A|, by the corollary to the homomorphism theorem,

there exists ϕ̂ : T (X)/≡E→ A s.t. ψ̂ = ϕ̂ ◦ π≡E
, which is a unique homomorphism

extending ϕ

Proof of the completeness theorem: Let E |= s = t. Since T (X)/≡E ∈ Mod(E), we
have T (X)/≡E |= s = t. Then for any homomorphism ϕ : T (X) → T (X)/≡E , we have
ϕ(s) = ϕ(t). In particular, letting ϕ = π≡E

, we have s ≡E t. Hence, E ⊢ s = t.
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Birkhoff’s variety theorem

Definition

If a set K of L-algebras is said to be an equational class (or variety) if it is characterized
by a set E of equations, that is

K = Mod(E).

Theorem (Birkhoff’s variety theorem)

K is an equational class ⇔ K is closed under subalgebras, homomorphisms, and Cartesian
products.

Proof.
To show ⇒
• It is clear since an equation that holds in some algebraic structure also holds in its
subalgebras and homomorphic images.

• The equality that holds for each Ai also holds for the Cartesian product
∏

Ai.
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To show ⇐
• Let K be closed under subalgebras, homomorphisms, and Cartesian products.

• Let X be an infinite set of variables. We define the following set of equations in
Term(X) as follows:

E = {s = t : for any A ∈ K,A |= s = t}.
• Our aim is to show Mod(E) = K.

• Mod(E) ⊇ K is obvious. Hence, we will prove the following by two steps.

Claim. Mod(E) ⊆ K.

The idea of the poof: For any A ∈ Mod(E), it suffices to construct a homomorphism from
C ∈ K onto A.
Suppose A ∈ Mod(E). Take a set Y of variables and a surjection χ : Y → |A|. This can
be extended to an epimorphism (surjective homom.) χ̂ : T (Y ) → A.
By suitable replacement of variables, any equation in Y can be regarded as an equation in
X. Thus, it is plausible to consider T (Y )/E as a desired algebra C.



Logic and
Foundation

K. Tanaka

Introduction to
Boolean Algebra

Propositional
logic

Theorem

Homework

9

Now, we are going to construct C more rigorously so that we can see C ∈ K.
For any B ∈ K and any homomorphism ϕ : T (Y ) → B, we define a congruence relation
≈ϕ on T (Y ) such that s ≈ϕ t⇔ ϕ(s) = ϕ(t).
By the homomorphism theorem, we have ϕ(T (Y )) ≃ T (Y )/ ≈ϕ. Since the left-hand side
is a subalgebra of B ∈ K, by assumption we have T (Y )/ ≈ϕ ∈ K.

Let D be the set of congruence relations on T (Y ) expressed as ≈ϕ for some
homomorphism ϕ. Since K is closed under Cartesian products, we have∏

≈∈D
(T (Y )/ ≈) ∈ K.

With a homom. π≈ : T (Y ) → T (Y )/ ≈ for each ≈ ∈ D, we can naturally define a homom.

ψ : T (Y ) →
∏
≈∈D

(T (Y )/ ≈).

Since T (Y )/ ≈ψ is isomorphic to a subalgebra of
∏

≈∈D(T (Y )/ ≈), it also belongs to K.
Here, we have: s ≈ψ t⇔ ψ(s) = ψ(t) ⇔ for each ≈ ∈ D s ≈ t ⇔ for all ϕ ϕ(s) = ϕ(t) ⇔
for all B ∈ K, B |= s = t ⇔ s = t ∈ E (with suitable replacement of variables). Thus,
T (Y )/ ≈ψ is a desired algebra C.
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Today’s topics

1 Introduction to Boolean Algebra

2 Propositional logic

3 Theorem

4 Homework
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Introduction to Boolean Algebras

• In the mid-19th century, British mathematician G. Boole attempted to clarify
Aristotle’s logic by treating logical relations algebraically.

• In modern times, Boolean algebra is often subsumed under the more general concepts
of “order” and “lattice” and treated as equational theory.

Definition

• A binary relation ≤ on a nonempty set X is called a (partial) order if it satisfies
reflection (x ≤ x), antisymmetry (if x ≤ y and y ≤ x, then x = y), as well as
transitivity (if x ≤ y and y ≤ z, then x ≤ z).

• If an order (X,≤) additionally satisfies comparability (x ≤ y or y ≤ x), then it is
called a total order or linear order.

Let (X,≤) be a partial order. For a subset A ⊂ X, supA denotes the supremum
(minimum upper bound) of A (if it exists). Similarly, inf A is the infimum (maximum lower
bound) of A. sup{a, b} and inf{a, b} are also denoted by a ∨ b and a ∧ b, respectively.
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Definition

Theory of lattices consists of the following eight equations. A model of lattice theory
(L,∨,∧) is called a lattice.

L1 : x ∨ x = x, x ∧ x = x [Idempotence]
L2 : x ∨ y = y ∨ x, x ∧ y = y ∧ x [Commutativity]
L3 : x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z [Associativity]
L4 : (x ∨ y) ∧ x = x, (x ∧ y) ∨ x = x [Absorption]

Conversely, for a given lattice (L,∨,∧), if a relation x ≤ y is defined as follows

x ≤ y ⇔ x ∧ y = x(⇔ x ∨ y = y)

then it is a partial order on L. In this case, the lattice operations ∨,∧ are the same as sup
and inf regarding this partial order.

Note. We show x ∧ y = x⇔ x ∨ y = y. ⇐ can be derived by substituting y := x ∨ y to
the left side and using lattice axioms L2 and L4. Similarly for ⇒.
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Now, Boolean algebra is defined as an equational theory as follows.

Definition

The theory of Boolean algebra (BA) is defined in language LB = {∨,∧,¬, 0, 1} with the
following axioms.

1 All the lattice axioms and the following distributive law:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z), (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

2 x ∨ 0 = x, x ∨ (¬x) = 1, x ∧ 1 = x, x ∧ (¬x) = 0.

A model of theory BA is called a Boolean algebra.

In the definition of Boolean algebra, (1) can be reduced to only L2 and distributive laws.
This is Problem 9.
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Lemma (Uniqueness of complement)

If x ∨ y = 1 and x ∧ y = 0, then y = ¬x.

Proof. Assume x ∨ y = 1 and x ∧ y = 0. Apply the distributive law at =(∗) to obtain the
desired equation as follows.

y = y ∨ 0 = y ∨ (x ∧ ¬x) =(∗) (y ∨ x) ∧ (y ∨ ¬x) = (x ∨ y) ∧ (y ∨ ¬x)
= 1 ∧ (y ∨ ¬x) = (x ∨ ¬x) ∧ (y ∨ ¬x) =(∗) (x ∧ y) ∨ ¬x = 0 ∨ ¬x = ¬x.

• Remark. In the formal deduction system of equations, “a premise σ implies a
conclusion δ” means that if σ holds with any substitution for all variables then δ also
holds with any substitution for all variables.
In contrast, the lemma should be interpreted as “for all x, y, if (x ∨ y = 1 and
x ∧ y = 0, then y = ¬x)”. To state it strictly, we need first-order logic for the
argument.

Lemma (Elimination of double negation)

¬¬x = x.

Proof. Apply the above lemma to ¬x ∨ x = 1 and ¬x ∧ x = 0.
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Theorem (Duality theorem)

For an equation φ in LB = {∨,∧,¬, 0, 1}, let φ̃ denote the equation (dual equation)
obtained from φ by interchanging ∨ with ∧ and 0 with 1. Then

BA ⊢ φ⇔ BA ⊢ φ̃.

Proof. The dual formula σ̃ for each axiom σ of BA is also an axiom. Therefore, for a
proof tree of theorem φ in BA, if we replace all expressions in the tree with dual
expressions, we obtain a proof tree of φ̃.

Problem 9� �
(Homework) In the definition of Boolean algebra, reduce (1) to only the commutative
law and distributive law, and then prove the Idempotent, absorption law, and associative
law.� �
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Theorem (De Morgan’s laws)

In BA, ¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y holds.

Proof They can be deduced from the following equations together with the uniqueness of
the complement.

(x ∨ y) ∨ (¬x ∧ ¬y) = [(x ∨ y) ∨ ¬x] ∧ [(x ∨ y) ∨ ¬y]
= [(x ∨ ¬x) ∨ y] ∧ [x ∨ (y ∨ ¬y)]
= (1 ∨ y) ∧ (x ∨ 1) = 1 ∧ 1 = 1.

(x ∨ y) ∧ (¬x ∧ ¬y) = [x ∧ (¬x ∧ ¬y)] ∨ [y ∧ (¬x ∧ ¬y]
= [(x ∧ ¬x) ∧ ¬y] ∨ [¬x ∧ (y ∧ ¬y)]
= (0 ∧ ¬y) ∨ (¬x ∧ 0) = 0 ∨ 0 = 0.

Therefore, ¬(x∨ y) = ¬x∧¬y. Also, ¬(x∧ y) = ¬x∨¬y follows from the duality theorem.
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Example 12� �
Let X be any set and P(X) be the power set (all subsets) of X. Now, if Y c = X − Y
for Y ⊆ X, then the power set algebra P(X) = (P(X),∪,∩, c,∅, X) is a Boolean
algebra. In particular, when X is a singleton {a}, P(X) is a trivial Boolean algebra,
and isomorphic to 2 = ({0, 1},∨,∧, 0, 1).� �

Conversely, any finite Boolean algebra is isomorphic to a power set algebra, and more
generally the following theorem holds. (The proof will be given in part 3)

Theorem (Stone’s representation theorem)

For any Boolean algebra B, there exists a set X, B can be embedded into the power set
algebra P(X). Especially, if B is finite, it is isomorphic to P(X).
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• By a Boolean expression φ(x1, x2, . . . , xn), we denote a term of LB with only
variables {x1, x2, . . . , xn}.

• A Boolean expression φ(x1, x2, . . . , xn) defines a function fφ : {0, 1}n → {0, 1}. Such
functions are called Boolean functions.

• We want to show that any function f : {0, 1}n → {0, 1} can be expressed as fφ with
some Boolean expression φ. Moreover, if two Boolean expressions φ and ψ define the
same function fφ = fψ, then φ = ψ is a theorem of BA. These can be obtained from
the normal form theorem for Boolean expressions.
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Shannon’s expansion (decomposition) theorem

Lemma (Shannon’s theorem)

BA ⊢ φ(x1, x2, . . . , xn) ↔ (φ(0, x2, . . . , xn) ∧ ¬x1) ∨ (φ(1, x2, . . . , xn) ∧ x1) 1.

Proof.

• Given a Boolean expression, we use de Morgan’s laws and double negation elimination
to push the negation symbols innermost so that each negation appears just before an
variable. A Boolean expression in such a form is called a negation normal form.

• So, we may assume that a Boolean expression φ is in the negation normal form.

• Now, we prove the assertion of the lemma by induction on the number m of operators
∨ and ∧ included in φ.

1This was already proved by Boole, but it is known as “Shannon’s expansion (decomposition) theorem.”
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(i) In the case of m = 0.
φ is a variable or the negation of a variable.

• If φ is x1, (φ(0) ∧ ¬x1) ∨ (φ(1) ∧ x1) = (0 ∧ ¬x1) ∨ (1 ∧ x1) = x1.

• If φ is ¬x1, (φ(0) ∧ ¬x1) ∨ (φ(1) ∧ x1) = (1 ∧ ¬x1) ∨ (0 ∧ x1) = ¬x1.
• If φ is xi or ¬xi(i ̸= 1), no matter what is assigned to x1, it is the same as φ, so
(φ ∧ ¬x1) ∨ (φ ∧ x1) = φ ∧ (¬x1 ∨ x1) = φ.

(ii) In the case of m > 0.
Let φ be φ1 ∨ φ2, and by induction hypothesis

φi = (φi(0) ∧ ¬x1) ∨ (φi(1) ∧ x1) (i = 1, 2).

Then,

φ1 ∨ φ2 = [(φ1(0) ∧ ¬x1) ∨ (φ1(1) ∧ x1)] ∨ [(φ2(0) ∧ ¬x1) ∨ (φ2(1) ∧ x1)]
= [(φ1(0) ∨ φ2(0)) ∧ ¬x1] ∨ [(φ1(1) ∨ φ2(1)) ∧ x1]
= (φ(0) ∧ ¬x1) ∨ (φ(1) ∧ x1).

Similarly we can prove for φ ≡ φ1 ∧ φ2.
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Notation. φ1 ∨ φ2 ∨ · · · ∨ φn is also written as
∨
i=1,...,n φi.

Furthermore, we set xb = x if b = 1 and xb = ¬x if b = 0.

Theorem (Disjunctive normal form)

For a Boolean expression φ(x1, x2, . . . , xn),

BA ⊢ φ(x1, x2, . . . , xn) =
∨

b1,...,bn=0,1

φ(b1, b2, . . . , bn) ∧ xb11 ∧ xb22 ∧ · · · ∧ xbnn

=
∨

fφ(b1,...,bn)=1

xb11 ∧ xb22 ∧ · · · ∧ xbnn .

If there is no b1, . . . , bn such that fφ(b1, . . . , bn) = 1, then we set the right-hand side = 0.

Proof By Shannon’s theorem, we can prove this by induction on the number of
variables.
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The rightmost expression in the last theorem is called the disjunctive normal form of φ.
In addition, if we rewrite ¬σ into the disjunctive normal form, then we can easily obtain a
conjunctive normal form of σ by de Morgan’s laws and double negation elimination.

Corollary

For any function f : {0, 1}n → {0, 1}, there exists a Boolean expression φ such that
f = fφ.

Proof. Obvious from the theorem

Corollary

If two Boolean expressions φ and ψ define the same function fφ = fψ, then BA ⊢ φ = ψ.

Proof. In the theorem, both disjunctive normal forms are the same.

Corollary

The number of equivalence classes of Boolean expressions of n variables is 22
n

.

Proof. The number of equivalence classes of a Boolean expression with n variable is
equal to the number of the function f : {0, 1}n → {0, 1}, that is, 22n .
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Finally, we introduce Boolean rings, which are essentially equivalent to Boolean algebras.

Definition

The theory CR of commutative ring consists of the following axioms, in the language
LR = {+, • ,−, 0, 1}.

x+ 0 = x, x+ y = y + x, x+ (y + z) = (x+ y) + z, x+ (−x) = 0,

x • 1 = x, x • y = y •x, x • (y • z) = (x • y) • z, x • (y + z) = (x • y) + (x • z).

A model of the theory CR is called a commutative ring.

In BA and CR, we usually assume 0 ̸= 1 as an axiom. But since we want to treat them as
an equational theory, we treat a structure where 0 = 1 as a special case.

Example 13� �
The structure of integers Z = (Z,+, • ,−, 0, 1) is a commutative ring.� �
Example 14� �
For a commutative ring A, the set of polynomials with variables X1, X2, . . . , Xn and
coefficients in A also becomes a commutative ring, denote A[X1, X2, . . . , Xn].� �
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Definition

The theory BR of Boolean rings is the theory CR plus the following axiom.

x2 = x.

A model of the theory BR is called a Boolean ring.

We first show that x+ x = 0 holds in BR.

x+ x = (x+ x)2 = x2 + x2 + x2 + x2 = x+ x+ x+ x.

By subtracting x+ x from both sides, we get x+ x = 0. So, + in a Boolean ring has a
different property from + in a Boolean algebra. However, both are mutually translatable as
shown in the next theorem.
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Theorem (Stone theorem)

(1) For any Boolean algebra B = (B,∨,∧,¬, 0, 1), we set

x+ y = (x ∧ (¬y)) ∨ ((¬x) ∧ y), x • y = x ∧ y, −x = x.

Then, B◦ = (B,+, • ,−, 0, 1) is a Boolean ring.

(2) For any Boolean ring R = (R,+, • ,−, 0, 1), we set

x ∨ y = x+ y + x • y, x ∧ y = x • y, ¬x = 1 + x

and then R◦ = (R,∨,∧,¬, 0, 1) is a Boolean algebra.

(3) By (1) and (2), for a Boolean algebra B and a Boolean ring R,

B◦◦ = B,

R◦◦ = R.
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Propositional logic
• In this part, we will study propositional logic which treats the logical relationships
between propositions in terms of
propositional connectives: ¬ (not · · · ), ∧ (and), ∨ (or), → (implies),

• Propositions are constructed from atomic propositions by way of propositional
connectives. Atomic propositions are simply symbols that can take value either T
(meaning true) or F (meaning false).

• Let v be a function that assigns truth values T (True) or F (False) to atomic
propositions. Then, a truth value assignment V (also called a truth value
function) for all propositions are uniquely defined as follows.

(1) for an atomic proposition φ, V (φ) = v(φ).

(2a) V (¬φ) = T
def⇐=⇒ V (φ) = F,

(2b) V (φ ∧ ψ) = T
def⇐=⇒ V (φ) = T and V (ψ) = T,

(2c) V (φ ∨ ψ) = T
def⇐=⇒ V (φ) = T or V (ψ) = T,

(2d) V (φ→ ψ) = T
def⇐=⇒ V (φ) = F or V (ψ) = T.
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Definition

If a proposition φ is always true, i.e., V (φ) = T for any truth-value function V , then φ is
said to be valid or a tautology, written as |= φ.

• We consider the structure of the tautologies.

• To this end, it is not necessary to deal with all four propositional symbols at once.
By setting φ ∨ ψ := ¬φ→ ψ, φ ∧ ψ := ¬(φ→ ¬ψ), we omit ∨ and ∧.

The followings are tautologies.

P1. φ→ (ψ → φ)

P2.
(
φ→ (ψ → θ)

)
→

(
(φ→ ψ) → (φ→ θ)

)
P3. (¬ψ → ¬φ) → (φ→ ψ)
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Definition (Theorems)

The theorems of propositional logic are defined as follows.

(1) Axioms P1, P2, P3 are theorems.

(2) If φ and φ→ ψ are theorems, so is ψ. (detachment rule)

Detachment rule is also called modus ponens (MP for short) and cut.
We also define a “proof” as a process generating a theorem.

Definition (Proof)

A sequence of propositions φ0, φ1, · · · , φn is called a proof of φn if it satisfies the
following conditions: For k ≤ n,

(1) φk is one of axioms P1, P2, P3, or

(2) There exist i, j < k such that φj = φi → φk (MP).

Note that a “theorem” is the last component of a “proof”.
By ⊢ φ, we denote that φ is a theorem.
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Completeness

The completeness theorem for propositional logic� �
⊢ φ ⇔ |= φ.� �

From propositional logic to Boolean algebra.

• We eliminate the operation → in a proposition by φ→ ψ := ¬φ ∨ ψ.
Then (prop. logic) ⊢ φ ⇔ BA ⊢ φ = 1.

Homework� �
Consider the relation between the completeness theorem for propositional logic and that
for Boolean algebra.� �
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Homework 1

Hw1-Problem 1� �
Construct a proof tree for Gp ⊢ xx−1 = e.� �

Solution:
Let s = xx−1, and let P4 be the proof tree of ss = s given in Example 1.
The proof tree for (s−1s)s = s−1(ss), s = (s−1s)s, s = s−1s are denoted as P5, P6, and
P7 in the following.

(xy)z = x(yz)

(s−1y)z = s−1(yz)
(sub)

(s−1s)z = s−1(sz)
(sub)

(s−1s)s = s−1(ss)
(sub)

ex = x
es = s (sub)

s = es (sym)

x−1x = e

s−1s = e
(sub)

e = s−1s
(sym)

s = s

es = (s−1s)s
(comp)

s = (s−1s)s
(trans)
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P6

s = (s−1s)s

P5

(s−1s)s = s−1(ss)

s = s−1(ss)
(trans) s−1 = s−1

P4
ss = s

s−1(ss) = s−1s
(comp)

s = s−1s
(trans)

The desired proof tree is
P7

s = s−1s

x−1x = e

s−1s = e
(sub)

s = e (trans)
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Homework 2

Hw2-Problem 1� �
Let L = {g1, g2, h}. We define the set of equations E as follows.

E = {h(g1(x), g2(x)) = x, g1(h(x, y)) = x, g2(h(x, y)) = y}

Let K be Mod(E), the class of models of E. Show that all finitely generated free
K-algebras are isomorphic.� �

Solution:

• Consider the free Mod(E)-algebra T (X1)/E, T (X2)/E generated by the finite set
X1 = {x}, X2 = {x1, x2}.

• Since they are free Mod(E)-algebra, we have a homomorphism
ϕ : T (X1)/E → T (X2)/E, which is an extension of x 7→ h(x1, x2), and there exist
x1 7→ g1(x) and a homogeneous ψ : T (X2)/E → T (X1)/E which is an extension of
x2 7→ g2(x).



Logic and
Foundation

K. Tanaka

Introduction to
Boolean Algebra

Propositional
logic

Theorem

Homework

33

• Then,

ψ ◦ ϕ(x) = ψ(h(x1, x2)) = h(ψ(x1), ψ(x2)) = h(g1(x), g2(x)) = x

• Therefore, ψ ◦ ϕ corresponds to the identity mapping from T (X1)/E to itself.

• Similarly, ϕ ◦ ψ is also an identity map, and ϕ = ψ−1 is isomorphic.

• All that remains is to extend this argument to the relationship between X1 = {x} and
Xn = {x1, . . . , xn}.

• For example, when n = 3, the homomorphism that is an extension of
x 7→ h(h(x1, x2), x3) is isomorphic.
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Homework 2

Recall: Boolean algebra� �
The theory of Boolean algebra (BA) is defined in language LB = {∨,∧,¬, 0, 1} with
the following axioms.

(1) All the lattice axioms and the following distributive law:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z), (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

(2) x ∨ 0 = x, x ∨ (¬x) = 1, x ∧ 1 = x, x ∧ (¬x) = 0.

A model of theory BA is called a Boolean algebra.� �
Hw2-Problem 2� �
In the definition of Boolean algebra, reduce (1) to only the commutative law and dis-
tributive law, and then prove the Idempotent, absorption law, and associative law.� �
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Homework 2
Solution:
Using only the commutative law and the distribution ratio, we show the following.

Idempotent : x = x ∨ 0 = x ∨ (x ∧ ¬x) = (x ∨ x) ∧ (x ∨ ¬x)
= (x ∨ x) ∧ 1 = x ∨ x.

Since the duality theorem holds, we have x = x ∧ x.
Absorption law: (x ∨ y) ∧ x = (x ∨ y) ∧ (x ∨ 0) = x ∨ (y ∧ 0) = x ∨ 0 = x.
(x ∧ y) ∨ x = x is due to the duality theorem.
Associative law: By the distributive law and the absorption law,

x ∨ (y ∨ z) = [x ∨ (y ∨ z)] ∧ (x ∨ ¬x)
= [x ∨ (y ∨ z)] ∧ x ∨ [x ∨ (y ∨ z)] ∧ ¬x
= x ∨ [(y ∧ ¬x) ∨ (z ∧ ¬x)]
= [(x ∨ y) ∨ z] ∧ x ∨ [(x ∨ y) ∨ z] ∧ ¬x
= [(x ∨ y) ∨ z] ∧ (x ∨ ¬x)
= (x ∨ y) ∨ z.

By duality theorem, x ∧ (y ∧ z) = (x ∧ y) ∧ z.
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Thank you for your attention!
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