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Recap: Syntax of Algebra

An algebraic language is a list of function symbols L = (f0, f1, . . . ),
where each fi stands for an mi-ary function. Then, mi is called the arity of fi and the list
ρ = (m0,m1, . . . ) is called the similarity type of L.

The terms in an algebraic language L are defined inductively as follows.

1 Variables x, y, z, . . . are terms.

2 If t0, . . . , tn−1 are terms, and f is an n-ary function symbol in L, so is f(t0, . . . , tn−1).

A 0-ary function symbol is also called a constant. A constant is a term by itself.

For two terms s, t, the symbol string s = t is called an equation. A set of equations is
called an (equational) theory.

Example: Group theory Gp is formalized in an algebraic language L = (·, −1, e).
A symbol string such as x−1 · x is a term, and x−1 · x = e is an equation.
Gp can be regarded as a set {(x · y) · z = x · (y · z), e · x = x, x−1 · x = e}.
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Recap: Deduction System

Definition

The deduction system of equational theory T consists of the following axioms and
inference rules:

(1) The equations belonging to T are axioms.

(2) Equations of the form t = t (refl) are axioms.

(3) The following four diagrams are inference rules

s = t
t = s

(sym), s = t t = u
s = u (trans),

s(x) = t(x)

s(u) = t(u)
(sub),

s1 = t1 . . . sn = tn
f(s1, . . . , sn) = f(t1, . . . , tn)

(comp).

each of which expresses that the lower formula holds when the upper holds. Here,
s, t, si, ti, u(1 ≤ i ≤ n) are terms, x is a variable, and f is any function symbol in T .
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Recap: Proof Trees

Definition

A proof tree (or proof) in equational theory T is defined inductively as follows:

1 An equation as an axiom is a proof tree by itself.

2 If Pi is a proof tree for si = ti (1 ≤ i ≤ n), and

s1 = t1 . . . sn = tn
s = t

is an inference rule, then
P1 . . . Pn
s = t

is a proof tree for s = t.
If s = t has a proof tree in T , we write

T ⊢ s = t,

where ⊢ is read as “turnstile”.
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Recap: Examples of proof trees
We work in equational theory Gp unless otherwise noted. We write xy in short for x · y.

Example 1-1: A proof tree P1 for (x−1x)x−1 = x−1� �
Let P1 be the following proof tree for (x−1x)x−1 = x−1,

x−1x = e x−1 = x−1

(x−1x)x−1 = ex−1
(comp) ex = x

ex−1 = x−1
(sub)

(x−1x)x−1 = x−1
(trans).

� �
Example 1-2: A proof tree P2 for x−1(xx−1) = (x−1x)x−1� �

(xy)z = x(yz)

(x−1x)x−1 = x−1(xx−1)
(sub× 3times)

x−1(xx−1) = (x−1x)x−1
(sym)

� �
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Recap: Algebraic structures

Definition

• An algebraic structure A in a language L = (f0, f1, . . . ) (or simply L-algebra)
consists of a non-empty set A and a list of mi-ary functions fAi : Ami → A, that is,

A = (A, fA0 , f
A
1 , . . . ).

• We say that A is the domain or universe of A, denoted by |A|.
• For a 0-ary function symbol or constant c, cA is an element of A.

• If an equation α holds in a structure M, we write M |= α. If all the equations in
theory T holds, we also write M |= T , and we say that M is a model of T . Here |= is
read as “double turnstile”.

• If an equation α holds for all models of a theory T , α is said to be a consequence of
T or σ is valid in T , written as T |= σ
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Birkhoff’s theorems
• For an equational theory T , the following holds.

Birkhoff’s completeness theorem (1935)� �
T |= s = t⇔ T ⊢ s = t.� �

• T |= s = t⇐ T ⊢ s = t (the soundness of T ) is easy. Let
M be any model of T . Then we can show by induction
that all equations appearing in a proof tree for T ⊢ s = t
holds in M. Especially the bottom s = t holds in M.

• To show the contrapositive, we first assume T ̸⊢ s = t, and
construct a structure M such that M |= T and
M ̸|= s = t. Such a structure is obtained as the “free
algebra” generated by the variables appearing in s, t.

Garrett Birkhoff

Variety theorem� �
A class K of structures
is characterized by an
equational theory ⇔
K is closed under
• subalgebras,
• homomorphisms,
• Cartesian products.� �
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Today’s topics

1 Free algebras and Birkhoff’s completeness theorems

2 Birkhoff’s variety theorem

3 Introduction to Boolean Algebra
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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 1. Schedule� �
• Sep. 21, (1) Formal systems of equation

• Sep. 28, (2) Free algebras and Birkhoff’s theorem

• Oct. 12, (3) Boolean algebras

• Oct. 19, (4) Computable functions and general recursive functions� �
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Preparation
• Today, we are going to prove Birkhoff’s completeness theorem and equational class
(variety) theorem.

• Fix an algebraic language L. Unless otherwise stated, we only consider algebraic
structures in this language.

Definition

An algebra B is said to be a subalgebra of an algebra A (denote B ⊆ A) if |B| ⊆ |A| and
for each function symbol f ∈ L and b0, . . . , bn−1 ∈ |B|,

fA(b0, . . . , bn−1) = fB(b0, . . . , bn−1).

Definition

Let A be an algebra and X ⊆ |A|. An algebra B is the subalgebra generated by X if it is
the smallest subalgebra of A containing X.
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Example 7� �
Let A = (Z,+,−, 0) be a group and X ⊆ Z. The elements of the subalgebra generated
by X are the numbers expressed as n1x1 + n2x2 + · · ·+ nkxk (xi ∈ X,ni ∈ Z).
In particular, the subalgebra generated by X = {2} is the group (E,+,−, 0), where E
is the set of even numbers.� �

Definition

Let K be a class of L-algebras. Let A ∈ K and X ⊆ |A|.
We say that A is a free K-algebra generated by X if

1 A is generated by X

2 Every map ϕ : X → |B| with B ∈ K can be uniquely extended to the homomorphism

ϕ̂ : A → B.

X

ϕ   

� � idX // A

ϕ̂
��
B
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Example 8� �
Let K be a class of groups. The group A = (Z,+,−, 0) is the free K-algebra (the
free group) generated by X = {1}. Indeed, for a group G = (G, ∗, ∼, e) and a
homomorphism ϕ defined by

ϕ(1) = g ∈ G,

then we have a unique homomorphism ϕ̂ : A → B such that

ϕ̂(n) = gn.

where gn is obtained by multiplying g n-times with ∗ if n > 0, and multiplying g∼

n-times with ∗ if n < 0. When n = 0, it is defined as gn = e.� �
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Lemma

Let A and B are free K-algebras generated by X and Y , respectively. If X and Y have the
same cardinality, then we have A ∼= B.

Proof. Since X and Y have the same cardinality, we have a bijection ϕ : X → Y . Since
A, B are free L-algebras, maps ϕ, ϕ−1 are uniquely extended to homomorphisms,

ϕ̂ : A → B, ϕ̂−1 : B → A.

Then, ϕ̂−1ϕ̂ is a homomorphism from A to A, which is an extension of idX = ϕ−1ϕ. By
the uniqueness of the extension, we have

ϕ̂−1ϕ̂ = idA.

Similarly, we have

ϕ̂ϕ̂−1 = idB .

Thus A ∼= B. (see also Problem 5).
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Problem 7� �
(Today’s exercise) Let L = {g1, g2, h}. We define the set of equations E as follows.

E = {h(g1(x), g2(x)) = x, g1(h(x, y)) = x, g2(h(x, y)) = y}

Let K be Mod(E), the class of models of E. Show that all finitely generated free
K-algebras are isomorphic.� �

Now, we will see a concrete construction of free algebras.

Let X be a set of variables. Let Term(X) be the set of L-terms whose variables are all
contained in X.

We define an L-algebra T (X) = (Term(X), f
T (X)
0 , f

T (X)
1 , . . . ), called a term algebra, as

follows: for each function symbol f in L,

fT (X)(t0, . . . , tn−1) = f(t0, . . . , tn−1).

Here, the right-hand side f(t0, . . . , tn−1) is a term as a symbol string.
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Lemma

If a class of L-algebra K contains T (X), then T (X) is a free K-algebra generated by X.

Proof.

• Obviously, T (X) is an L-algebra generated by X.
So, we only need to check condition 2 of the definition of free algebra.

• Let B ∈ K and ϕ : X → |B| be a morphism.

Then we define a homomorphism ϕ̂ : T (X) → B inductively as follows:

1 ϕ̂(x) = ϕ(x) for x ∈ X.

2 ϕ̂(f(t0, . . . , tn−1)) = fB(ϕ̂(t0), . . . , ϕ̂(tn−1)).

• Then, it is clear that ϕ̂ is a homomorphism extending ϕ.

• In addition, since any homomorphism always satisfies the above equation, it is easy to
see the uniqueness.
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Definition

Let A an algebra and s, t ∈ Term(X). We say that the equation s = t holds in A if for
every homomorphism ϕ : T (X) → A, we have ϕ(s) = ϕ(t). Then we denote this by

A |= s = t.

A homomorphism ϕ : T (X) → A can be viewed as an evaluation function of terms.
The value of a term s is uniquely obtained from the values ϕ(x) for variables x in s.

• Thus, A |= s = t means that two terms s, t always have the same value on A
whichever elements of |A| are assigned to the variables.
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Definition

Let E be a set of equations on Term(X). If A |= α holds for all α ∈ E, we write

A |= E.

Moreover, we adopt the following notation:

Mod(E) = {A ∈ K : A |= E},
E |= α⇔ for all A ∈ Mod(E), A |= α.

In the last lecture, we introduce a formal derivation system of equations.
If we can formally derive s = t from the equational theory E, we denote this by

E ⊢ s = t
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We are now ready to prove

Theorem (Birkhoff completeness theorem)

E |= α⇔ E ⊢ α.

Proof.
⇐ is easy to show as follows.

• Suppose E ⊢ s = t and take a proof tree P for this.

• Let M be a model of E. Since the equations at the top levels of the proof tree P are
either the axiom of E or t = t, they naturally hold in M.

• If the premises (upper equations) of each inference rule in our derivation system hold
in M, then clearly the conclusion (lower equation) also holds.

• Therefore, by induction, all equations in the proof tree of E hold in M.

• In particular, the bottom equation s = t holds in M.
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⇒ will be shown after proving some lemmas on free algebras and congruence relations.

Lemma

Let E be a set of equations on Term(X), and let ≡E be a relation on Term(X) defined by
s ≡E t⇔ E ⊢ s = t. Then, the following hold:
(1) ≡E is a congruence relation.
(2) For any homom. ϕ : T (X) → T (X), s ≡E t⇒ ϕ(s) ≡E ϕ(t).
(3) For any homom. ϕ : T (X) → T (X)/≡E , there exists a hom. ψ : T (X) → T (X) s.t.

ϕ = π≡E ◦ ψ.

Note. A relation ≡ that satisfies the lemma is called an invariant congruence relation.
Proof.
• (1) can be proved directly from the definition of derivation system.

• For (2), note that the value of ϕ(s) is uniquely determined by the values of x’s in X
(cf. the proof on P.15). For example, when ϕ(x) = u (where x ∈ X), ϕ(s(x)) = s(u).
Thus, s(x) = t(x) ⇒ s(u) = t(u) is nothing but the substitution rule.

• (3) is also obvious. For each x ∈ X, take an element tx of the equivalence class ϕ(x),
and define ψ as a unique homomorphism extending x 7→ tx.
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Lemma

T (X)/≡E is the free Mod(E)-algebra generated by π≡E (X).

Note. This lemma also holds for any invariant congruence ≡.
Proof.

Claim 1. T (X)/≡E ∈ Mod(E)

• To show the claim, let s = t be any equation in E and ϕ : T (X) → T (X)/≡E be any
homomorphism. Then, we want to show ϕ(s) = ϕ(t).

• By the above lemma (3), there exists ψ : T (X) → T (X) such that ϕ = π≡E ◦ ψ.
• Since s ≡E t, again by above (3), ψ(s) ≡E ψ(t).

• Then, from the definition of π≡E and ϕ = π≡E ◦ ψ, we have ϕ(s) = ϕ(t).

Also, since T (X) is generated by X, T (X)/≡E is also generated by π≡E (X).
This is because if π≡E (X) generates a proper subalgebra of T (X)/≡E , then taking the
inverse image of π≡, X generates a proper subalgebra of T (X).
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Proof.(continued)

Claim 2. T (X)/≡E is a free algebra.

• We take any A |= E and ϕ : X/≡E→ |A|.
• Let ψ = ϕ ◦ π≡E . Since T (X) is free, ψ : X → |A| can be extended to a

homomorphism ψ̂ : T (X) → A.

• If s ≡E t then by A |= E, we have A |= s = t, and so ψ̂(s) = ψ̂(t).

• By the corollary to the Homomorphism theorem, there exists ϕ̂ : T (X)/≡E→ A s.t.

ψ̂ = ϕ̂ ◦ π≡E .
• Clearly, ϕ̂ is a homomorphism extending ϕ, and the uniqueness of ψ̂ implies the

uniqueness of ϕ̂.

Proof of the completeness theorem: E |= α⇒ E ⊢ α.
Let E |= s = t. Since T (X)/≡E ∈ Mod(E), we have T (X)/≡E |= s = t.
Then for any homomorphism ϕ : T (X) → T (X)/≡E , we have ϕ(s) = ϕ(t).
In particular, letting ϕ = π≡E , we have s ≡E t. Hence, E ⊢ s = t.
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Birkhoff’s variety theorem

Definition

If a set K of L-algebras is said to be an equational class (or variety) if it is characterized
by a set E of equations, that is

K = Mod(E).

Theorem (Birkhoff’s variety theorem)

K is an equational class ⇔ K is closed under subalgebras, homomorphisms, and Cartesian
products.

• Note that “closed under homomorphism” means that for any algebra A ∈ K and
homomorphism ϕ : A → B (B does not necessarily belong to K), the subalgebra of B
as the range of ϕ belongs to K .

• “Closed under Cartesian product” means that the Cartesian product of algebras Ai in
K belongs again to K. (General definitions will be given in part 3 of this course).

22 / 38



Logic and
Foundation

K. Tanaka

Free algebras and
Birkhoff’s
completeness
theorems

Birkhoff’s variety
theorem

Introduction to
Boolean Algebra

Proof.
To show ⇒

• It is clear since an equation that holds in some algebraic structure also holds in its
subalgebras and homomorphic images.

• The equality that holds for each Ai also holds for the Cartesian product
∏

Ai.

To show ⇐
• Let K be closed under subalgebras, homomorphisms, and Cartesian products.

• Let X be an infinite set of variables. We define the following set of equations in
Term(X) as follows:

E = {s = t : for any A ∈ K,A |= s = t}.
• Our aim is to show Mod(E) = K.

• Mod(E) ⊇ K is obvious. Hence, we will prove the following by two steps.

Claim. Mod(E) ⊆ K.

The idea of the poof: For any A ∈ Mod(E), it suffices to construct a homomorphism from
C ∈ K onto A.
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Suppose A ∈ Mod(E). Take a set Y of variables and a surjection χ : Y → |A|. This can
be extended to an epimorphism (surjective homom.) χ̂ : T (Y ) → A.
By suitable replacement of variables, any equation in Y can be regarded as an equation in
X. Then it is plausible to consider T (Y )/E. In fact, this will be a desired algebra C.
Now, we are going to construct C more rigorously so that we can see C ∈ K.
For any B ∈ K and any homomorphism ϕ : T (Y ) → B, we define a congruence relation
≈ϕ on T (Y ) such that

s ≈ϕ t⇔ ϕ(s) = ϕ(t)

By the homomorphism theorem, we have

ϕ(T (Y )) ≃ T (Y )/ ≈ϕ
Since the left-hand side is a subalgebra of B ∈ K, by assumption we have T (Y )/ ≈ϕ ∈ K.

We write D for the set of congruence relations on T (Y ) expressed as ≈ϕ for some
homomorphism ϕ.
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Since K is closed under Cartesian products, we have∏
≈∈D

(T (Y )/ ≈) ∈ K.

With a homom. π≈ : T (Y ) → T (Y )/ ≈ for each ≈ ∈ D, we can naturally define a homom.

ψ : T (Y ) →
∏
≈∈D

(T (Y )/ ≈).

Since T (Y )/ ≈ψ is isomorphic to a subalgebra of
∏

≈∈D(T (Y )/ ≈), it also belongs to K.
Here, we have: s ≈ψ t⇔ ψ(s) = ψ(t) ⇔ for each ≈ ∈ D s ≈ t ⇔ for all ϕ ϕ(s) = ϕ(t) ⇔
for all B ∈ K, B |= s = t ⇔ s = t ∈ E (with suitable replacement of variables). Thus,
T (Y )/ ≈ψ is a desired algebra C.

Finally, by the corollary to the homomorphism theorem, we have an epimorphism

χ̂≈ψ : T (Y )/ ≈ψ→ A.

Since K is closed under homomorphism on T (Y )/ ≈ψ∈ K, we have A ∈ K.
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Non-equational class
• Since the axiom system of the group given in last lecture consists only of equations,
the class of all groups is considered to form an equality class.

• However, groups can also be characterized in other ways. For example, we may define
a group (G, • ) as a pair of set and a binary operation on it, satisfying

(x • y) • z = x • (y • z) and there exists w such that

for any x (w •x = x and ∃y(y •x = w))

• The group according to this definition is not an equational class. In fact, (N,+) is a
subalgebra of the group (Z,+), but it is not a group.

• Abelian groups, rings, R-modules, lattices, Boolean algebras can be treated as
equational classes with sufficient operators.

• But integral domains (commutative rings with no zero factors other than 0) and fields
cannot be axiomatized only with equations, no matter how many operators are added.
For example, the Cartesian product Z× Z of the integral domain Z = (Z,+, • ·, 0, 1) is
not an integral domain (note: (0, 1) • (1, 0) = (0, 0)).
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A simple extension of equational theory
• Consider a language including relational symbols R1, R2, . . . besides function symbols.

• An expression of the form s = t or R(t1, . . . , tn) is called an atomic formula. We will
give a deduction system that handles atomic formulas.

Definition

Let T be a set of atomic formulas. A deduction system for T consists of the following:
(1) Atomic formulas belonging to T and equations of the form t = t are axioms.
(2) The following five diagrams are inference rules.

s = t
t = s

s = t t = u
s = u

s(x) = t(x)

s(u) = t(u)

s1 = t1 . . . sn = tn
f(s1, . . . , sn) = f(t1, . . . , tn)

s1 = t1 . . . sn = tn R(s1, . . . , sn)

R(t1, . . . , tn)

where, s, t, si, ti, u are terms, x is a variable, f is a function symbol, and R is a relation
symbol. 27 / 38
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• A proof tree for this system is defined in the same way as for an equational theory, and
if an atomic formula σ has a proof tree, we write T ⊢ σ.

• The concept of models of T and T |= σ can be naturally defined by extending
structures to involve interpretations of relational symbols.

• For this extended theory, the same assertions as Birkhoff’s completeness theorem and
variety theorem hold.
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Introduction to Boolean Algebras

• In the mid-19th century, British mathematician G. Boole attempted to clarify
Aristotle’s logic by treating logical relations algebraically.

• This was the beginning of Boolean algebra, but in modern times it is often subsumed
under the more general concepts of “order” and “lattice” and treated as equational
theory.

Definition

• If a binary relation ≤ on a nonempty set X satisfies reflection (x ≤ x),
antisymmetry (if x ≤ y and y ≤ x, then x = y), as well as transitivity (if x ≤ y and
y ≤ z, then x ≤ z) is satisfied, then (X,≤) is called a (partial) order.

• If an order (X,≤) additionally satisfies comparability (x ≤ y or y ≤ x), then it is
called a total order or linear order.
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Example 9� �
n|m on the natural numbers N+ excluding 0 represents the relation “n divides m” or
“m is a multiple of n”. Then, (N+, |) is a partial order.� �

Let (X,≤) be a partial order. Suppose that for any a, b ∈ X, sup{a, b} and inf{a, b} exist
in X, denoted by a ∨ b and a ∧ b, respectively.
Note: supA is the minimum upper bound (supremum) of A, that is, the smallest value of
b such that a ≤ b for all a ∈ A. Similarly, inf A is the maximum lower bound (infimum) of
A.

Example 10� �
In the partial order (N+, |), sup{x, y} is the greatest common divisor (gcd) of x and y,
inf{x, y} is the least common multiple (lcm) of x and y.� �
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Definition

Theory of lattice consists of the following eight equations. A model of lattice theory
(L,∨,∧) is called a lattice.

L1 : x ∨ x = x, x ∧ x = x [Idempotence]
L2 : x ∨ y = y ∨ x, x ∧ y = y ∧ x [Commutativity]
L3 : x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z [Associativity]
L4 : (x ∨ y) ∧ x = x, (x ∧ y) ∨ x = x [Absorption]

Example 11� �
(N+, gcd, lcm) is a lattice.� �
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Conversely, for a given lattice (L,∨,∧), if a relation x ≤ y is defined as follows

x ≤ y ⇔ x ∧ y = x(⇔ x ∨ y = y)

then it is a partial order on L. In this case, the lattice operations ∨,∧ are the same as sup
and inf regarding this partial order.

Note. We show x ∧ y = x⇔ x ∨ y = y. ⇐ can be derived by substituting y := x ∨ y to
the left side and using lattice axioms L2 and L4. Similarly for ⇒.
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Now, Boolean algebra is defined as an equational theory as follows.

Definition

The theory of Boolean algebra (BA) is defined in language LB = {∨,∧,¬, 0, 1} with the
following axioms.

1 All the lattice axioms and the following distributive law:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z), (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

2 x ∨ 0 = x, x ∨ (¬x) = 1, x ∧ 1 = x, x ∧ (¬x) = 0.

A model of theory BA is called a Boolean algebra.

In the definition of Boolean algebra, (1) can be reduced to only L2 and distributive laws.
This will be shown in problem 9 after the duality theorem.
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Lemma (Uniqueness of complement)

If x ∨ y = 1 and x ∧ y = 0, then y = ¬x.

Proof. Assume x ∨ y = 1 and x ∧ y = 0. Apply the distributive law at =(∗) to obtain the
desired equation as follows.

y = y ∨ 0 = y ∨ (x ∧ ¬x) =(∗) (y ∨ x) ∧ (y ∨ ¬x) = (x ∨ y) ∧ (y ∨ ¬x)
= 1 ∧ (y ∨ ¬x) = (x ∨ ¬x) ∧ (y ∨ ¬x) =(∗) (x ∧ y) ∨ ¬x = 0 ∨ ¬x = ¬x.

• Remark. In the formal deduction system of equations, “a premise σ implies a
conclusion δ” means that if σ holds with any substitution for all variables then δ also
holds with any substitution for all variables.
In contrast, the lemma should be interpreted as “for all x, y, if (x ∨ y = 1 and
x ∧ y = 0, then y = ¬x)”. To state it strictly, we need first-order logic for the
argument.

Lemma (Elimination of double negation)

¬¬x = x.

Proof. Apply the above lemma to ¬x ∨ x = 1 and ¬x ∧ x = 0.
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Theorem (Duality theorem)

For an equation φ in LB = {∨,∧,¬, 0, 1}, let φ̃ denote the equation (dual equation)
obtained from φ by interchanging ∨ with ∧ and 0 with 1. Then

BA ⊢ φ⇔ BA ⊢ φ̃.

Proof. The dual formula σ̃ for each axiom σ of BA is also an axiom. Therefore, for a
proof tree of theorem φ in BA, if we replace all expressions in the tree with dual
expressions, we obtain a proof tree of φ̃.

Problem 9� �
(Homework) In the definition of Boolean algebra, reduce (1) to only the commutative
law and distributive law, and then prove the Idempotent, absorption law, and associative
law.� �
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Theorem (De Morgan’s law)

In BA, ¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y holds.

Proof They can be deduced from the following equations together with the uniqueness of
the complement.

(x ∨ y) ∨ (¬x ∧ ¬y) = [(x ∨ y) ∨ ¬x] ∧ [(x ∨ y) ∨ ¬y]
= [(x ∨ ¬x) ∨ y] ∧ [x ∨ (y ∨ ¬y)]
= (1 ∨ y) ∧ (x ∨ 1) = 1 ∧ 1 = 1.

(x ∨ y) ∧ (¬x ∧ ¬y) = [x ∧ (¬x ∧ ¬y)] ∨ [y ∧ (¬x ∧ ¬y]
= [(x ∧ ¬x) ∧ ¬y] ∨ [¬x ∧ (y ∧ ¬y)]
= (0 ∧ ¬y) ∨ (¬x ∧ 0) = 0 ∨ 0 = 0.

Therefore, ¬(x∨ y) = ¬x∧¬y. Also, ¬(x∧ y) = ¬x∨¬y follows from the duality theorem.
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Example 12� �
Let X be any set and P(X) be the power set (all subsets) of X. Now, if Y c = X − Y
for Y ⊆ X, then the power set algebra P(X) = (P(X),∪,∩, c,∅, X) is a Boolean
algebra. In particular, when X is a singleton {a}, P(X) is a trivial Boolean algebra,
and isomorphic to 2 = ({0, 1},∨,∧, 0, 1).� �

Conversely, any finite Boolean algebra is isomorphic to a power set algebra, and more
generally the following theorem holds. (The proof will be given in part 3)

Theorem (Stone’s representation theorem)

For any Boolean algebra B, there exists a set X, B can be embedded in its power set
algebra P(X). Especially, if B is finite, it is isomorphic to P(X).
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