Logic and Foundations I, Autumn 2023

Homework No.14 Due: Name:

Problem 1

Let \mathfrak{A} be a non-standard model of PA, and $a \in A$ be an arbitrary non-standard element. Then, in \mathfrak{A} , let $\mathcal{K}(\mathfrak{A}; a)$ denote the set of all element $b \in A$ that can be defined by the formula $\varphi(x, a)$ (does not include parameters other than a). That is, $\mathcal{K}(\mathfrak{A}; a)$ denote the set of b's such that $\mathfrak{A}_{\{a,b\}} \models \forall x(x = b \leftrightarrow \varphi(x, a))$. Then prove the following.

(1) By restricting functions and relations of \mathfrak{A} to that of $K(\mathfrak{A}; a)$, $K(\mathfrak{A}; a)$ can be seen as a substructure of \mathfrak{A} . $K(\mathfrak{A}; a)$ is an elementary substructure of \mathfrak{A} .

(2) Prove that the following set is recursive and finitely satisfiable, but it cannot be realized by $K(\mathfrak{A}; a)$.

 $\Phi(x,a) = \{ \exists v \varphi(v,a) \to \exists v < x \ \varphi(v,a) : \varphi(v,u) \text{ contains no free variables} \\ \text{or parameters other than } u, v \}$

Solution:

Problem 2

Let $\mathfrak{A} = (A, +, \cdot, 0, 1, <)$ be a non-standard model of $I\Sigma_1$. Show that $\mathfrak{A}' = (A, +, 0, 1, <)$ is recursively saturated.

Solution: