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Outline of the Course

1 This is an introductory graduate-level course in mathematical logic. In this semester,
we discuss more advanced topics emphasizing on foundations of mathematic.

2 Every Thursday, we give a lecture three (strictly 2.5) hours long including a problem
session. We will also assign simple homework problems or questionnaires to registered
students, who are motivated to attend the class continuously. Normally, homeworks
are due next Monday.

3 TA (Dr. Li) will handle homeworks as well as questions and comments from students
via WeChat. We may assign harder problems to students, who will presumably go to
the research level with us in the following years.

4 Lecture slides will be uploaded on the lecture page at BIMSA.
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Education

⋆ Tokyo Institute of Technology
Information Science, Bachelor, Master

⋆ University of California, Berkeley
Mathematics,
Ph.D. (Advisor: Leo Harrington)

Teaching Jobs

⋆ 1986 ∼ 1991, Tokyo Institute of Technology
Assistant Professor, Dept. of Info. Sci.;
Visiting PennState.

⋆ 1991 ∼ 1997, Tohoku University
Associate Professor, Dept. of Math.;
Visiting Oxford.

⋆ 1997 ∼ 2022, Tohoku University
Professor (2021 , Emeritus), Mathematical
Institute and Research Alliance Center for
Mathematical Sciences.

⋆ 2022 ∼ now, BIMSA, Professor (Research
Fellow).

Introducing myself

Speciality� �
Mathematical logic, especially de-
finabilty and computability theory.
Among others, I have contributed to
second-order arithmetic and reverse
mathematics, and supervised fifteen
doctoral students in this area.
See https://sendailogic.com/tanaka/.� �
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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 1. Schedule� �
• Sep. 21, (1) Formal systems of equation

• Sep. 28, (2) Free algebras and Birkhoff’s theorem

• Oct. 12, (3) Boolean algebras

• Oct. 19, (4) Computable functions and general recursive functions� �
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Today’s topics

1 Equational Theory

2 Algebraic structures
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Introduction to Equation Theory

• In part 1, we study mathematical theories that are characterized by axioms in the form
of equations (=).

• The class of models of such a theory has some intriguing properties (e.g., it is closed
under the Cartesian product).

• The Birkhoff completeness theorem and the equational class theorems are two major
results, which will also be extended to more general theories involving logical symbols
in the following parts of this course.

• In this part, we also discuss Boolean algebra as an important equational theory. At
last, we introduce general recursive functions as another application of equational
theory.
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• To begin with, we look at an equational theory of groups in order to observe how a
mathematician proves. Among various ways to describe the theory of groups, we
adopt the following equational axioms.

Definition

Group theory Gp consists of the following three axioms.

G1 : (x · y) · z = x · (y · z) (associativity)
G2 : e · x = x (left identity)
G3 : x−1 · x = e (left inverse)

where x, y and z are variables, e is a constant, and −1 represents a unary function.

• Consider a structure G = (G, ∗, ∼, e), where G is a non-empty set, ∗ a binary
function, ∼ a unary function on G, and e an element of G.

• G is called a model of Gp, or simply group, if by interpreting the symbols ·, −1, e of
Gp as ∗, ∼, e on G, the three equalities hold for any assignment of an element of G
to each variable.
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• In general, when a sentence σ holds in a structure M (in other words, σ is true in M),
we write M |= σ.

• A set T of sentences (logical formulas or axioms) is called a theory. If all the
sentences σ ∈ T hold in M, we say that M is a model of T or T has a model M,
denote M |= T . Here |= is read as “double turnstile”.

• If a sentence σ holds for all models of a theory T , σ is called a consequence of T or
σ is valid in T , written as T |= σ

• We take a look at the following theorem and proof, as an example of an argument for
a consequence of group theory Gp.

Theorem (1)

Gp |= x · x−1 = e [right inverse]
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Proof.
Let G = (G, ∗, ∼, e) be an arbitrary group. Pick any
element a of G. We claim a ∗ a∼ = e.
First, we show a = e if a ∗ a = a. Multiply by a∼, on
both sides of a ∗ a = a, we have a∼ ∗ (a ∗ a) = a∼ ∗ a.
The left-hand side of this is

a∼ ∗ (a ∗ a) = (a∼ ∗ a) ∗ a (by G1)
= e ∗ a (by G3)
= a (by G2)

Definition (revisited)

Group theory Gp consists of the
following three axioms.

G1 : (x · y) · z = x · (y · z)
G2 : e · x = x
G3 : x−1 · x = e

Since the right-hand side a∼ ∗ a is equal to e from G3, we obtain a = e.
Now, we have

(a ∗ a∼) ∗ (a ∗ a∼) = a ∗ (a∼ ∗ (a ∗ a∼)) (by G1)
= a ∗ ((a∼ ∗ a) ∗ a∼) (by G1)
= a ∗ (e ∗ a∼) (by G3)
= a ∗ a∼ (by G2)

Hence, a ∗ a∼ = e.
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Problem 1� �
Gp |= x · e = x [right identity].� �
Problem 2� �
Let G′

p be a theory obtained by replacing G3 [left inverse] in Gp with

x · x−1 = e [right inverse].

Prove that G3 does not hold in G′
p, i.e.,

G′
p ̸|= x−1 · x = e.� �
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• The proof of the above Theorem in Page 10 is an ordinary argument in mathematics.

• However, if you think twice, it is not at all obvious to take an arbitrary group G and
select an arbitrary element a to discuss it.

• Can we say that the claim is true if there exists a right inverse in the groups one can
imagine or people have found until today?

• However, we should notice that once we have fixed a group G and its arbitrary
element a, the rest is a simple transformation of formulas.

• The transformation is obtained by starting from the axioms of Gp and applying the
rules of equality.

• Indeed, it doesn’t really matter which group you would choose to handle. Any
structure that satisfies the axioms will work out even if you cannot imagine it.
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Formal system of an equational theory

• Let us now introduce a formal system of equations. We will give the general definition
of a language, a term, etc. later.

• Here, we may consider a language as a set of mathematical symbols such as ·, −1,
and e in group theory.

• A string consisting of these symbols and variables with parentheses, is called a term if
it is properly combined to denote an element of a given structure.

• Then, for two terms s, t, the symbol string s = t is called an equation.

14 / 36
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The deductive system, which derives the consequences of a theory T , is defined as follows.

15 / 36



Logic and
Foundations

K. Tanaka

Equational
Theory

Algebraic
structures

• The axiom (2) t = t expresses the reflexivity of equality.

•
s = t
t = s

(sym)
expresses the symmetricity rule.

•
s = t t = u

s = u (trans) expresses the transitivity rule.

•
s(x) = t(x)

s(u) = t(u)
(sub)

is a substitution rule for replacing all occurrences of variable x with
a term u.

•
s1 = t1 . . . sn = tn

f(s1, . . . , sn) = f(t1, . . . , tn)
(comp)

guarantees that equality is preserved by function
composition.
E.g, in group theory, s1 = t1, s2 = t2 ⇒ s1 · s2 = t1 · t2, and s = t⇒ s−1 = t−1.
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Definition

A proof tree (or proof) in equational theory T is defined inductively as follows:

1 An equation as an axiom is a proof tree by itself.

2 If Pi is a proof tree for si = ti (1 ≤ i ≤ n), and

s1 = t1 . . . sn = tn
s = t

is an inference rule, then
P1 . . . Pn

s = t

is a proof tree for s = t.
If s = t has a proof tree in T , we write

T ⊢ s = t,

where ⊢ is read as “turnstile”.

17 / 36



Logic and
Foundations

K. Tanaka

Equational
Theory

Algebraic
structures

We work in equational theory Gp unless otherwise noted. We write xy in short for x · y.
Example 1-1: A proof tree P1 for (x−1x)x−1 = x−1� �
Let P1 be the following proof tree for (x−1x)x−1 = x−1,

x−1x = e x−1 = x−1

(x−1x)x−1 = ex−1
(comp) ex = x

ex−1 = x−1
(sub)

(x−1x)x−1 = x−1
(trans).

� �
Example 1-2: A proof tree P2 for x−1(xx−1) = (x−1x)x−1� �

(xy)z = x(yz)

(x−1x)x−1 = x−1(xx−1)
(sub× 3times)

x−1(xx−1) = (x−1x)x−1
(sym)

� �
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Example 1-3: A proof tree for (xx−1)(xx−1) = (xx−1)� �
Let P3 be a proof tree for (xx−1)(xx−1) = x(x−1(xx−1)). The following is a proof
tree for (xx−1)(xx−1) = (xx−1).

P3

x = x

P2 P1

x−1(xx−1) = x−1
(trans)

x(x−1(xx−1)) = xx−1
(comp)

(xx−1)(xx−1) = (xx−1)
(trans)

� �
Problem 3� �
Using the examples above, construct a proof tree for Gp ⊢ xx−1 = e.� �
Problem 4� �
Construct a proof tree for Gp ⊢ xe = x.� �

19 / 36



Logic and
Foundations

K. Tanaka

Equational
Theory

Algebraic
structures

Exercise� �
Consider an equation system consisting of binary operator symbol · and c, d, e as con-
stants.

1 For a theory T = {c · x = x, x · d = x}, construct a proof tree for T ⊢ c = d.

2 For a theory T ′ = {c · x = x, e · x = x, x · d = x}, construct a proof tree for
T ′ ⊢ c = e.

3 Prove that c = e does not hold in some model of
T ′′ = {(x · y) · z = x · (y · z), c · x = x, e · x = x}.� �
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Birkhoff’s completeness theorem
• For an equational theory T , the following relationship

holds.

Birkhoff’s completeness theorem (1935)� �
T |= s = t⇔ T ⊢ s = t.� �

In other words, “s = t is a consequece of theory T
(T |= s = t)” can be completely captured by a finite
diagram of a proof tree for s = t.

• It can be regarded as a special case of Gödel’s
completeness theorem (1930), which asserts that
mathematical arguments in first-order logic can be
completely formalized.

Garrett Birkhoff

Kurt Gödel
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Birkhoff’s completeness theorem

• We will prove Birkhoff’s completeness theorem next time, but we briefly explain the
idea of the proof.

• T |= s = t⇐ T ⊢ s = t (the soundness of T ) is easier. Let M be any model of T .
Then we can show by induction that all equations appearing in a proof tree for
T ⊢ s = t holds in M. Especially the bottom s = t holds in M.

• However, ⇒ is not easy. To show the contrapositive, we first assume T ̸⊢ s = t, and
construct a structure M such that

M |= T and M ̸|= s = t.

Such a structure is obtained as the “free algebra” generated by the variables appearing
in s, t. Before introducing it, we first review the basic concepts of general algebra.
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Algebraic language

Definition

An algebraic language is a list of function symbols

L = (f0, f1, . . . ),

where each fi is associated with a natural number mi, called its arity, that is, fi stands for
an mi-ary function. A 0-ary function symbol is also regarded as a constant.
ρ = (m0,m1, . . . ) is called the similarity type of L.

Note that there may be infinitely many (especially uncountably many) symbols in an
algebraic language L.

23 / 36



Logic and
Foundations

K. Tanaka

Equational
Theory

Algebraic
structures

Algebraic structures

Definition

• An algebraic structure A in a language L = (f0, f1, . . . ) (or simply L-algebra)
consists of a non-empty set A and a list of mi-ary functions fAi : Ami → A, that is,

A = (A, fA0 , f
A
1 , . . . ).

• We say that A is the domain or universe of A, denoted by |A|.
• For a 0-ary function symbol or constant c, cA is an element of A.

Example� �
• A group G is an algebraic structure (G, ∗, ∼, e) in an algebraic language
L = (·, −1, e).

• Then ·G is a binary function ∗, ( −1)G is a unary function ∼, and eG is a 0-ary
function e. Therefore, the similarity type of L is (2, 1, 0).� �
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Terms

Definition

• In particular, constants (0-ary function symbols) are terms.

• We may write a term t including some variables (e.g., x, y) as t(x, y).

• The term obtained from a term t(x) by replacing all variables x appearing in it with a
term s is expressed as t(s).

• By convention, a binary function f(x, y) is also expressed as xfy, e.g., +(x, y) is
written as x+ y.
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Homomorphism and isomorphism
We fix an algebraic language L. We will only consider algebraic structures in this language
unless otherwise stated, .

Definition

Let A, B be L-algebras. A morphism ϕ : A → B is a homomorphism if for each n-ary
function symbol f in L, and for any a0, . . . , an−1 ∈ |A|,

ϕ(fA(a0, . . . , an−1)) = fB(ϕ(a0), . . . , ϕ(an−1)).

Moreover, ϕ is said to be an isomorphism if ϕ is bijective.
Then we say that A and B are isomorphic, denoted by

A ∼= B,

if there exists an isomorphism ϕ : A → B.
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Example 3� �
Consider a group A = (Z,+,−, 0) and a group B = (R+, ·, 1/x, 1) where R+ = {r ∈
R | r > 0}. Then there is a homomorphism ϕ : A → B defined by

ϕ(n) = 2n.

In particular, we have ϕ(m+ n) = ϕ(m) · ϕ(n).
Furthermore, M = (M, ·, 1/x, 1) with M = {2n : n ∈ Z} is also a group, and we have
A ∼= M.� �
Problem 5� �
Prove that A and B are isomorphic iff there exist two homomorphisms ϕ : A → B and
ψ : B → A such that their composite functions ψ ◦ ϕ and ϕ ◦ψ are both identity maps
(idA and idB).� �

27 / 36



Logic and
Foundations

K. Tanaka

Equational
Theory

Algebraic
structures

Definition

Let A be an algebra and ≡ be a binary relation on |A|. Then we say that ≡ is a
congruence relation on A if ≡ is an equivalence relation on |A| (i.e., satisfying reflexivity,
transitivity, and symmetricity) and for every functional symbol f ∈ L, and for any
a0, · · · , an−1, b0, · · · , bn−1 ∈ A, we have

a0 ≡ b0, . . . , an−1 ≡ bn−1 ⇒ fA(a0, . . . , an−1) ≡ fA(b0, . . . , bn−1).

Example 4� �
Let Z = (Z,+, ·,−, 0, 1) be a ring of integers. We define m ≡3 n ⇔ “m − n is a
multiple of 3”. To prove ≡3 is a congruence relation, we will show that if m ≡3 n and
m′ ≡3 n

′, then m+m′ ≡3 n+ n′ and m ·m′ ≡3 n · n′ and −m ≡3 −n.� �
Problem 6� �
Let H be a normal subgroup of the group G (for any g ∈ |G| and h ∈ |H|, ghg∼ ∈ |H|).
Let g1 ≡H g2 ⇔ g1g2

∼ ∈ |H|. Show that ≡H is a congruence relation.� �
28 / 36
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• Given an equivalence relation ≡ on a set A, we call

{x ∈ A : x ≡ a}

the equivalent class or residue class of a (∈ A), denoted by [a]. A class of all
equivalence classes is denoted by A/≡.

• Then, we can make an algebra A/≡ with domain |A|/≡ as follows.

Definition

Give a congruence relation ≡ on an L-algebra A. Each n-ary function symbol f in L is
interpretated on |A|/≡ as follows: for all a0, . . . , an−1 ∈ |A|,

fA/≡([a0], . . . , [an−1]) = [fA(a0, . . . , an−1)].

The algebra A/≡ thus defined is called the factor algebra or quotient algebra of A by ≡.

In the above definition, the value of fA/≡ is (uniquely) determined by the fact that ≡ is the
congruence relation. That is, if [a0] = [a′0], . . . , [an−1] = [a′n−1], then we have

[fA(a0, . . . , an−1)] = [fA(a′0, . . . , a
′
n−1)].
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Example 5� �
Consider the congruence relation in Example 3.
To make Z/≡3, we first have Z/≡3 = {[0], [1], [2]}.
Then the operations on Z/≡3 are defined as follows:
[m] +Z/≡3 [n] = [m+ n], [m] ·Z/≡3 [n] = [m · n], −Z/≡3 [m] = [−m], 0Z/≡3 = [0],
1Z/≡3 = [1].� �
Example 6� �
Let H be a normal subgroup of the group G, then G/≡H is the usual residue group
G/H. (see also Problem 6)� �
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Lemma

If ≡ is a congruence relation on an algebra A, then π : A → A/≡ defined by π(a) = [a] is a
homomorphism.

By the definition of residue algebra, the proof of the lemma should be clear.
In the following, we represent the homomorphism π as π≡.

Lemma

Let A, B be L-algebras and ϕ : A → B be a homomorphism. Now, we define a binary
relation ≡ on A as follows.

a ≡ b⇔ ϕ(a) = ϕ(b).

Then, ≡ is a congruence relation.
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Proof.
It is clear that ≡ is an equivalence relation. To show the preservation property of f,
suppose a0 ≡ b0, . . . , an−1 ≡ bn−1. Then,

ϕ(fA(a0, . . . , an−1)) = fB(ϕ(a0), . . . , ϕ(an−1)) (ϕ is a homomorphism)
= fB(ϕ(b0), . . . , ϕ(bn−1)) ( assumption a0 ≡ b0, . . . )
= ϕ(fA(b0, . . . , bn−1)) (ϕ is a homomorphism).

Therefore, we have
fA(a0, . . . , an−1) ≡ fA(b0, . . . , bn−1).
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Homomorphism theorem

Theorem (Homomorphism theorem)

Let ϕ : A → B be a surjective homomorphism. Let ≡ be the congruence relation on A
defined in the above lemma, that is,

a ≡ b⇔ ϕ(a) = ϕ(b).

Then there exists an isomorphism ϕ≡ : A/≡→ B such that ϕ = ϕ≡ ◦ π≡.

A

π≡

��

ϕ
// B

A/≡
ϕ≡

==
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Proof.

• We define ϕ≡ as ϕ≡([a]) = ϕ(a) for [a] ∈ |A/ ≡ |,

• If [a] = [b], by definition we have a ≡ b, and thus ϕ(a) = ϕ(b). The converse is also
true. Hence ϕ≡ is injective.

• Since ϕ is surjective, so is ϕ≡.

• Finally, we claim that ϕ≡ is a homomorphism.

ϕ≡(f
A/≡([a0], . . . , [an−1])) = ϕ≡([f

A(a0, . . . , an−1)]) (factor algebra)
= ϕ(fA(a0, . . . , an−1)) (definition of ϕ≡)
= fB(ϕ(a0), . . . , ϕ(an−1)) (ϕ is a homomorphism)
= fB(ϕ≡([a0]), . . . , ϕ≡([an−1])) (definition of ϕ≡).
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The following corollary can be proved in almost the same way as the homomorphism
theorem.

Corollary

Let ϕ : A → B be a homomorphism and ≡ be a congruence relation on A such that

a ≡ b⇒ ϕ(a) = ϕ(b).

Then there exists a homomorphism ϕ≡ : A/≡→ B such that ϕ = ϕ≡ ◦ π≡.
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Thank you for your attention!
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