Logic and Foundations I, Autumn 2023

Homework No.6 Due: 2023.11.07 Name:

Problem 1 (difficult)

Let Σ be a theory in a language \mathcal{L} including an *n*-ary relation symbol R and some others. Then, R is said to be **explicitly definable** in Σ , if there exists a formula $\varphi(x_0, \ldots, x_{n-1})$ in $\mathcal{L} - \{R\}$ such that

 $\Sigma \vdash \forall x_0, \dots, x_{n-1} (R(x_0, \dots, x_{n-1}) \leftrightarrow \varphi(x_0, \dots, x_{n-1})).$

Now, we construct Σ' from Σ by replacing all occurrences of R by a new symbol R'. Then, R is said to be **implicitly definable** in Σ , if the following hold

 $\Sigma \cup \Sigma' \vdash \forall x_0, \dots, x_{n-1} (R(x_0, \dots, x_{n-1}) \leftrightarrow R'(x_0, \dots, x_{n-1})).$

Show that *R* is explicitly definable in Σ iff *R* is implicitly definable in Σ .

Solution: