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ABSTRACT

ABSTRACT

Quantum chromodynamics (QCD) is a basic theory to describe the strong interaction
between quarks and gluons. In relativistic heavy ion collisions, quarks and gluons origi-
nally bound in neutrons and protons are deconfined to form a strong coupling QCD matter:
quark gluon plasma (QGP). The heavy flavor hadrons produced in the collision are excel-
lent probes for the state of QGP: the production suppression of high transverse momentum
heavy flavor hadrons is helpful to quantitatively understand the QGP and the transport
properties of heavy flavor quarks in QGP; The ratio of strange charm hadron to non-
strange charm hadron is also helpful to understand the production mechanism of heavy
flavor hadrons and the strangeness enhancement in QGP during hadronization. However,
cold nuclear matter (CNM) effects can also affect the production of final heavy flavor
hadrons in heavy ion collisions, such as the modification of nuclear parton distribution
functions (nPDFs). It is generally believed that the proton-lead (pPb) collision is an ideal
platform for studying the effects of cold nuclear matter because the space-time scale is
too small to create QGP. CNM effects such as nPDFs can be constrained quantitatively
by measuring the final heavy flavor hadron production. In addition, in 2017, ALICE ex-
periment observed for the first time the production enhancement of light strange hadrons
in high multiplicity proton-proton collisions, which means that there is an enhancement
mechanism for s quark in small systems with high multiplicity. Looking for the enhance-
ment of strange charm hadron yield in high multiplicity pPb collisions is also of great
scientific significance for understanding the mechanism of strangeness enhancement and
charm hadron production in this small system.

In 2016, the LHCb detector collected pPb collision data with an integrated luminos-
ity of about 30.75 nb~'and m = 8.16TeV. Using these data, this thesis measured the
double differential cross sections of the forward prompt D} and D* in pPb collision, cov-
ering the forward rapidity region of 1.5 < y < 4.0 and the backward rapidity region of
—5.0 < y < =2.5, and the transverse momentum range of 1 < pr < 13GeV/c. Based on
these results, the nuclear modification factor and the forward-backward ratio are calcu-
lated, and the influence of CNM effect on the open charm meson cross section is studied.
In addition, this thesis also measured D;"/DJr cross section ratio, and the variation of this

ratio with multiplicity in different transverse momentum and rapidity intervals is studied.
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ABSTRACT

The measurements of the nuclear modification factor and the forward-backward ratio
show that there is an obvious CNM effect in pPb collision at 8.16TeV. Compared with
the pp collision, the differential cross sections of D] and D* are significantly depressed
in the forward rapidity interval, which is in good agreement with the theoretical calcula-
tions of nPDF and CGC, suggesting that there is a nuclear shadowing effect in the small
momentum fraction x. The suppression effect in the backward section is not obvious,
suggesting that there may be a nuclear anti-shadowing effect in the middle momentum
fraction x. However, in the backward high transverse momentum region, there are dif-
ferences between the nuclear modification factor and the forward-backward ratio and the
nPDF theoretical calculation, which indicates that there may be unknown nuclear mat-
ter effects in the backward region of pPb collision. It is also found for the first time that
D}/D™" cross-section ratio increases significantly with the increase of multiplicity, and
the increasing trend in the backward low transverse momentum (12.60) is more signifi-
cant than that in the high transverse momentum (4.9¢). This finding indicates that there
is also a significant strangeness enhancement in charm quark hadronization in high mul-
tiplicity pPb collisions, and there is an urgent need for theory to explain this enhancement

mechanism.

Keywords: quark gluon plasma; cold nuclear matter effect; proton-lead collision;

strangeness enhancement; LHCb
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CHAPTER 1 INTRODUCTION

1.1 Standard Model and quantum chromodynamics

The Standard Model (SM) is a theory of fundamental microscopic interactions that
successfully describes most of the known phenomena in elementary particle physics[l].
It addresses three of the four fundamental interactions, namely, the electromagnetic, weak
and strong interactions. The structure of the SM is a renormalizable quantum gauge field
theory based on a local gauge symmetry of the type SU(3)®@ SU(2)@QU (1), where SU (3)
is the gauge symmetry for the strong force between the color charges and SU(2)Q U (1) is
for the unified weak and electromagnetic interactions between the electro-weak charges.

The elementary particles in the SM are shown in Fig. 1.1. There are three generations
of quarks (u, d, c, s, t, b) and leptons (e, v,, u, Vi T v,) which are basic building blocks
of matter. They are spin-% fermions and interact with each other through the mediation
of Yang-Mills gauge fields. The quarks carry both color and electro-weak charges, while
the leptons have only electro-weak charges. In addition, there are spin-1 force carriers
(gauge bosons). The gluons mediate strong interactions between the particles carrying
color charge, and the photons mediate electromagnetic interactions between the particles
carrying electric charge, while the W* and Z° mediate weak interactions between the par-
ticles carrying weak charge. Photon and gluons are massless but W* and Z° have large
masses. This indicates the electroweak gauge symmetry has been broken. The sponta-
neous breaking of the electroweak gauge symmetry can be explained by the Higgs mech-
anism which predicted the existence of Higgs boson (spin-zero)'?!. The Higgs boson was
finally discovered at LHC in 2012834 which completed the Standard-Model jigsaw.

Quantum chromodynamics (QCD) ! is the theory describing strong interactions, and
it is also an SU(3) group with non-abelian gauge symmetry. The QCD Lagrangian can

be written as

f{. o1
Locp = Z q; <1yﬂD5. — mf5,~j> q; — ZGZ G, (1.1)
f
where ql.f is a quark field with flavour f (flavor is the index for different quarks), mass m,

and color charge i. The covariant derivative ij is written in terms of the gluon fields G,
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The Standard Model of Particle Physics
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Figure 1.1 Elementary particles in the Standard Model

(a runs from 1 to 8) and the strong coupling constant g, as,

H Y7 . lllaf H
Dij = 0"6;; —igy 5 Gy, (1.2)

where /1;’1. are the Gell-Mann matrices. The second term of Eq. 1.1 describes the kinemat-

ics and the dynamics of the gluons with the gluon strength tensor defined as
G, =0,G¢ - 0,G% +ig,fop.GLGS, (1.3)

where f . are the structure constants of SU(3). The third term of Eq. 1.3 distinguishes
QCD from QED, giving rise to triple and quartic gluon self-interactions. These self-
interactions lead to anti-screening in color interaction. The unrenormalized constants in
the Lagrangian need to be redefined (renormalization scheme) to ensure that the observ-
ables are finite when the ultraviolet cut off is removed. The observables do not depend on
renormalization scheme and renormalization scale u. The coupling constant o, = g?/ (4r)
is the only fundamental parameter in QCD besides quark masses. It depends on the renor-
malization scheme and renormalization scale u. The coupling constant satisfies the renor-

malization group equation (RGE) :

da
d_u; = f (a;) = = (byay + by + byay + +-+) (1.4)

where b, by, b, ... correspond to one loop, two loops, three loops ... contributions. In the

2
H

2
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one loop approximation, a, can be expressed as
N a (u5)
o, (42) = .
1+ boa (pg) In (p2/ug)

When y is the scale of the momentum transfer Q in a given process, a; (Qz) indicates

(1.5)

the effective strength of the strong interaction in this process. Equation 1.5 shows that
@, is not constant but depends on the momentum transfer, Q[6]. In experiments, a, can
not be measured directly, but only indirectly through physical processes, such as the total
cross-section for ete™ — hadrons at high energies. A summary of measurements of a; as

a function of the energy scale Q is shown in Fig. 1.2.

0.35 AL LR | UL | LU | y
[ T decay (N°LO) += ]

low Q? cont. (N°LO) —— |

03 [ HERA jets (NNLO) H— ]

Heavy Quarkonia (NNLO)
e'e jets/shapes (NNLO+res) H |
- \ pp/pp (jets NLO) H&- 4
0.25 I EW precision fit (N3LO) e ]
- pp (top, NNLO) —— 1

© 02F .
am

0.15 i

0.1

= g (Mz?) = 0.1179 + 0.0009
005 b
1 10 100 1000
August 2021 Q [GeV]

Figure 1.2 Summary of measurements of «, as a function of the energy scale ol

The running of the coupling constant « as a function of Q can be related to two of
the core phenomena of strong interactions: asymptotic freedom and color confinement.
At large Q, the coupling constant is small, and the interaction between quarks/gluons
becomes weaker. This is a unique property of gauge theories based on a non-abelian
group of SU(3), and is known as asymptotic freedom. A perturbative expansion in term
of a, (perturbative QCD) can be applied to calculate these QCD processes. At small
O (below about a few hundred MeV), the interaction between quarks/gluons becomes

stronger, and free quarks or gluons cannot exist alone but instead combine into bound states
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(hadrons) in which their color charge is “hidden”. It is known as “color confinement”. In
phenomenology, the interaction potential between color charges increases linearly with
the distance between the charges. If one tries to separate the quark and the antiquark in a
meson, the interaction energy will keep increasing until new g4 pairs are pulled out from
the vacuum and combined with the existing quarks to form new color-neutral mesons.
These low energy QCD processes are non-perturbative, but can be calculated numerically

with lattice QCD (LQCD) 8.

1.2 Deconfinement and Quark-Gluon Plasma

Due to the asymptotic freedom feature of QCD, quarks and gluons should no longer
be confined in hadrons at an arbitrarily high temperature or baryon density. Therefore,
it is expected that there should be a phase transition from the ordinary hadronic matter
to the deconfined matter with quarks and gluons as basic constituents, which is called
quark-gluon plasma (QGP). The most intuitive feature of the deconfinement QCD phase
transition is that the release of many new degrees of freedom will lead to a rapid in-
crease in energy density around the critical temperature 7T,. Lattice QCD calculations
indeed predict such rapid change in various thermodynamic quantities at a temperature
of T, ~ 155 MeV, as shown in Fig. 1.3. At lower temperature (T" < 150 MeV), the lat-
tice QCD results are well described by the hadron resonance gas model (HRG) 1 which
assumes non-interacting hadrons and resonances as the fundamental constituents. The
thermodynamic quantities change rapidly at T, ~ 155 MeV, then gradually approach the
ideal gas limit (assuming free quarks and gluons as constituents) at higher temperatures.
Lattice calculations indicate that the transition from hadronic gas to quark-gluon plasma is
a smooth crossover within a range of temperature around 7, ~ 155 MeV - depicted
by the yellow band in Fig. 1.3.

Figure 1.4 shows the current knowledge of the QCD phase diagram in the plane of
temperature (7°) and baryon chemical potential (ug). The up is closely related to the
net-baryon number density of the system. The ordinary nuclear matter is located at ap-
proximately 7' ~ 0 and baryon chemical potential up ~ 1 GeV. The lattice QCD pre-
diction for the crossover in Fig. 1.3 is corresponding to the case of zero baryon chemical
potential. The matter could be in the QGP phase with nearly zero yp in the early Universe
(about 107> seconds after the big bang), and then hadronize into hadron gas after a smooth

crossover. At small but finite baryon chemical potential (or net baryon density), the transi-
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Figure 1.3 The normalized pressure, energy density, and entropy density as a function of the
temperature from lattice QCD calculations ((2+1)-flavor) at zero net baryon density. The pre-
dictions of the hadron resonance gas (HRG) model are also shown with same color lines. This
horizontal dotted line represents the ideal gas (or Stefan-Boltzmann) limit, which is the limit with-
out interaction. The vertical yellow band indicates the crossover temperature region. This figure
is taken from Ref. [10]

tion from hadrons gas to QGP is also a crossover. But at larger baryon chemical potential,
QCD theories predict a first order phase transition from the hadron phase to QGP phase,
and the end point of the first order phase transition is called the QCD critical pointm] . At
higher baryon density and lower temperature, cold dense quark matter is expected to be a

color superconductor which could exist in the core of neutron stars or quark stars.

1.3 Relativistic heavy ion collisions

In order to fully understand the mechanism of color confinement and the QCD be-
haviour in the non-perturbative regime, it was proposed in 1970s to study the QCD phase
transition with heavy ion collision experiments. In these experiments, heavy nuclei (like
lead ions) are accelerated to relativistic speed and then collide with each other. The large
kinetic energy carried by the incident nuclei will be deposited in the collision zone which
has a typical size of 10 fm. The vacuum there is then quickly heated up to above T, then
the deconfinement phase transition will happen, and quark-gluon plasma will be formed

in a short time period of a few fm/c before it cools down and hadronizes again.
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Figure 1.4 A sketch of the current understanding of the QCD phase diagram as a function of
temperature and the baryon chemical potential. This figure is taken from Ref. [13]

Since early 1980s, several accelerator facilities around the world conducted their sci-
entific programs of relativistic heavy ion collisions in order to create QGP, to study its
properties, and to study the QCD phase structure:

* Bevatron (Billions of eV Synchrotron) : From 1954 to 1993 at Lawrence Berkeley

National Laboratory, U.S.

* AGS (Alternating Gradient Synchrotron) : Since 1960 at Brookhaven National Lab-

oratory, U.S. Now used as injector for RHIC.
* SPS (Super Proton Synchrotron) : Since 1976 at CERN. Now the injector for the
LHC.

* SIS-18 (Schwer-Ionen-Synchrotron) : Since 2001 at GSI.

* RHIC (Relativistic Heavy Ion Collider) : Since 2000 at Brookhaven National Lab-
oratory, U.S.

* LHC (Large Hadron Collider) : Since 2009 at CERN.

Bevatron, AGS, SIS-18 and SPS are fixed target experiments. At these configura-
tions the nucleons are stopped in the collision region, hence the baryon density is high
(ug = 200-500 MeV), which is named stopping regime. Some experimental hints of
QGP formation were observed in the 158 A GeV Pb-Pb collisions at the CERN SPS [14-18]
Then came collider mode, the Au-Au collision at /sy = 200 GeV at RHIC and the Pb-
Pb collision at m = 5.5 TeV at LHC allow to explore the QCD phase diagram in the

region of ug close to zero, which is named Bjorken regime. RHIC claims that QGP has
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been created in its Au-Au collision in 2004'°!. The research direction of ultra-relativistic
heavy ion collisions has then shifted to measuring quantitatively the QGP properties [20-2%!.
RHIC also conducts a beam energy scan and fixed-target program to study the QCD phase
structure at finite or high baryon chemical potential, in particular, to look for the QCD crit-
ical point. This is also the main goal for future heavy ion facilities at FAIR, NICA, J-PARC

and HIAF. This thesis will focus on the ultra high energy heavy ion collisions at the LHC.

t

/ / freeze out

hadrons — kinetic theory

gluons & quarks in eq. — ideal hydro

gluons & quarks out of eq. —s viscous hydro

strong fields — classical dynamics

<

incoming nuclei — CGCs

Figure 1.5 The main evolution stages of heavy ion collisions*’!

The space-time evolution of relativistic heavy ion collisions is a very complex process.
The main stages of a relativistic heavy ion collision in Bjorken scenario are shown in
Fig. 1.5:

» Before the collision, and in the center-of-mass frame, the two incoming nuclei be-
came disk-shaped due to longitudinal Lorentz contraction. These disks are full of
partons (mainly gluons) carrying only a small part of the parent nucleons momen-
tum but relatively large transverse momenta. These partons are weakly coupled
according to the asymptotic freedom of QCD, which is known as the color glass
condensate *4 (CGO).

¢ These two nuclei collide with each other at 7(= M) = 0 and the interactions
start developing. Hard processes, which have relatively large transferred momentum
(Q > 10 GeV), mainly occur in this stage. They occur faster due to uncertainty
principle. These processes will produce ‘hard particles’, such as heavy quarks.

e At 7 ~ 0.2 fm/c, corresponding to the ‘semi-hard’ processes (Q ~ 1 GeV). A
large number of the partons originally inside the colliding nuclei are released by
the collision. Most of the hadrons captured in the detectors are produced by the
fragmentation and hadronization of partons released at this stage. These partons

form arelatively dense medium, with an average energy density several times larger
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than that of normal nuclear matter.

* At 7 = 1 fm/c, the dense partonic matter rapidly approaches towards thermal equi-
librium. Such a rapid thermalization represents that the partons are strongly cou-
pled. The outcome of this thermalization process is QGP. When quarks and gluons
reach local thermal equilibrium, the partonic medium also evolves from viscous
fluid to ideal fluid. Then, QGP keeps expanding and cooling down. Finally, These
colored quarks and gluons are trapped in colorless hadrons by hadronization (z = 10
fm/c). This is the phase transition from QGP to hadron gas. Then the hot and rel-
atively dense hadron gas keeps expanding and cooling, with local equilibrium still
preserved.

* At 7 = 20 fm/c, the density of the hadron gas becomes so low that the interactions
between hadrons stop. The hadrons then undergo free streaming until they reach
the detectors. This transition from a fluid state to a system of free particles is called
freeze—out.

Although QGP cannot be directly detected in heavy ion collisions, the existence of
QGP stage during the evolution results in many novel experimental phenomena in the
final state of heavy ion collisions. They are usually called “QGP signatures”, such as
the strangeness enhancement represented by ratios of yields between strange hadrons and
non-strange hadrons, the significant energy loss of jet or heavy flavors in hot medium rep-
resented by nuclear modification factor, R 44, and the large collective motion represented

by the elliptic flow, v,(pr).

1.4 Strangeness enhancement

In 1982, J. Rafelski and B. Miiller predicted the enhancement of strange particles
production due to the creation of QGP in relativistic AA collisions 25261 for the following
reasons:

* In the case of pure hadron gas, strange quarks confined in hadrons and have to be
pair produced due to strangeness conservation. This makes the energy threshold
higher than 500 MeV.

* In contrast, in QGP, strange quarks are no longer bound in hadrons. Due to the
restoration of the chiral symmetry, the mass of strange quark decreases to 100
MeV/c?27 | which is lower than the QGP temperature.

* High density gluons and quarks in QGP lead to a large strangeness production via
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gluon fusion and light quarks annihilation, as shown in Fig. 1.6.
* The equilibration time of partonic reactions are much shorter than the time of
hadronic reactions, which results in easier production of multi-strange particles.
This phenomenon was first observed by the NA35, WA97, and NAS57 Collaborations in
the 1990s!1%28-2% and also confirmed at RHICY and LHC*!!. The hyperon-to-pion
ratios as a function of (Npart), for AA and pp collisions at LHC and RHIC energies, are
shown in Figure 1.7. These hyperon-to-pion ratio is higher in AA collisions than in pp
collisions, and increases with multiplicity. The slope of Q/x is slightly larger than that
of Z/x indicates that the more strange quarks contained in a hadron, the stronger its en-

hancement is. Therefore, the strangeness enhancement was once considered as a QGP

signature.
a)
k1\\‘ q,
\
k2 /,/ ~q,
k1 q,
k2 -4,
b)

Figure 1.6 The lowest order QCD diagrams for 53 production®!

1.5 Open heavy flavor in heavy ion collisions

Open heavy flavor hadrons, which contain at least one charm or beauty quark and
other lighter quarks (u, d, s) as constituents, are sensitive probes to characterizing QGP
for the following reasons !

* Since heavy quarks are so heavy that their thermal productions in QGP created at
LHC and RHIC energies are negligible. They originate almost entirely from the
initial collision and their productions can be calculated by perturbative QCD.

* The heavy quarks was produced earlier than the formation of QGP and experienced

the whole QGP evolution process. They scatters frequently with the dense partons in

9
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Hyperon-to-pion ratio
Il
f

B ALICE Pb-Pb at 2.76 TeV
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B ALICE pp at 900 GeV
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104 A ALICE Pb-Pb at 2.76 TeV

[ A ALICEppat7TeV
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Figure 1.7 Hyperon-to-pion ratios as a function of (N,,,), for AA and pp collisions at LHC and
RHIC energies!!

the hot medium, loses their energies, and even gets thermalized with QGP. Heavy
flavor hadrons can be produced through the recombination of heavy quarks with
light quarks during the QGP evolution till the QGP hadronization.

* The earlier produced heavy flavor hadrons can survive in the QGP phase due to the
larger binding energy compared with light hadrons. Because different heavy flavor
hadrons have different binding energies, their survival temperatures are different.
Therefore, heavy flavor hadrons carry QGP information of different stages. For
example, the b hadrons carry the information of the early stage of QGP, while the ¢

hadrons are more sensitive to the late stage of QGP.

1.5.1 Open heavy flavor production

Heavy quarks are produced in the hard scattering processes with large momentum
transfers, due to the large heavy quark masses (m, ~ 1.3 GeV/c?, my, ~ 4.2 GeV/c?). The

strong coupling constant is weak on these energy scales. The cross-section of the cc pair

10
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production in two-parton scatterings, 6., can be calculated by perturbative QCD. At
leading order (LO), There are two processes contributing to the heavy quarks pair produc-
tion in perturbative QCD: the quark-antiquark annihilation and the gluon fusion (331 Then
heavy quarks will undergo hadronization to form heavy flavor hadrons. Since hadroniza-
tion is a process with low energy scale and hence large coupling constant, it can only be
constrained by experimental data or calculated with phenomenological methods.

The production cross-section of open heavy flavor hadrons in pp collisions can be
obtained from the elementary heavy quark-antiquark production cross-section by applying

the factorisation theorem:

Oppotipx = D, f (% Q) ®F (%,Q)) ®0yc® D (2.Q7)  (16)
1Lj=9,9.¢

where f (xi, QZ) is the parton distribution function (PDF), describing the probabil-

ity to find a parton i with momentum fraction x; and momentum scale Q? in the col-
liding proton, as shown in Fig. 1.8, and D (zc, Qz) is the fragmentation function (FF),
which describes the probability that the charm quark fragments to the hadron H, car-
rying a fraction z_ of the original quark momentum. The PDFs are parametrised using
measurements of deep-inelastic scattering 34351 and obey the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations*®!. The FFs are supposed to be universal and can be

measured in ete” collisions (3738

. This is how the fragmentation mechanism of heavy
flavor hadronization is handled. Later, the heavy quark hadronization mechanism in QGP

medium will also be introduced.

P MMHT14 |NNLO, QZ‘ =10 GeV‘Q 19 MMHT14 NNLO, Q2% = 10* GeV?
of(z,Q) | 2/
1 . 1l ]
0.8 1 0.8 | _
0.6 | ] 0.6
0.4 : - 0.4 [ a
0.2 | ] 02 [ ]
(90001 O.I(‘JUi m&)ljﬂll o 0‘»1 - ‘Il 00.0001 0.601 (J.l(Jl | 71
z T

Figure 1.8 The parton distribution functions at 0% = 10GeV? and 0% = 10* GeV? (MMHT2014
NNLO), with associated 68% confidence-level uncertainty bands®'.
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In relativistic heavy ion collisions, the production of heavy flavor hadrons is more
complicated than that in pp collisions. It cannot be simply regarded as the superposition
of nucleon-nucleon collisions, because it is also affected by various cold nuclear matter

effects and hot nuclear matter effects.

1.5.2 Hot nuclear matter effects

The hard partons (including heavy quarks) produced in the early stage of relativistic
heavy ion collisions play an important role in studying the transport properties of QGP.
During these partons passing through QGP, the interactions between hard partons and the
colored medium by inelastic (gluon radiation) and elastic (scattering) processes which
lead to significant parton energy loss. What is observed is the softening of hadron pr
distributions (“jet quenching”). This phenomenon is predicted by Bjorken in the early
1980591 and was confirmed by RHIC (411 quantified by nuclear modification factor, Ry 4,

R -1 dNxa dopp
AA =
(Taa) dpy dpr

(1.7)

where (T, ) is the nuclear overlap function defined as (N )/ogg, oM is the

inel
inelastic nucleon—nucleon cross-section and (N, ) is the average number of binary
nucleon-nucleon collisions occurring in a single nucleus-nucleus (AA) collision, can be
calculated with the Glauber model*?!. If the AA collision were a simple superposition of
pp collisions, the ratio R, , would be unity.

Both the light and heavy quarks will lose energy when traversing QGP, but the mech-
anism is slightly different. As a recent result shown in Fig. 1.9, the averaged D meson
nuclear modification factors in central Pb-Pb collisions are measured by ALICE!*}. The
R, o of D mesons is larger than that of light-flavour particles at low pr. It should be noted
that due to the strong radial flow at LHC energy, the light-flavour particles can also be
produced from soft processes. However this soft component does not exist in D-meson
production. The Ry 5 of D mesons is similar to that of light-flavour particles at very large
P, because the effects from radial flow and the difference in the hadronisation mecha-
nisms become negligible there.

For quantitative understanding of the parton energy loss in high py. The Ry 5 and the
elliptic flow of prompt D mesons and pions are compared with three theoretical models
in Fig. 1.10. These models provide a fair description of both the R4, and the elliptic
flow v, of D mesons and pions at high py. This indicates that the dependence of radiative

energy loss on the colour charge and the quark mass of the hard-scattered partons has been

12
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properly handled in these calculations.

Figure 1.11 shows that the R, of high pr D mesons increases from central to pe-
ripheral collisions and eventually becomes close to unity in pPb collision, where QGP is
not expected to be formed due to small system size. The Ry, of pPb collision deviates
slightly from unity indicates that heavy flavor production and momentum distributions
may be influenced by cold nuclear matter (CNM) effects. Precisely measuring heavy fla-
vor production in pPb collisions can constrain the contribution of cold nuclear matter

effects and provide a baseline for studying the hot nuclear matter effects in AA collisions.

T Th ALICE vl <05
10 Iu  Pb-Pb, {s,,,=5.02 TeV 7
Centrality 0-10% ]
A P s e
= Average D°, D*, D** ]
i . .
0.8 . H— o Charged particles —_
o Jiw, 0-20%, |y| <0.9 .
0.6 0 Prompt Jiy, |y| < 2.4, CMS —
i Non-prompt Jhy, ly| < 2.4, CMS 7
: E
T T

30 40 50

P, (GeV/c)

Figure 1.9 The nuclar modification factors, R, ,, of prompt D-mesons in the 0-10% centrality
class compared to those of charged pions, charged particles, inclusive Jiy measured by ALICE,
and of prompt and non-prompt Jiy from CMS. This figure is taken from Ref. [43].

1.5.3 Cold nuclear matter effects

The CNM effects include initial state effects and final state effects, such as nu-
clear shadowing, parton saturation, multiple scattering of partons, nuclear absorption and
isospin effects. The CNM effects can be studied by measuring the nuclear modification
factor, R Pb- In addition, due to the asymmetry of the pPb collision, the forward-backward
production ratio (Rgg) can also be used to characterize CNM effects, which is defined as:

d*6 ppb (1> +|Yems/APrdYepms

C12GPbp(pT’ - | Yems |)/dedycms
where y,,,. is the rapidity in the nucleon-nucleon centre-of-mass system. Any deviation

(1.8)

RFB (pT’ ycms)

from unity of Rp, or Rpp suggests the existence of CNM effects.

13
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Figure 1.10 The R,, and the elliptic flow of prompt D mesons'*’! and pions as a function of

Dt and compared with predictions from the models based on pQCD calculations (CUJET3.1 441
DREENA-A™! SCET,, ;*%).

1.5.3.1 Nuclear parton distribution functions

The first CNM effect is related to the modifications of the parton distribution func-
tions in nuclei'*®! (nPDFs). In pPb collisions, one of the PDFs used in Eq. 1.6 should be
replaced by the nucleus PDF (nPDF):

fin (x’ QZ) — 82fp/Pb (x’ QZ) + 126fln/Pb (x’ Q2) (19)

1

/Pb
where f7”

o l.”/ Py are the PDFs of a bound proton (neutron). The deep inelastic scatter-

ing experiments have shown that the bound nucleon PDFs are not the same as those of a
free proton, which are modified in a complex way. This modification of PDFs is quantified

by the nuclear modification:

fp/Pb (X Qz)
fi (x.0%)

A typical form of such modifications is shown in Fig. 1.12. In this function, four different

R™® (x,0%) = (1.10)

behaviors of R})b (x, Qz) can be distinguished**!, which correspond to:
 For x > 0.8: This is the Fermi motion region. be (x, Qz) > 1. Partons in the
nucleus are more likely to have higher momentum fractions 511,

» For 0.3 < x < 0.8: This is the EMC region. R}.)b (x, Qz) < 1, reaches the min-

14
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Figure 1.11 The prompt D-meson R,, as a function of p; measured in Pb—Pb collisions at
v/Syn = 5.02 TeV in different centrality class (0-10%, 30-50% (431 60-80% 471 ), compared to

that in p—Pb collisions?!

imum value around 0.6. The origin of the EMC effect may be attributed to non-

perturbative effects!>?!.

* For 0.1 £ x < 0.3 : This is the anti-shadowing region. R}.)b (x, Qz) > 1. Itis
produced by the coherence of multiscattering quark nuclear processes (531,

e For x < 0.1: This is the shadowing region. R})b (x, Q2) < 1, increases with in-
creasing x and increases with increasing Q?. The usual explanation for the origin
of shadowing is multiple scattering, from which many models have been devel-
oped 34561

At LHC energies, most of the partons that produce heavy flavor come from the shad-
owing and anti-shadowing region.

Since nPDFs is non-perturbative phenomena, experimental inputs are crucial. So
the first task is to connect the final-state particle kinematics, rapidity y and transverse
momentum py, with the (x, 0%). ma2 — 2 process, the final particle momentum

fraction x is[so],

e’ (1.11)



CHAPTER 1 INTRODUCTION

T \II\II\‘ T T T T TT1T17T T — T T 11T T LB I:I
- EPPS21 ! !

<

- - antishadowing maximum :

T.o12f \ :

~= i :
7

shadowing o el > Ye

08 |

0’6 I - e O -.: Yo

04 L
10" 10° 0% . 10! 1

Figure 1.12 A typical modification of parton distribution functions in nucleus®”!

where mp = \/m? + p,zF is the transverse mass of the final particle. Equation 1.11 shows
that one can probe smaller x region in higher m and more forward y.

The latest EPPS2137! which is a global analysis of collinearly factorized nPDFs at
next-to-leading order in perturbative QCD, significantly improved the constraint on gluon
distributions at small and intermediate values of the momentum fraction x compare with
EPPS1618! | shown in the left panel of Fig. 1.13. Many recent measurements from pPb
collisions at LHC have been included for the constraint: 5 TeV dijet (CMS) 1591 and 5 Tev
D-meson (LHCDb) (601 a5 well as 8.16 TeV W* (CMS)[61]. The right panel of Fig. 1.13
shows the (x, Q%) regions probed by these data.

This thesis will use open charm mesons (D mesons : DY = ¢5, D% = cd) as a
probe to the CNM effects in \/m =8.16 TeV pPb collisions and compare with the QCD
calculations based on EPPS16°%, nCTEQ15!%?]. Because of the larger collision energy
and the forward coverage of the LHCb detector, the smaller x region can be reached in

this study, as shown in Fig. 1.14.

1.5.3.2 Parton saturation and color glass condensate

As shown in Fig. 1.8, the gluon density increases strongly at low values of x, which
implies a high gluon fusion probability. This leads to the break-down of perturbation QCD
even for a small coupling constant, by strong non-linear effects. Meanwhile, the partons
density cannot increase forever as x becomes smaller, otherwise it will cause the cross-

section of deep inelastic scattering at fixed Q? to increase to unacceptably large value. This
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Figure 1.13  (left) R}® (x, Q%) calculated by EPPS16 and EPPS21. (right) The data used in
EPPS21 displayed on the (x, Q%) plane.
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Figure 1.14 The (x, Q%) coverage of several experiments.

phenomenon is parton saturation!®®!. This phenomenon can be described by an effective
field theory, which called the color glass condensate 241 (CGC). This “color” represents
gluons carry color charges; “glass” represents gluons with small x are distributed ran-
domly on the nucleus transverse disk; “condensate” represents gluon density is very high
and saturated.

Figure 1.15 show the phase—diagram for QCD evolution. In the Bjorken limit,
which corresponds to the case of Q> — oat fixed x, the parton number increases but den-
sity decreases. The evolution of this process is described by DGLAP 1641 (Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi) equations. On the way to approaching Regge-Gribov
limit, corresponds to x—0 at fixed Q?, the gluon density in a proton rises very fast.

The evolution of this process is described by the BFKL [65] (Balitsky-Fadin-Kuraev-
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Lipatov) equation. When x becomes smaller, gluon recombination will prevent the
growth of gluon density until saturation. The evolution of this process is described
by the BK6¢] (Balitsky-Kovchegov) or JIMWLK (6] (Jalilian-Marian-Tancu-McLerran-
Weigert-Leonidov-Kovner) equations. Equation 1.12 gives the relationship between Q

and x when gluon is saturated,

02 « (1/x)*. (1.12)
Y =1In 1/x 4

Saturation

InQ(Y)=AY

@ Dilute system

BFKL
DGLAP
InAZ,, InQ?

Figure 1.15 The phase—diagram for QCD evolution®®!.

Proton-lead collisions which are collisions between a dilute nucleon and dense nu-
cleons can be studied in the CGC framework. For lead nucleus (A ~ 200) at LHC energy
(x ~ 10_4), the saturation momentum Q? is about 2-4 GeV? as shown in Fig. 1.16. The
CGC successfully predict a suppression of D mesons production in forward pPb collisions

[69]

relative to pp'””, supporting a strong shadowing at very low x.

1.5.3.3 Cronin effect

Another important CNM effect that contributes to the modification of the D mesons
production in pPb collisions compared to that in pp collisions is the Cronin enhancement,
which was first observed in the fixed-target proton-nucleus (H,, D,, Be, Ti and W) col-
lision at Fermilab!”!. Tt describes an enhancement of the inclusive hadron production

at intermediate pr (2 < ppr < 6GeV/c), eventually lead to an increase of the nuclear
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Color Glass Condensate

Fi%g]re 1.16 Saturation momentum as a function of momentum fraction x and atomic number
A
modification factor above unity.

The interpretation of this effect is based on the multiple interactions in the large x re-
gion and partons re-scattering [72-73] . These interactions transfer transverse momentum to
the partons, which led to p broadening for the hadrons produced in hard scatterings, such
as heavy flavor hadrons. Relevant theoretical calculations!”* have successfully explained

the open heavy flavor enhancement in backward pA collisions at LHC 1751 and RHIC!7®!,

1.5.4 Heavy flavor hadronisation

There are two kinds of hadronisation mechanisms in medium. One is the heavy flavor
hadronisation via fragmentation into lower-momentum hadrons, the other is that they can
recombine with other quarks to form higher-momentum hadrons.

In ep/ee collisions, the clean environment allows to study the fragmentation func-
tions of heavy flavor. The fragmentation fractions represent the probabilities of a quark
to hadronize into a given hadron. Figure 1.17 shows charm quark fragmentation fraction
in different experiments. The fragmentation fraction in ep and ee are compatible within
uncertainties, but different from the ones measured in pp. This is also an important evi-

dence that the Parton-to-hadron fragmentation universality hypothesis (the independence
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of the collision system) is invalid.
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Figure 1.17 Charm quark fragmentation into charm hadrons measured in different collisions and
energies!’”!.

In QGP medium, the high pt heavy flavor quark hadronisation is still dominated by
fragmentation mechanism. But the low pr heavy flavor quarks can be hadronized through
the recombination with low momentum light quarks which is copius in QGP!"83! Due
to the larger binding energy, the heavy flavor quarks will preferentially recombine with s

quarks instead of u, d quarks [82]

. This leads to the enhancement of strange heavy flavor
hadrons compared with non-strange heavy flavor hadrons. The strange charm meson D is
a sensitive probe of the recombination (coalescence) mechanism. If recombination mech-
anism contributes to its production, the D}/D* production ratio is expected to be larger
in heavy ion collisions compared to pp collisions, also due to the enhanced strangeness
production in QGP.

Recently, the enhancement of D;"/D0 was observed in PbPb collisions at y/syx =
5.02 TeV at ALICE!® and in AuAu collisions at /sy = 200 GeV at STAR!B4 . Fig-
ure 1.18 shows the results of ALICE. The top row shows the Dj/DO yield ratios in 0—10%
(left panel) and 30-50% (middle panel) centrality regions compared to pp collision at the
same energy %! (right panel) and to theoretical calculations. The D;“/D0 ratios in PbPb
collisions divided by those results in pp collisions are shown in the bottom row of the same
figure. In the 2 < py < 8GeV/c region, the D;"/D0 ratios in PbPb collisions are higher
than those in pp collisions (2.3¢ for 0—10% centrality and 2.4¢ for 30-50% centrality).

This result is also consistent with the previous 4/syx = 5.02 TeV PbPb results of AL-
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ICE*"!. Figure 1.19 shows the results of STAR. The enhancement of the DF/D° ratio
was also observed in /sy = 200 GeV AuAu collisions®*! . These results indicate that
the recombination mechanism plays an important role in charm hadronization in heavy

ion collisions.
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Figure 1.18 Top: D;/D° ratios as a function of py in 0-10% (left panel) and 30-50% (middle
panel) centrality classes in PbPb collisions at 4/s, , = 5.02 TeV and in pp collisions (right panel)

at the same centre-of-mass energy. Bottom: D;r/D0 ratios in PbPb collisions divided by those in
pp collisions, in 0—10% (left panel) and 30-50% (right panel) centrality classes, compared with
theoretical calculations %!,

1.6 Strangeness enhancement in small system

In recent years, some QGP signatures that were originally observed in heavy ion col-
lisions have also been seen in high-multiplicity pp or pA collisions (also known as small

1871 and

system). In 2017, strangeness enhancement was observed in high-multiplicity pp
P88 collisions. As shown in Fig. 1.20, the ratio of the yields of (multi-)strange
hadrons to those of non-strange hadrons (pions) increases significantly with the event
charged particle multiplicity in small systems, and gradually approaches the values in
PbPb collisions, where a QGP is formed. This enhancement are more pronounced for
multi-strange hadrons which have larger strangeness contents. Although the origin of
the strangeness enhancement in small system is still under debate, this may indicate that

a common underlying physics mechanism which gradually compensates the strangeness

suppression in fragmentation.
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Figure 1.19 Top: D;'/DO ratios as a function of py in various centrality classes in AuAu collisions
at /syn = 200 GeV ¥ compared to a PYTHIA simulation for pp collisions at the same energy.

Bottom: STAR results of D/D° ratios as a function of py in AuAu collisions at 4/syy = 200
GeV 34, compared to ALICE results in PbPb!* and pp®® collisions at /sy = 5.02 TeV, as

well as to the PYTHIA simulations for pp collisions at the same energies.
Next, several theoretical models to understand strangeness enhancement in small sys-
tem are introduced. The first one is the dynamical core—corona initialisation (DCCI)

model ?3-97]

. The (multi) strange over non-strange ratio that gradually increases in the
small system and eventually saturates into the large system is interpreted as a continuous
change of the hadron production mechanism from string fragmentation to the QGP for-
mation. The DCCI model combines two mechanisms through the core-corona structure.
The ‘core’ hadronization from QGP, which represents the fluids under local thermal and
chemical equilibrium. While the ‘corona’ hadronization by string fragmentation, which

represents the system composed of non-equilibrated partons traversing the fluids or the
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Figure 1.20 The ratios of strange hadron yields to pions as a function of multiplicity (py inte-
grated) from pp, pPb and PbPb collisions at LHC energies. The data is compared with theoretical
calculations 2! This figure is taken from Ref. [87].

vacuum. The fraction of core-corona represents the evolution from small systems to large
systems. This model successfully reproduces the strangeness enhancement in small sys-
tems as shown in Fig. 1.21 and strongly indicate the formation of proton-sized droplets of
QGP in high multiplicity small colliding systems.

96'97], which does not assume a

[98-99]

The other attempt is the rope hadronization model!
formation of QGP. This model is based on the Lund string model where the confined
colour field between a g pair is modelled as a semi-classical string with tension k¥ = 1

GeV/fm. The string will break into smaller pieces and form a new pair ¢4, when the energy
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Figure 1.21 Strange hadrons over non-strange hadrons yield ratios as a function of charged par-
ticle multiplicity in different collision systems !

is sufficient. The probability of string breaking follows the Schwinger equation %%

2
Tm

AP cexp <——L> (1.13)
dpJ_ K

The above equation shows that the production of s quarks is suppressed compared with
u, d quarks due to a larger mass threshold. But this is limited to the strings fragment
independently with each other. When the quark pairs density is high enough, the overlap-
ping colored strings act coherently to form a stronger color rope as shown in Fig. 1.22.
This color rope would then hadronize with a higher effective string tension x which leads
to strange hadrons enhancement. In 2018, the rope hadronization model is embedded to

PYTHIA8"! | Angantyr!'%? and reproduced enhanced production of strange and multi-
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strange hadrons in small system as shown in Fig. 1.23.

0.8
0.6
0.4

0.2

0

b [fm]

0.2
0.4

0.6

0.8

0

[

-1 -10 -8 -6 -4

bx [fm] v

Figure 1.22 Strings overlap with each other in a simulated pp collisions. This figure is taken
from Ref. [97].

In the future, the measurement of strangeness enhancement in small system will focus
on very high-multiplicity events in pp collision and check if multi-strange hadron to pion
ratios will reach saturation (towards Pb-Pb values) or continue to increase.

In view of the fact that s quarks can be copiously produced in small systems (pp, pPb),
the strangeness enhancement in hadronisation of heavy flavor quarks is also expected to
be observed. Indeed, the recent LHCb measurement on Bg/B0 ratios at low pr (pt < 6
GeV/c) in pp collisions seems hint an increasing trend with the event multiplicity, as shown
in Fig. 1.241%4 While the data shows no significant multiplicity dependence at higher
pr ranges. This is qualitatively consistent with the emergence of quark coalescence as
an additional hadronization mechanism for heavy quarks in high-multiplicity collisions.
Relevant measurements have also been done from ALICE, but their D;’/D+ ratios in pPb
collisions do not show a significant dependence on charged-particle multiplicity due to

the limitation of statistics, as shown in Fig. 1.25 48]

1.7 Thesis scope

This thesis will measure the double differential cross-sections of the prompt DY and
D™ produced in pPb collisions at 1/s y y = 8.16 TeV taken by the LHCb detector, covering
the forward rapidity range of 1.5 < y < 4.0 and the backward rapidity range of —5.0 <
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Figure 1.23 Ratio of yield of strange hadrons to pions as a function of multiplicity at mid-rapidity
from PYTHIAS with and without rope hadronization, and compared to ALICE data!!%!

y < =2.5, and the transverse momentum range of 1 < pr < 13GeV/c. Based on these
results, the nuclear modification factor and the forward-backward ratio will be calculated
and compared with theoretical calculations, and the influence of cold nuclear matter effects
on the open charm meson production will be discussed.

In addition, the D/D* cross-section ratio will be measured as a function of event
multiplicity in different transverse momentum intervals in pPb collisions. The contribu-
tion of recombination mechanism in different py intervals will be studied, in order to find
whether there is strangeness enhancement in charm hadronisation in small system. Al-
though it will not end the debate on whether QGP is formed in small systems, this thesis
aims to provide a more complete and clear experimental perspective for answering this

question.
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CHAPTER 2 THE LHCb EXPERIMENT

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular hadron accelerator and collider. This
machine is installed in the 26.7 km tunnel previously used for the Large Electron Positron
Collider (LEP). It is located on the Swiss French border and lies between 45 m and 170
m below the surface. A more detailed description can be found here!!%!

The LHC aims to perform hadronic collisions at very high energies. A schematic
layout of the LHC is shown in Fig. 2.1. In the standard configuration, the proton beam
is boosted through LINear ACcelerator 4 (LINAC 4), Proton Synchrotron Booster (PSB),
Proton Synchrotron (PS) and Super Proton Synchrotron (SPS) sequentially. The beam
energy reaches 450GeV at SPS. Then the beams are injected into the separated pipes of
the LHC in opposite directions. The beams are guided by the superconducting magnets
and boosted by the radiofrequency cavities to reach TeV energy level. In order to produce
a magnetic field around 8.33 T, these magnets are put inside superfluid helium at 1.9 K.
In addition, ultra-high vacuum should also be maintained in the pipes where the beams
travel. The maximum laboratory energy per proton is 7 TeV. The centre of mass energy
of the colliding proton pairs is up to 14 TeV. Besides protons, the LHC can also operate
with beams of heavy ions, such as lead. The acceleration process of lead is similar to the
protons. Except that they started at LINAC 3 and then injected at the Low Energy Ion
Ring (LEIR) and then to the PS. This allows us to combine a proton beam with a lead
beam to perform proton-lead collisions.

The proton or ions in the beams are distributed in small packages, named bunches,
and are organised along the LHC pipes. There are about 2800 bunches in each beam, but
not all the bunches are filled with proton or ions (empty bunches). The plan of the filled
or empty bunches inside the LHC is called as filling scheme. During the four-year Run
2 period, the integrated luminosity is about 150 fb~!, which is much higher than Run 1.
In the proton run, the bunch spacing can be up to 25 ns, with ~ 10! protons per bunch,
the peak instantaneous luminosity is about 10** cm™2 s™!. In the lead run, the bunch
spacing is 75 ns, with ~ 107 jons per bunch, the peak instantaneous luminosity is about
107 em™2 571,

There are four large experiments located in LHC: ATLAS (A Toroidal LHC Appa-
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ratus), CMS (Compact Muon Solenoid), ALICE (A Large Ion Collider Experiment) and
LHCb (Large Hadron Collider beauty).

The CERN accelerator complex
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Figure 2.1 ~Schematic layout of the CERN accelerator complex %,

2.2 The LHCb experiment

The original physics goals of LHCb are to study CP violation, rare decays of beauty
and charm hadrons, flavour symmetry breaking and to search for new particles. In these
fields, many important results have been made, such as the discovery of pentaquark 7!,

1081 ¢ the recent evidence for

the first observation of CP violation in the charm decays
the breaking of lepton universality in beauty-quark decays (1091, Additionally, LHCb has
also been involved in some interesting physics programs, such as the study of heavy ion
collisions, which is also the main topic of this thesis.

The LHCD detector is a single-arm forward spectrometer. “Single-arm” means that
most devices are located on one side of the collision point. “Forward” refers to the ge-
ometric acceptance of the detector. The angular coverage is from 10 to 300 mrad in the

horizontal plane and from 10 to 250 mrad in the vertical plane without considering mag-
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netic field bending. The LHCb forward coverage is significantly different from other ex-
periments at the LHC. The purpose of this design is that the bb pair has higher density in
the forward. The production process of bb pair in pp collision is simulated by PYTHIAS,
including qq — bb, gg — bb, qq — bbg( where q # b), bb — bb, gg — bbg processes.
The five flavors (u, d, s, ¢, b) are considered in parton distribution functions. Figure 2.2

shows that most bb pair (27%) are distributed in the narrow cone angle.

LHCb MC
{s =14 TeV

0, [rad] ™2

3n/4 /2

T 6, [rad]

Figure 2.2  Angular distribution of bb pair production in pp collisions at \/_ = 14TeVI101,

In order to reconstruct B—hadrons, the detector needs to have good vertex resolu-
tion, for primary vertices (PV) where B—hadrons are produced and secondary vertices
(SV) where B—hadrons decay. The mean flight distance of B—hadrons are ~ 10 mm.
In addition, a good resolution of mass, lifetime, angular variables are also required. The
sub-detectors of LHCDb are designed to achieve these goals.

Figure 2.3 shows an overview of the LHCb in Run 1&2, containing the definition of
coordinate system (x-y-z axis). The sub-detectors from left to right are: VErtex LOcator
(VELO), Ring Imaging Cherenkov detector 1 (RICHI1), Tracker Turicensis (TT), mag-
net, three tracking stations (T1, T2, T3), RICH2, muon station (M1), Electromagnetic
Calorimeter (ECAL) and Hadronic Calorimeter (HCAL), and rest of the muon system
stations (M2, M3, M4 and M5).
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Figure 2.3 An overview of the LHCb detector in Run 1&2!1!!!,

2.2.1 Tracking system

The main components of LHCb tracking are silicon micro-strip detectors and straw
tube drift chambers, including the following sub-detectors : VELO, TT (Tracker Turi-
censis), IT (Inner Tracker) and OT (Outer Tracker). It provides a high-precision recon-
struction of charged tracks and interaction vertices. Combined with dipole magnets, the

tracking system can also provide precise measurement of the particle momentum.

2.2.1.1 Vertex locator

The Vertex Locator (VELO) is a silicon microstrip detector, located at most upstream
of the detector, surrounding the beam collision region. The VELO aims to accurately
measure the track of charged particles. These tracks can be used to reconstruct primary
vertex and secondary vertex. The high tracking precision also allows accurate measure-
ments of the lifetimes and the impact parameters of particles. More than this, these tracks
can be used as seeds for the downstream detector to reconstruct the complete track.

The VELO consists of 21 silicon modules. Each module contains two semicircular
microstrips silicon sensors, known as R and ¢ sensors. These two sensors with different
structures are used to measure the two-dimensional hit position. The R sensor records
the radial impact position, and the ¢ sensor provides azimuth information. These silicon
modules are arranged along the beam as shown in Fig. 2.4. The radius of each sensor is

about 42 mm and the thickness is around 300 pm. For easy operation and modification,
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these sensors are placed in two retractable halves. When testing beam, the beam focusing
and other parameters are not very stable. To avoid interference to the beam and radiation
damage to the sensor, the two VELO halves are separated. After the beam focusing is
stable, the two VELO halves are closed to cover full azimuthal angular. At this time, the
sensors are only 7 mm away from the LHC beams. The geometry of VELO ensures that

tracks within the LHCb acceptance can leave footprints on it.

‘ ‘: ‘: ‘ 15 mrad

=
el i - i E 5:/ \
TTTTTITTT] | g %/

im

UPSTREAM

C SIDE

Figure 2.4 Top left: the LHCb VELO vacuum tank. Top right: the silicon sensors and readout
hybrids. Bottom: the VELO sensors along z and cross-section of a VELO sensor in the xy plane.
The detector is shown in its closed position!!?!.

A typical efficiency for VELO track is 98% as shown in the left of Fig. 2.5. On the
basis of VELO track, we can reconstruct PV. The resolution of PV is 10 ~ 35 pm in the
transverse plane and 50 ~ 300 pm along the beam axis, depending on the number of tracks
used for PV reconstruction. The impact parameter (IP), which is the distance between a
track and its closest PV, is often used to separate particle produced in the PV and those
decayed from beauty or charm. The IP resolution as a function of track momentum is
shown in the right of Fig. 2.5. The above discussion is based on pp collisions. For proton-
lead configuration, the detector occupancy reaches higher values, so the performance is

expected to decline.

2.2.1.2 Magnet dipole

LHCb dipole magnets produce an integrated magnetic field of about 4 Tm. The total
weight of the dipole is 1600 tons and it operates at room temperature. The main magnetic

field is along the y-axis, and the non-uniformity is about 1%. It can bend charged particles
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Figure 2.5 Left: VELO tracking efficiency in data and simulation from 2011 as a function of the
number of reconstructed tracks in the event. Right: IP resolution as a function of momentum!!!?!
on the x-z plane, and accurately measure the momentum of charged particles in combina-
tion with the upstream and downstream track systems. Low momentum charged particles
will deviate greatly when passing through the magnetic field and will not be accepted by
downstream detectors. Therefore, only detectors placed upstream of the dipoles can be
used to find them. Most high momentum particles are bent by magnets and can be de-
tected in downstream trackers. The relative accuracy of measurement of momentum and
magnetic field strength is 0.5% and 0.01% respectively. In order to avoid systematic un-
certainty caused by asymmetry of magnetic field, The magnetic field polarity is reversed

frequently during data-taking.

0.75 [

0 200 400 600 800 1000
z (cm)

Figure 2.6 Left: the scheme of the LHCb dipole magnet. Right: the magnetic field intensity as
a function of z[11*!

2.2.1.3 Silicon Tracker

The silicon tracker consists of the Tracker Turicensis (TT) and the Inner Tracker (IT).

Both TT and IT use silicon microstrip sensors.
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The TT is placed at the upstream of the magnet. It is made up of four detection
layers with an x-u-v-x arrangements. Each layer is composed of many sensor units. The
sensor unit is 9.64 cm wide, 9.44 cm long and 500 pm thick. There is an angle in the
sensor arrangement direction between layers to ensure that 3D information of hit can be
reconstructed. The first and last layers (x layers) are vertical, the middle two layers (v and v
layers) are rotated with an angle of —5° and 5° respectively. A typical TT hit reconstruction
efficiency is 99.7%, and the resolution is about 50 pm. A layout of the v-layer of the TT

detector is shown in Fig. 2.7.
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Figure 2.7 A layout of the third TT detection layer!'!®!.

The IT is next to the magnet and located downstream, is part of T stations. It is
made up of four detector boxes that are arranged around the beam pipe. Each detector box
contains four detection layers and each detection layer consists of seven detector modules
as shown in Fig. 2.8. A typical IT hit reconstruction efficiency is 99.8%, and the resolution

is about 50 pm.

2.2.1.4 Outer tracker

The OT is a drift-time detector, covers the largest fraction in T stations (including T1,

T2 and T3), designed to track charged particles and accurately measure their momentum.
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Figure 2.8 A layout of IT detector!!!*!,

It is composed of two staggered layers straw-tube drift chambers and is filled with mix-
ture gas of argon (70%), carbon dioxide (28.5%) and oxygen (1.5%) as shown in Fig. 2.9.
Charged particles passing the straw-tubes will ionise the gas along their track. The ioni-
sation electrons will drift to the wire located at the centre of the straw. The drift time is
proportional to the distance of the particle track to the wire. A typical OT hit reconstruc-

tion efficiency is 99.3%, and the resolution is about 200 pm.
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Figure 2.9 A layout of the OT detector!!'¥!.

2.2.1.5 Track reconstruction

These sub-detectors constitute the LHCDb track system, which collect hits and combine
them into tracks in different ways. According to these different ways, tracks are classi-

fied into several types: Long tracks, Upstream tracks, Downstream tracks, VELO tracks,
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T tracks as shown in Fig. 2.10.

* VELO tracks, which only have hits in the VELO and will not leave hits in TT. Some
VELO tracks can even point backward (backward tracks).

e Upstream tracks, which only have hits in the VELO and TT. These tracks usually
have low momentum, so they fly out of the detector after being deflected by the
magnetic field.

¢ T tracks, which have hits in the T stations.

¢ Downstream tracks, which have hits in TT and the T stations. Since these tracks
have no VELO hits, they may be long-lived particles that decay after flying out of
the VELO, such as K? and A.

* Long tracks, which have hits in the VELO and the T stations. It may also have hits
in TT. It has the best position and momentum resolution, so it is widely used in
physical analysis.

If the particles are reconstructed into different track types multiple times, only the
tracks that are most suitable for physical analysis are retained. Therefore, the long tracks
has priority over any other track type, the upstream tracks has priority over the VELO
tracks, and the downstream track has priority over the T tracks.

The reconstruction of long tracks begins with the search of VELO tracks. The advan-
tage of this is that there is no magnetic field in VELO, which forms straight tracks. The
two algorithms promote these VELO tracks to long tracks. The first algorithm is called
forward tracking, which combines the VELO tracks with the hits of three T stations. For a
given VELO track and a single hit at one of the T stations, the momentum is fixed. If other
T stations hits can match the momentum direction, we can determine the long tracks. In
the second algorithm, it is called track matching. The VELO tracks is combined with the
T tracks to match long tracks. The T tracks and VELO tracks are found by an indepen-
dent track search algorithm. If hits compatible with a long tracks are found in TT, they
will be added to the long tracks to improve the momentum resolution and serve as the
identification of the fake tracks.

In this thesis, the open charm meson decays are reconstructed using three long tracks.
When studying the multiplicity dependence of open charm meson productions, VELO

tracks are used to characterize the event multiplicity.
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Figure 2.10 An overview of the various track types and y-axis magnetic field intensity as a func-
tion of the z coordinate!'!!1.

2.2.2 Particle identification system

Particle identification in LHCb consists of the RICH system, the calorimeter system
and the muon system. All the information from these systems are integrated in a combined
likelihood to maximise the identification efficiency. The particles that can be identified
are: y,e, u, n%, KT and pp. The efficiency fluctuates between 90 — 100%. In this the-
sis, the efficiencies are calculated using calibration samples, since the LHCb simulation

estimates those quantities poorly.

2.2.2.1 RICH system

The RICH system consists of RICH 1 and RICH 2 as shown in Fig. 2.11. The primary
purpose of the RICH system is the identification of charged hadrons (z, K, p), and assist in
identification of charged leptons (e, u). RICH works by producing Cherenkov light rings
when particles pass through a radiator gas with a specific refractive index n. By measur-
ing the Cherenkov angle 6., we can obtain the velocity of particles through cosf, = #
Combined with the momentum measured by the tracking system, we can get the particle
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mass.

The RICH 1 contains aerogel and fluorobutane (C4F,) gas radiators, covering the full
LHCb acceptance of 25-300 mrad and low momentum region 1-60 GeV/c. The RICH 2
contains (CF,) gas radiators, covering the limited LHCb acceptance of 15-120 mrad and
high momentum region. The Cherenkov angle as function of the particle momentum for

each radiator are shown in Fig. 2.12.
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Figure 2.11  An overview of the RICH 1 (left) & 2 (right) detectors!!!3!
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2.2.2.2 Calorimeter system

The calorimeter system has four parts, namely Scintillating Pad Detector (SPD),
Pre-Shower Detector (PrS), Electromagnetic Calorimeter (ECal) and Hadron Calorimeter
(HCal). All these detectors are designed with a higher granularity in the inner region,
and a lower granularity in the outer region. An overview of the LHCb calorimeter system
is shown in Fig. 2.13. The primary purpose of the calorimeters is to identify photons,
electrons and z° candidates, and provides necessary inputs for hardware trigger LO by
measuring the deposited transverse energy.

SPD and PrS are two walls of scintillator pads separated by a 15mm lead. The SPD
measures charged track multiplicity and identify electrons and photons. Then, the energy
is measured in a PrS cell. ECAL is placed next to the PrS and is designed to measure
transverse energy. The total depth of 42 cm corresponds to 25 electron radiation lengths to
ensure the full containment of the high energy electromagnetic showers and to get better
energy and transverse energy resolution. The ECAL energy is also used to determine
centrality in heavy ions collisions. HCAL is placed next to the ECAL, and measure the
transverse energy of hadrons. In addition, the thickness of 5.6 interaction lengths also

containing most hadronic showers before the muon chambers.

2.2.2.3 Muon system

The muon system is composed of five stations M1-MS5 placed along the beam pipe.
The M1 station is located downstream the RICH2 station to improve the transverse mo-
mentum resolution in the trigger. The M2-MS5 are located downstream the calorimeters
and are interleaved with iron absorbers to select penetrating muons. A gas electron mul-
tiplier (GEM) is used in the inner region of station M1 due to particle rate exceeds safety
limits for ageing. The rest uses multi-wire proportional chambers (MWPC). The layout
of the muon stations is shown in Fig. 2.14.

Tracks reconstructed in the tracking system are extrapolated to the muon chambers,
and if there are associated hits in all the five stations, the track is identified as a muon

candidate. This is very critical for studying of quarkonia, rare decays and CP violation.

2.2.2.4 Combined particle identification performance

The PID information obtained separately from these sub-detectors is combined to

provide more powerful variables. Two different methods are used. In the first method, a
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Figure 2.13  An overview of the calorimeter system!'!>!

combined delta log likelihood is constructed to describe the relative possibility of a PID
hypothesis to particle X, compared with a pion hypothesis. The likelihood information
from each sub-system is simply added linearly. In the second method, a multivariate tech-

nique is used to consider correlations between the detector systems.

2.2.3 Trigger system

The nominal bunch crossing frequency of pp (pPb) collisions in the LHC is 40 MHz
(2MHz). It greatly exceeds the limitation of bandwidth and storage capacity of LHCb, so
it needs to focus on the reconstruction of particles containing ¢ and b quarks. The LHCb
trigger consists of two levels: hardware trigger (L0O) and High Level software stage Trigger
(HLT). The final event rate is reduced to 10kHz. The trigger data flow in Run 2 is shown
in Fig. 2.15.

The LO trigger is based on the calorimeter system and muon system. The LO-
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calorimeter trigger system use transverse energy deposited by particles in SPD, PS, ECAL
and HCAL. The transverse energy of each candidate is compared to the threshold and
events containing at least one candidate above threshold fire this trigger. The LO-muon
system looks for straight-line tracks in the five muon stations. The track direction is used to
estimate the transverse momentum of a muon candidate. This trigger is fired if the largest
transverse momentum above the threshold or the largest and second largest transverse mo-
mentum above the threshold. Besides, A maximum number of SPD hits is required in most
LO trigger lines to reduce the complexity of events. LO trigger has a fixed 4 ps delay to
decide whether to keep the event.

The HLT is a software trigger performed by Event Filter Farm (EFF). It is divided
into HLT1 and HLT2. In HLTI, partial event reconstruction is performed. Events se-
lected by the HLT1 can be used to align and calibrate the detector. In HLT?2, the event
rate is sufficiently low to allow full event reconstruction. This allows us to more finely
select the desired physics events. In Run 2, HLT2 provides two different data streams for
physical analysis, including full stream, which saves the complete original information of
the selected event, and turbo stream, which saves some information of the selected event
to reduce the size of event and allow a higher event rate. This thesis is based on data in

the turbo stream.
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The HLT is configured by a 32 bit value, named Trigger Configuration Key (TCK).

Each run has one unique TCK that defines the sequence of algorithms and selections.

LHCDb Trigger Run 2
[ Bunch crossing rate ]

40 MHz

L0 Hardware trigger )
high pr/Er signatures

v 1 MHz
[ High Level Trigger 1 |

partial event reconstruction

110kHz

Software trigger

[ High Level Trigger 2 ]

full event reconstruction

! 12.5kHz

Figure 2.15 An overview of the LHCb trigger system in Run 21161,

2.3 Datasets
2.3.1 Proton-lead data

The data samples used for this analysis are proton-lead collisions, collected by LHCb
detector during 2016. This dataset corresponds to LHC fills in the range of [5519,5573].
There are approximately 540 lead bunches and 684 proton bunches in total, and 260 collid-
ing bunches per fill for LHCb. During online data taking, the status of the detector/trigger
needs to be monitored at all times. Figure 2.16 shows some typical hadron signals ob-
tained with the LHCb high level triggers in a LHC proton-lead fill, indicating the excellent
detector and HLT performance.

In order to access both the proton and the lead fragmentation regions, data were taken
in two different configurations. In the forward configuration, or pPb, the proton beam
points towards the LHCb arm, whereas in the backward configuration, or Pbp, the lead

beam does. The integrated luminosity of forward and backward is 12.18+0.32 nb™! and
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Figure 2.16 Some typical hadron signals obtained with LHCb high level triggers in a LHC
proton-lead fill in 2016.

18.57+0.46 nb~! respectively. Figure 2.17 shows the increase of integrated luminosity
as a function of time. For both configurations, the polarity of the magnet was pointing
downwards (MagDown).

The energy per nucleon of the lead beam and the proton beam was 2.56 TeV
and 6.50 TeV, respectively, which means an energy in the nucleon-nucleon centre-of-
mass system of \/m = 8.16 TeV. The centre-of-mass frame does not coincide with
the laboratory frame due to the asymmetry of the collision, with a constant boost of
oy = 0.51og(Apy/Zp,) = 0.465 in the direction of the proton beam. The rapidity cov-
erage in the centre-of-mass system is [1.5, 4] in the forward configuration and [-5.0, —2.5]

in the backward configuration. The forward-backward production ratio Rgg(pr,y) =
&6,pp(pr.+|y/dprdy
oy, (pr.~|yD)/dprdy
pp cross-section at the same energy. This is a unique measurement of the LHCb detector
[117]

can be measured in a common |y| range of [2.5, 4], independently of the

for open heavy flavor hadrons

In 2016 proton-lead data taking, the LO TCKs are 0x1621 and 0x1622. These
L0 TCKs reduce the event rate to 400kHz. The HLT1 TCKs are 0x11431621 and
0x11441621. The latter was used in the last part of the backward run (fills from 5562
to 5573) and has some tunings for the high multiplicity lines. These HLT1 TCKs fur-
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Figure 2.17 LHCD integrated luminosity versus time during the 8.16 TeV pPb data-taking in
2016.

ther reduce the event rate to 10-20kHz. For HLT2, most of the data have been taken
with the TCK 0x21461621, where the HIt2HighVeloMultTurbo line is prescaled by a
factor of 0.01. The very early runs of forward configuration have been taken with the
HLT2 TCK 0x21421621, where the main difference is that the HIt2HighVeloMultTurbo
line was not prescaled and was not requesting a single PV. In fill 5523 (pPb) and fills
5562-5573 (Pbp), the data was processed with the HLT2 TCK 0x21451621 where the
Hit2HighVeloMultTurbo prescale factor is 1. These two HLT2 TCKs allow to collect
more high multiplicity events. In these TCKs, the HLT2 is almost pass through and keeps
10-20 kHz event rate from HLT1!M18) A typical high multiplicity proton-lead event dis-

play is shown in Fig. 2.18. Particles identified as pions (orange), kaons (red), protons
[119]

(magenta), electrons (blue) or muons (green) are shown in different colours
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2.3.2 LHCDb simulation and proton-lead Monte Carlo data

Monte Carlo (MC) simulation plays an important role in high energy physics experi-
ments. Before the experiment, it can be used to develop trigger, reconstruction and physics
analysis programs. It can also be used to evaluate the radiation environment and its impact
on aging maintenance during the experiment. After the experiment, it can provide effi-
ciency, purity values for physics analysis. The LHCb Monte Carlo simulation is based on
a collection of different software packages, each specialized in a given domain, working

together as shown in Fig. 2.19.

Trigger Reconstruction Stripping
Moore Brunel DaVinci
: 4 ! ~
I :":Reremnstmninn .‘.-"‘l.'e‘estripping
Particle simulation Digitisation (" storage ) [ storage | ( Storage )
—_—
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Gauss Boole \ 1) \. J, N )
Generation Decay Propagation . .
Pythia/POWHEG/... EvtGen Geant4 AnalySIS Ntuple maklng
ROOT/Numpy/... DaVvinci

Figure 2.19 LHCD data processing applications and data flow.

LHCb simulation starts with the Gauss framework 2%, Gauss is responsible for de-
scribing how the collision occurred (pp, pPb...). Firstly, Beam Tool is used to set the
particle type and particle energy of the collision beam. Then, Pile-Up Tool determines the
number of interactions per event. Followed by the generator, it is used to describe the spe-
cific physical process of collision, and contains many physical models. The proton-proton
collisions are usually generated with the PYTHIA8!!®! | while proton-ion collisions are
usually generated with EPOS-LHC (1211 Then, these generated hadrons are transferred to
EvtGen!'??! to decay. LHCb users can use DecFiles!'??! to customise the particle decay,
such as custom phase space and correct angular correlations. Another important function
of DecFiles is to describe only the events that contain specific particles. This will greatly
improve the simulation efficiency for some rare decays. Finally, the simulation of the
physical process experienced by particles when passing through the detector is delegated
to the GEANT41241 | The hits, tracks and other information fed back from GEANT4 are
recorded as Monte Carlo truth. There are two types Gauss output: generator-only mode
(.gen format) and full simulation mode (.sim format).

The output of Gauss is passed to Boole framework 2. Boole provides the response

of the LHCb detector and digitization to the simulated physics events. Then, the output
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can be triggered by Moore framework as real data taking. And then Brunel framework
is responsible for the event reconstruction. The output files (.dst format) contain all re-
constructed information which are bulky for physical analysis. The DaVinci software
application is used for the stripping, and also provides tools to select event. The output
files (.root format) can be directly used for analysis in ROOT analysis framework.

The MC simulation samples for 2016 pPb and Pbp have been produced with the offi-
cial LHCb tune for these data-taking periods. The MC events are generated by mixing a
simulated minimum-bias event and a simulated signal event. The minimum bias compo-
nent is modeled with EPOS-LHC and the signal component is modeled with PYTHIA 8.
The digitization, detector settings, reconstruction and selection are same as the real data.
There were two iterations for the 2016 pPb/Pbp simulation data productions. In the first
version (called *Sim09¢’), the simulated event multiplicity (represented by the total num-
ber of VELO clusters for example) shows significant difference with that of real data, as
shown in Fig. 2.20. In particular, it has much more low multiplicity events than the data,
but lack of statistics for high multiplicity events. This issue largely affected the estima-
tion of reconstruction efficiency in this analysis, as the efficiency has significant depen-
dence on the event multiplicity. In the second version (called *Sim09k’), the simulated
event multiplicity has been greatly improved by manually piling-up multiple minimum
bias EPOS events in the same collision vertex. Although there is still difference in event
multiplicity distributions between the improved simulation and the real data, it can be
completely resolved by applying weights on the simulated events according to their event
multiplicity to make its distribution match the real data, as shown in Fig. 2.21. Hence, the
’Sim09k’ simulation samples are used in this thesis. The author of this thesis has made a

lot of contributions to this improvement, which is also an embodiment of innovation.

Table 2.1 Basic information of Monte Carlo simulation sample

Configuration Magnet polarity Beam Energy (GeV) Simulation version  Statistics (x10%)
forward magnet-down 6500GeV (proton)-2560GeV (lead) Sim09e

backward magnet-down 2560GeV (lead)-6500GeV (proton) Sim09e

forward magnet-down 6500GeV (proton)-2560GeV (lead) SimO09k 20

backward magnet-down 2560GeV (lead)-6500GeV (proton) Sim09k 20

2.3.3 Data Preservation

As a member of the LHCDb collaboration, all data and related simulations can be found

on this website : https://lhcb-portal-dirac.cern.ch/DIRAC/. The data and simulation used
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Figure 2.20 The event multiplicity (nVeloClusters) distributions in the *Sim09¢’ proton-lead
simulations. The left plot is for the pPb (forward) configuration, while the right plot is for the Pbp
(backward) configuration.
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Figure 2.21 The nVeloClusters distributions in *Sim09k’ proton-lead simulations and compar-
isons to the real data. The left plot is for the pPb (forward) configuration, while the right plot is
for the Pbp (backward) configuration.

in this thesis are stored in Ixplus : /eos/lhcb/wg/lonPhysics/analyses/DsDp-pPb-8TeV.
The code used for this analysis was also uploaded to gitlab : https://gitlab.cern.ch/lhcb-

ift/dsdp-ppb-8tev.
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CHAPTER 3 ANALYSIS STRATEGY AND SELECTIONS

This thesis will measure the cross-sections, the nuclear modification factor, the
forward-backward ratio and the cross-section ratios for open charm mesons (D}, D)
based on pPb data collected at LHCb in 2016. This chapter will introduce the general

analysis strategy and the signal selections.

3.1 Analysis strategy

The D} (D*) mesons, composed by a charm quark and a strange (down) antiquark,
cannot be detected directly because of their short lifetimes. They are reconstructed with
the final-state hadrons of their decays. The decay channels used in this thesis are DT —
K*K*zx* and D* > K¥n*rx*.

The inclusive DY (D7) yields are composed of two contributions: the prompt D7
(D) which is produced from the primary interaction vertex (PV) directly, and the non-
prompt DI (D*) which is produced from the decay of b-hadrons. These two components
can be distinguished topologically, thanks to the excellent vertex resolution of the LHCb
tracking system. The impact parameter (IP), which is defined as the minimum distance
between the back-propagated D} (D) track and the PV (see Fig. 3.1), is powerful in
discriminating the prompt from the non-prompt components. It is clear that a D-meson
with a smaller impact parameter is more likely to originate from the PV. In practice, the
IP-related selections have been optimized to reduce the combinatorial backgrounds and
the non-prompt contributions but to keep as many as possible the prompt contributions,
which are the major interests of this thesis.

The double differential cross-section for prompt DY (D*) production in a given
(pr, y™) bin is defined as:

d?s N(Df - KTK*z%)
dprdy* - L X € X B(Dy > KFK*x%) X Apr X Ay* ’

(3.1

d’c N(D* > K¥z*zn*)
dprdy* L X e X B(D*— KF¥rtat) x App X Ay*

(3.2)

The quantity y* is the rapidity defined in the nucleon-nucleon centre-of-mass frame. The

centre-of-mass frame does not coincide with the laboratory frame due to the asymmetry
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of the collision, so y* is shifted by a constant value with respect to the rapidity in the

laboratory frame:

y'=y-96y, (3.3)

where 8y = 0.5 log(Apy/Zp,) = 0.465!1231 " The direction of proton beam is defined as

the positive z-axis. The other quantities are defined as the following:

N is the number of prompt signals reconstructed with the specified decay channel.
L is the integrated luminosity and is determined for the forward and backward con-
figurations separately in the way as described in Ref. [126]. Lg,q = 0.01218 +
0.00032 pb~! for the forward configuration, and Lg,4 = 0.01857 + 0.00046 pb™!
for the backward configuration.

€1 18 the total efficiency for the reconstruction of signal channels in each (pr, y*)
bin.

B is the branching fraction. B(D¥ - K¥K*7*) = (2.24 +0.13)% with the KK~
invariant mass in the range of 1000 < m(K*K~) < 1040 MeV/c2 1271, B(D* -
K*z*7%) = (9.38 + 0.16)% obtained from the PDG!H?.

Apt = 1GeV/c is the bin width of the transverse momentum, with the full measured
pr range of [1,13] GeVic.

Ay* = 0.5 is the bin width of the rapidity. The forward and backward rapidity

coverage are 1.5 < y* < 4.0 and —5.0 < y* < —2.5, respectively.

The nuclear modification factor is defined as the ratio of cross-section in pPb colli-

sions to that in pp collisions at the same energy, normalized by the number of nucleons in
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Pb nucleus (A = 208),
1 oy (proy) dprdy’

Ry, (pr.¥*) = = . (3.4)
? A &2, (pr, y*) ldprdy*
The forward-backward production ratio is defined as
d°0,py(pr. +1y* D/dprdy”
Rep(pr, ) = —— (3.5)

d2opy,(pr —|y*dprdy*
which is calculated for a common rapidity range of 2.5 < |y*| < 4.0. These two variables
are also studied in bins of py and y* integrated over y* and py respectively.

The D}¥/D™ production ratio is measured as functions of py,y* and event multiplicity
(represented by PV nTracks in this measurement), defined as
N(Df - K¥K*z*) B(D*— KF¥z*zn®) . €0*
N(D*— K¥n*z*)  B(Dy—» K¥K*z*) e€pr

Rp+/p+(pr, y*, PV nTracks) = (3.6)

The PV nTracks is the number of tracks used in reconstructing the primary vertex (PV)
where the D-mesons originates. This 3D binning scheme focuses more on the event mul-
tiplicity dimension and ensures that the statistics in each bin is roughly comparable. The
3D binning scheme is defined as the following:
* Forward configuration
— PV nTracks : [10, 60, 80, 100, 120, 140, 200]
- pr: [2,4,6, 8, 12]
-y [1.8,2.3,2.8,3.3]
* Backward configuration
— PV nTracks : [10, 60, 80, 100, 120, 140, 180, 250]
- pr: [2,4,6,8, 12]
- y*:[-2.8,-3.3,-3.8, -4.3]

3.2 Selection criteria

Due to the large number of final state particles in proton-lead collisions, there are a lot
of backgrounds in the D}/D" reconstructions. But there are many significant differences
between a background and a signal, such as the lifetime, the invariant mass, and the decay
topology related variables. Certain selection criteria can be applied on these quantities,
to remove most of the backgrounds and hence improve the signal significance, and also
to save disk space and analysis time. There are three stages of selections applied in the

signal reconstructions: online selections, offline selections and event selections .
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3.2.1 Online selections

The online event selection is implemented in the trigger, which consists of hardware
and software stages. The hardware trigger is based on information from the muon systems
and the calorimeter. The software stage (Turbo lines in HLT) is based on the full event
reconstruction and the subsequent signal reconstructions/selections.

At the LO level, the TCK of LO trigger are 0x1621 and 0x1622. This step is mainly
realized by calorimeter. Specifically, it requires hits in SPD and energy deposited in
calorimeter. More detailed description can be found here!'?"1.

The TCK of HLT1 trigger are 0x11431621 and 0x11441621. The underlying HLT1
lines are either HIt1TrackM VA or Hlt1 TwoTrackM VA. Hlt1 TrackM VA requires a long
track reconstructed, restrict the p(> 5000 MeV) and pr (> 500 MeV) of the tracks, and
away from other PV in the same collision. Hlt1TwoTrackMVA requires a pair of long
tracks reconstructed. In addition to meeting the same requirements as HIt1TrackM VA,
these two tracks also require that the combined candidate have large pr and good-quality
vertex. More detailed description is here 1301

The HLT2 turbo lines used for DY and D% analyses are
HIt2CharmHadDs2KKPi_XSecTurbo and HIt2CharmHadDpm2KPiPi_XsecTurbo
respectively. Both of them are included in HLT2 TCK 0x21461621
and use Hlt2CharmHadSharedDetachedDpmChildKFilter and
Hlt2CharmHadSharedDetachedDpmChildpiFilter as input turbo lines which
put constraints on K and z daughters.

The variables and corresponding online selection criteria used in HLT2 are listed
below:

* Primary vertex (PV). Each event contains at least one primary vertex which is re-

constructed with at least five tracks in the VELO detector.

* Momentum (p) and transverse momentum (py). Each track must have at least 1
GeV/c momentum and 200 MeV/c transverse momentum. At least two of the three
tracks constituting the signal (D}, D™) have transverse momentum higher than 400
MeV/c. The transverse momentum of at least one track is higher than 1000 MeV/c.

* y*Mdf(track), is the ratio of the fit goodness to the fit degrees of freedom for the de-
cay product track. The track is expected to have a good fit quality: y?/ndf(track) <
3.

* y*Mmdf(vtx), is the ratio of the fit goodness to the fit degrees of freedom for the
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decay vertex of the signal (D},D™). The signal is expected to have a good vertex
fit quality: y*/ndf(vtx) < 25.

* DLL,, which is the log likelihood difference between the K and x hypothesis, is
used to perform particle identification (PID). The higher the value, the more likely
the particle is kaon, otherwise it is more likely to be pion. The kaon candidates
are required to have DLLg ,(K) > 5. The pion candidates are required to have
DLLg,(7) < 5.

. )(IZP, is the difference in fitting »2 for a particular PV reconstructed with and without
one decay product track of the signal (D},D™) in consideration. The IP represents
impact parameter. The higher the value is, the more likely the track is not from this
PV. )(1219 of all decay product tracks should be greater than 4. )51219 of at least two
tracks should be greater than 10. )(Izp of at least one track should be greater than 50.

* Direction angle, is the angle between the signal’s momentum and its flight direction
(from the best PV to the signal decay vertex). The higher this value is, the more
likely the decay vertex is randomly combined fake vertex. The direction angle of
signal (D},D™) should be less than 34.6 mrad.

o Invariant mass. The invariant mass of signal (D,D") is required to be within the
corresponding mass window in order to reduce the background.

» Lifetime, is the decay time of a signal in its rest frame. A lower limit of 0.15 ps is
set for DY and D* signals in order to remove combinatorial background.

All the online selection criteria are listed in Tab. 3.1.

3.2.2 Offline selections

In addition to the online selections, some tighter offline selections are also applied to
reduce background further and to achieve better signal significance. The offline selections
are listed in Tabs. 3.2 and 3.3. Some particular selections are explained as the following:

* ProbNNghost. ProbNN is a neural network classifier, which requires the total prob-

ability of all categories to be 1. The ProbNNX is the probability of the candidate
to be a particle X. As long as less than 70% hits of a track can match a real final
state particle hits, it will be classified as ghost track. Here, all tracks are required
to have ProbNNghost < 0.3 to suppress ghost tracks which contribute most of the
background.

e Invariant mass. The invariant mass windows of D and D™ are further tightened.

For D}, in order to further reduce background, the invariant mass of its decay prod-
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Table 3.1 Online selections for D} and D* candidates
Quantity Selections
pr (track) > 200MeVice
gzlndf(track) <3
p(track) > 1GeVic
DLLy,.(K) >5
DLLg, (7) <5
pr (at least two tracks) > 400 MeVic
pr (at least one track) > 1000 MeV/ce
xi(all tracks) > 4
)(Izp(at least two tracks) > 10
)(1213(21'[ least one track) > 50
Direction angle < 34.6 mrad
72mdf(vtx) < 25
Lifetime 7 > 0.15ps
m(DY) 1879 < m(D}) < 2059 MeV/c?
m(DT) 1779 < m(D*) < 1959 MeV/c?

ucts K+ and K~ is required to be in a mass window around the ¢(1020) peak mass,
1000 < m(K~K*) < 1040 MeV/c?. Figure 3.2 shows the K~ K™ invariant mass
distributions in this mass window for both the real data and MC. The almost con-
sistent data/MC Lorentzian fit parameters show the MC simulation reproduces the
data very well. The MC simulation includes both the ¢ resonant decay mode and
the non-resonant decay mode. This selection is also applied on the truth MC DY

signals, because it is included in the definition of the D branching fraction that

used in this analysis.

o Lifetime. An upper limit cut that is far larger than its lifetime is added for D} in

order to remove more background in low rapidity region.

3.2.3 Event selections

When studying the dependence of DY/D* cross-section ratio with multiplicity, it is
critical to ensure the stability of multiplicity distribution in each event. Therefore, some

event selections are needed for this purpose. PV nTracks (the number of tracks used to
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Figure 3.2 Invariant mass distributions in a mass window around the ¢(1020) peak of the K~ K™
in D} decays from real data and MC simulations. The Lorentzian function fit results and param-
eters are shown as well for data and MC comparison.

reconstruct the primary vertex) is used to represent the event multiplicity in this analysis. If
there is more than one PV in this event, these PV’s will interfere with each other and affect
the distribution of PV nTracks, as shown in Fig. 3.3. Therefore, each event is required to
have only one PV (nPV = 1). Besides that, the location of PV (especially in z direction)
also affects the distribution of PV nTracks. When the PV just falls on the edge of VELO,
some of the tracks are not within the acceptance of VELO. Figure 3.4 shows this effect,
and hence the PV z position (PVZ) is required to be within —20 < PVZ < 80 mm and
—40 < PVZ < 80 mm for the forward and backward configurations, respectively. These
event selections are listed in Tab. 3.4. As a reference, the PV nTracks distributions in
DY ,D* event are compared with that in minimum bias event where almost no selections
are applied. As shown in Fig. 3.5, the PV ntracks of D} and D™ event are similar and

significantly larger than that of the normal pPb collision event.
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Table 3.2  Offline selections for D candidates

Quantity  Selections

n 2<np<>5
pr (track) > 400 MeVic

p(track) 3.2 < p < 100GeV/c
DLL, (z*) <O
ProbNNghost(K/z) < 0.3

m(D}) 1889 < m(D}) < 2049 MeVic?
m(K~K*), 1000 < m(K~K%), < 1040 MeV/c?

Lifetime 7 < 10ps

Table 3.3 Offline selections for D" candidates

Quantity Selections

n 2<np<>5
py (track) > 400 MeVic

p(track) 3.2 < p < 100 GeVic
DLL, (") <0
ProbNNghost(K/z) < 0.3

DiraAngle(D") < 15mrad
m(D*) 1794 < m(D*) < 1944 MeVic>

Table 3.4 Event selections for the multiplicity dependence study

Quantity  Selections

PV z position (PVZ) —20 < PVZ < 80 mm (forward)
PV z position (PVZ) —40 < PVZ < 80 mm (backward)
Number of PVs (nPV) nPV =1
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CHAPTER 4 SIGNAL YIELD DETERMINATION

After the previous selection, there are some backgrounds in the data sample. They
are mainly composed of two components: the combinatorial background and D} (D%)
signals from b-hadrons decay (non-prompt signal). Simple event selection cannot further
remove these background, so the prompt signal is extracted by fitting. For the conve-
nience of discussion, these prompt D} (D*) signals and non-prompt D} (D*) signals are
collectively referred to as inclusive D] (D7) signals.

Experience shows that the invariant mass spectrum has a good discrimination on the
combinatorial background. The inclusive D} (D*) mesons was extracted by fitting the
invariant mass distribution of the candidates that passed the online and offline selections.
The signal is described by a combination of a Crystal Ball (CB) function plus a Gaussian

function as follow Equation4.1, 4.2.

Fsignal = f X FCB + (1 - f) X FGauss H (4~1)

@ e
n |a| Xx—M no lf xo_ < _lal 9
Feg( Moo, aym =4 (le=3) 42)
1 [ x—-M 2 e Xx—M
exp [ —3 , i —=2>—|a|.

In this probability density function (PDF), the mean and width of the central Gaussian
distribution are given by M and o respectively. The parameter a describes the boundary
between the Gaussian and power law component while » describes the order of the power
law. The CB function describes the mass peak with a lossy tail on the left. In the case of
energy loss by photon emission, the tail should be described by the 1/x function, which
corresponds to fix n=1. The CB and Gaussian function share a common mean value. For
Fwd mass fit, the a(D?) is fixed to 2.637, the fraction of CB component f (DY) is fixed
t0 0.797. For Bwd fit,the a(DY) is fixed to 2.557, the fraction of CB component f (DY) is
fixed to 0.792. These values are obtained from kinematically-unbinned mass fits (data).
The two variables aren’t fixed in the D™ mass fit because of the larger statistics.

A linear function is used to describe the shape of combinatorial background. Some
typical mass fits are displayed in Figures 4.1, 4.2. The blue line represents the total fit
function and the red dashed line represents the combinatorial background. All mass fits

are shown in Appendix C.
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Figure 4.1 Mass fit to extract the DY inclusive signal in a typical py and y* interval. (left figure
is Fwd, right figure is Bwd)
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Figure 4.2 Mass fit to extract the D* inclusive signal in a typical py and y* interval. (left figure
is Fwd, right figure is Bwd)

The inclusive D} (D*) yields in different kinematic bins are shown in Figure 4.3,4.4
and listed in Tables B.1, B.2, B.3, B.4 in Appendix B. In these bins at the kinematic edge,
the fitting fails due to low statistics, and the setting is null.

The prompt D} (D) mesons was extracted by fitting the log )(1213 distribution, where
;(Izp is defined as the difference in the vertex-fit ;(2 of a given PV reconstructed with and
without the DY (D*) candidate under consideration. On average, the prompt DY (D)
mesons have a smaller IP (impact parameter) than non-prompt DY (D") mesons due to
the flight distance of B hadrons. The ;(Izp is almost positively correlated with IP. Thus
prompt D (D) mesons can be discriminated through this method. The combinatorial

background was statistically subtracted by sPlot technique!'3!l

using invariant mass as
variable. So the log;, ;(Izp distribution of weighted data contains only prompt and non-
prompt D} (D™). The shape of prompt and non-prompt components were described by
Bukin function as follows Equation 4.3.

To obtain a better result, we fitlog, ;(Izp in a narrower mass window. The inclusive D

(D) mesons yield is fixed by the mass fit. The parameters €, p; and pg of the non-prompt
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Figure 4.3 The inclusive D} signal yields in different p; and y* intervals. (left figure is Fwd,
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Figure 4.4 The inclusive D* signal yields in different p; and y* intervals. (left figure is Fwd,

right figure is Bwd)

component are fixed from simulation. Some typical fits are displayed in Figures 4.5, 4.6.
The red line represents the prompt component and the green dashed line represents non-
prompt component. The prompt DY (D) yields in different kinematic bins are shown in
Figure 4.7, 4.8. For comparison, the prompt-fraction is calculated (prompt/(prompt+non-

prompt)) and shown in Figure 4.9, 4.10. In general, The prompt fraction of D is larger

than that of D} .

All log;, )(IZP fits are shown in Appendix D. The numerical results of fractions are
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included in Tables B.7, B.8, B.9, B.10 in Appendix B.
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Figure 4.5 log, )(121, fit to extract the D} prompt signal in a typical py and y* interval. (left figure
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When studying D/D* production ratio as a function of pr,y* and PV nTracks, the
basic method is the same as before, except refit in 3D intervals. In addition, parameters
are no longer fixed in the mass and log; ;(IZP fits except n of CB function since there are
enough statistics in these bins. The prompt D} (D) 3D distributions are shown in Figure
4.11. The numerical results are summarized in Tables B.5, B.6, B.11, B.12, B.13, B.14
in Appendix B.
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Figure 4.11 The prompt D} (D%) yield as a function of pr, y* and PV nTracks. Only the statis-

tical uncertainties are shown here.
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CHAPTER 5 EFFICIENCIES CORRECTION

After the collision, not all the generated D} and D™ signals can be detected. First,
not all signals can be accepted by the detector since LHCb is a forward detector, even
if the high density production area is in the forward. This is the geometrical acceptance

efficiency, € Secondly, even if signals are accepted by the detector, they may not be

ace -
reconstructed by the tracking system (Section 2.2.1) and then passed the online and offline
selections (without PID selections). This is the reconstruction and selection efficiency,
€ecksel - Then, the decay products of the signals may not be correctly recognized by the
particle identification system (Section 2.2.2), the PID efliciency, epyp . Finally, the signals
may not be triggered by the trigger system (Section 2.2.3) and saved, trigger efficiency,

€y - The total efficiency is obtained by multiplying these four parts:

€tot = €acc X €rec&sel X €PID X €y - (5 ~1)

These efficiencies cannot be obtained directly from the data, but are estimated by LHCb

Monte Carlo simulation samples (Section 2.3.2).

5.1 Geometrical acceptance efficiency

The geometrical acceptance efficiency, € is estimated by generator level Monte

acc
Carlo which only contains the basic information of particle generation and decay (energy,
momentum) without detector simulation. The Gauss option files are almost same as the
official Monte Carlo to restore the real data collection situation as much as possible. We

use Pythia8!!3?! as the generator instead of EPOS.

The €,,. of DY is defined as:
DY with K~ K*z* in LHCb acceptance
Cace = Generated D! with K- K+z+ ' ©-2)
The €,,. of D" is defined as:
D" with K~ 2tz in LHCb acceptance
€ = . (5.3)

ace Generated D+ with K—z+z+

We assume the geometrical acceptance efficiency is independent with multiplicity.

Both Fwd and Bwd geometrical acceptance efficiencies are measured. The €,.. results are

acc

shown in Figure 5.1. The results are summarized in Tables A.1, A.2, A.5, A.6 in Appendix

A. The ratio of geometrical acceptance efficiencies(D*/D?) are shown in Figures 5.2, 5.3.
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Figure 5.1 The geometrical acceptance efficiency, €,.. , as a function of p; and y* of prompt
DY (up), D* (down) meson for Fwd (left) and Bwd (right) configurations. Only the statistical
uncertainties are shown here.

The results are summarized in Tables A.9, A.10 in Appendix A.

5.2 Reconstruction and selection efficiency

The D reconstruction and selection efficiency is defined as

Z Djin acceptance, reconstructed and selected

€ = (5.4)
recdsel DY with K+K~-z+ in LHCb acceptance
The D™ reconstruction and selection efficiency is defined as
Z D%in acceptance, reconstructed and selected (5.5)

€ =
rec&sel Dt with K-zt 7+t in LHCb acceptance

This efficiency is estimated with official Monte Carlo include detector simulation. It in-
cludes two parts: the efficiency of reconstructing the three long tracks (contain hits in
the VELO, TT and tracking stations) and the refinement of the signals. The selections
are listed in the Table 3.2, 3.3 without PID requirements. There are several corrections

that must be considered due to the difference between data and simulation. For example,
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Figure 5.2 The ratio of the geometrical acceptance efficiency (D*/DY) as a function of p; and
y* (2D) for Fwd (left) and Bwd (right) configurations. Only the statistical uncertainties are shown
here.

the track reconstruction efficiency cannot be perfectly simulated''33!. Next, I will discuss

these corrections in detail.

5.2.1 Truth matching

The signals in the simulation are picked out by truth matching requirements which
include particle ID requirements and BKGCAT requirements, but the truth matching al-
gorithm occasionally flags the signal track as a ghost. This effect can be seen by plotting
the mass distribution of events which passed the selection where at least one track did
not satisfy the correct truth-matching requirements. A peak around the DY mass can be
seen in Figure 5.4. A Crystal Ball signal and a linear background is used to fit the mass
spectrum. The ratio of D} candidates in this peak over truth matched DY signals is the
truth match inefficiency. Since the fraction of not truth matched Dj meson is small, this
correction is performed for unbinned simulation samples. The D fit gives a fraction of
3.36% for Fwd and 2.71% for Bwd. The same method applied to the D™ gives a fraction
of 2.23% for Fwd and 2.17% for Bwd.

5.2.2 Tracking correction

As mentioned before, the reconstruction efficiency cannot be perfectly simulated. A

data / EMC

racking /Etracking ° need to be considered. This correction

correction factor, Wy,cking = €
factor is given as a function of momentum (p) and pseudo-rapidity (1) as shown in Figure
5.5. The calibration is performed using a tag-and-probe method with detached Jiy —

utu and K? — nt 7~ decays constructed in the Turbo stream in both data and simulation.
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Figure 5.3 The ratio of geometrical acceptance efficiency (D*/D?) as a function of py, y* and
PV nTracks (3D) for Fwd (up) and Bwd (down) configurations. Only the statistical uncertainties
are shown here.

The uncertainty quoted in the table are considered as systematic. To take the correction

factor into account, the definition of €. g is modified to:

ZD:reconstructed and selected Wi(Pg-: M=) X WP+ Ng+) X Wi(Prts Mz+)

€ sel = . :
rec&se DY with K= K*z+ in LHCb acceptance

(5.6)

¢ _ 2D+reconstructed and selected WilPK = k=) X Wi(Prt > M+) X Wi (Pt M+ (5.7)
rec&sel D+ with K—z+z+ in LHCb acceptance S

where w; is the correction factor for track A with momentum, p 4, and pseudorapidity, 7 4.

5.2.3 Multiplicity

The LHCDb reconstruction efficiency also depends on the multiplicity (clusters, hits,
tracks..). The reconstruction efficiency of very low multiplicity and very high multiplicity
events is very low. As mention in Section 2.3.2, multiplicity simulation has never been a
simple thing in pPb collisions. We can now simulate high multiplicity events by modifying

the pile up number, but the multiplicity distribution in simulation is slightly different from
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Figure 5.4 The mass distribution of truth unmatched D} (up), D* (down) mesons for Fwd (left)
and Bwd (right) simulation.
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Figure 5.5 The tracking efficiency correction factor table for Fwd (left) and Bwd (right) config-
uration.

that in data. We use nVeloCluster, nDownstreamTracks, nLLongTracks and nSPDHits to
correct the simulation and shown in Figure 5.6. Other variables perform well, except

nSPDHits. Finally, we use nVeloClusters to define correction factor, w(nVeloClusters) =

fdata fMC
nVeloClusters distribution” ¥ nVeloClusters distribution*

69



CHAPTER 5 EFFICIENCIES CORRECTION

x10° x10°

=4 240 = Unweighted MC ' 8 240 - unweighted MC '
X)) 220 - MC weighted with veloclusters 3 N, 220 - MC weighted with veloclusters
5 200 = MC weighted with longtracks 3 5 200 - MC weighted with longtracks
S 180 - MC weighted with spdhits S 180 - MC weighted with spdhits
W 160 W 160

140 140

120 120

100 100

80 80

I . , “h""‘-‘»,..“ 3 ‘;...** gy e,
0 2000 4000 6000 00 2000 4000 6000 8000

nVeloClusters nVeloClusters

Figure 5.6 The distribution of nVeloClusters in pPb data, simulation and weighted simulation.
Fwd on the left and Bwd on the right.
To consider the correction, Equations 5.6 and 5.7 are modified as:
ZD;reC&Sd W;(Pg-sNg-) X Wi(Pg+s Ng+) X Wi (P, M+) X w;(nVeloClusters)
> DY with K= K+z+ in LHCb acceptance X w;(nVeloClusters)

€rec&sel =
(5.8)

. 2 Dtrectsel WilPk=Mk=) X Wi(Prts M) X Wi (P, Np+) X wi(nVeloClusters)
recdesel Y D+ with K—z+z+ in LHCb acceptance X w;(nVeloClusters)

(5.9)

The €081 @S Py and y* function results is shown in Figure 5.7. The results are

summarized in Table A.13, A.14, A.17, A.18 in Appendix A. The ratio of €,. g (D*/DY)

as a function of p and y* (2D) is shown in Figure 5.8. The results are summarized in Table

A.21 and A.22 in Appendix A. The ratio of €,..gs (D7/DY) as a function of pr, y* and

PV nTracks (3D) is shown in Figure 5.9. The results are summarized in Table A.23 and
A.24 in Appendix A.

5.3 PID efficiency

be-
cause the Data/MC agreement for DLL variables (the likelihood information produced by

The particle identification (PID) cuts is not included when considering €,..g 1
PID system) is poor as shown in Figure 5.10. The best solution is to use calibration sam-
ples from data. PID calibration samples contains decay channels with a topology which
allows unambiguous identification of one daughter without relying on its PID-related vari-
ables. Some typical decay channels are listed in Figure 5.11. Hard (soft) represents to
calibration tracks with high (low) pr.

PIDCalib software package!!3¢!

is the interface between the PID calibration samples
and the need of analyst. It provides simple access to calibration samples through a set

of scripts, which can study PID selections efficiency as a function of different variables
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Figure 5.7 The tracking efficiency, €. » @ @ function of py and y* of prompt DY (up), D*
(down) meson for Fwd (left) and Bwd (right) configurations, multiplicity taken into consideration.
Only the statistical uncertainties are shown here.

(momentum, pseudorapidity, multiplicity) in different systems(pp, pPb, PbPb). The PID
efficiency, epyp , is defined as the efficiency of the PID selections on the three hadron
tracks in the D} (D%) selection. The epy, is determined using the single track efficiency
in PID calibration samples convolved with the kinematic distribution in MC sample, as
the following formula:

SN ex(X,nK, nVeloClusters)e (pX

l' 9

71,-K ,nVeloClusters)e, (p}, n, nVeloClusters)
N

epp(D™) =
(5.10)
D fil €k (pf, niK, nVeloClusters)e, (p7, n",nVeloClusters)e, (p}, n,nVeloClusters)

€PID(D;F )= N

(5.11)
where N is the sum of the events in the simulation samples used to evaluate the epyp.

The PID selections are DLLg . (K*) > 5 and DLLg ,(z#*) < 0. The PID selections

K
i

efficiency ex(p nl.K ,nVeloClusters) and €,(p;, n,nVeloClusters) as functions of p ,
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Figure 5.8 The ratio of €,,.4 (D7/DY) as a function of py and y* for Fwd (left) and Bwd (right)
configurations, multiplicity taken into consideration. Only the statistical uncertainties are shown
here.

and nVeloClusters are performed by the PIDCalib package. Due to the low statistics at
high multiplicity, we use pp PID calibration sample taken in 2016 and pPb PID calibration
sample taken in 2016 as input.

The epyp results is shown in Figure 5.12. The results are summarized in Table A.25,
A.26, A.29, A.30 in Appendix A. The ratio of ep, (D*/DY) as a function of pr and y*
(2D) is shown in Figure 5.13. The results are summarized in Table A.33 and A.34 in
Appendix A. The ratio of ep, (D*/DY) as a function of py, y* and PV nTracks (3D) is
shown in Figure 5.14. The results are summarized in Table A.35 and A.36 in Appendix
A.

5.4 Trigger efficiency

The High Level software stage Trigger 2 (HLT2) has been included in online and
offline selections, so only the efficiency of High Level software stage Trigger 1 (HLT1)
needs to be considered. The trigger efficiency, €,; is defined as:

TOS of HLT1 in bin (py,y*)
selected signal in bin (pp,y*)’

€tri(pT’ y*) =

where TOS is trigger on  signal. Specifically, it refers to
(HIt1TrackMV ADecision_TOS == 1||HItITwoTrackMV ADecision_TOS == 1) .

The €,; is almost one due to the loose selections, although the €,; of the kinematic
edge decreases. The €,; results is shown in Figure 5.15. The results are summarized in
Table A.37, A.38, A.41, A.42 in Appendix A. The ratio of €,; (D*/D) as a function of py
and y* (2D) is shown in Figure 5.16. The results are summarized in Table A.45 and A.46
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Figure 5.9  The ratio of €,..g; (D7/DY) as a function of py, y* and PV nTracks for Fwd (up) and
Bwd (down) configurations, multiplicity taken into consideration. Only the statistical uncertainties
are shown here.

in Appendix A. The ratio of €,; (D*/DY) as a function of pr, y* and PV nTracks (3D) is

shown in Figure 5.17. The results are summarized in Table A.47 and A.48 in Appendix
A.

5.5 Total efficiency

The total efficiencies are obtained directly from the multiplication of the efficiencies
above as given by Equation 5.1. The result is plotted on the Figure 5.18, in which the
corrections from truth matching and multiplicity are also included. The uncertainties are
due to simulation sample size, which are uncorrelated between bins. The ratio of total

efficiency are shown in Figure 5.19 5.20.
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Figure 5.14  The ratio of epp (D*/DY) as a function of py, y* and PV nTracks for Fwd (up) and
Bwd (down) configurations, multiplicity taken into consideration. Only the statistical uncertainties

are shown here.
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Figure 5.16 The ratio of €,; (D*/D?) as a function of p; and y* for Fwd (left) and Bwd (right)
configurations, multiplicity taken into consideration. Only the statistical uncertainties are shown
here.
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Figure 5.17 The ratio of e,; (D*/D}) as a function of py, y* and PV nTracks for Fwd (up) and
Bwd (down) configurations, multiplicity taken into consideration. Only the statistical uncertainties

are shown here.
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Figure 5.18 The total efficiency, €, , as a function of py and y* of prompt D} (up),D* (down)
meson for Fwd (left) and Bwd (right) configurations.
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Figure 5.19 The ratio of ¢, (D*/D}) as a function of p; and y* for Fwd (left) and Bwd (right)
configurations. Only the statistical uncertainties are shown here.
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Figure 5.20 The ratio of €., (D*/DY) as a function of py, y* and PV nTracks for Fwd (up) and
Bwd (down) configurations. Only the statistical uncertainties are shown here.
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CHAPTER 6 SYSTEMATIC UNCERTAINTIES

In this chapter, we will discuss the systematic uncertainties on the measurement of D}
(D). Since the analysis strategy is the same, the source of systematic uncertainties are
also the same. These can be roughly divided into two categories : uncorrelated systematic

uncertainties between bins and correlated systematic uncertainties between bins.

6.1 Signal yield determination

The prompt DY (D) signal yields are determined through a two steps fit, so the
systematical uncertainties are estimated separately.

For the mass fit, the raw yield is related to the fit function used to describe the shape
of the D;" (D%) invariant mass distribution. We replace the Gaussian function with a
Crystal Ball function to add a second Crystal Ball to fit the inclusive component. Besides,
the uncertainties from mis-ID DY — K~ K*z* in D¥ - K~ z*z" and vice versa are
also considered. This reason is due to the wrong particle identification between K and
x, resulting in mutual pollution between the two decay channels. The shape of mis-ID
mass spectrum was obtained from Monte Carlo simulation, and shown in Figure 6.1. The
impact of this part is about 0.1%. The systematic uncertainties from mass fit are shown
in Figure 6.2. The systematic uncertainty of this part is not very large.

For the log; ;(Izp fit, the p;, pg and e for the non-prompt component are fixed. Their

@ 01& I I : C<§0.09§-| I P"‘I‘ﬂ.,_ ' —
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Figure 6.1 Mis-ID mass spectrum shape
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Figure 6.2 Relative systematic uncertainties of M (D])(up) and M (D")(down) fit as a function of
pr and y*(display with decimal). Left for Fwd and Right for Bwd.

effects are also considered by shifting the values to one sigma away from the mean value.
The results are shown in Figure 6.3. In low p and low y* bins, the systematic uncertainties
are larger than others, because the prompt component and the non-prompt component can’t
be distinguished in these bins. The systematic uncertainties in both steps are considered
uncorrelated between Fwd and Bwd.

When studying the D}/D* production ratio as function of py, y* and PV nTracks,
we use the same method but a different fit model. For the mass fit, we replace the linear
function with an exponential function to fit the background component. For the log; ;(Izp
fit,we replace the Bukin function with an AGE function, shown in equation 6.1, to fit the

prompt component. The results are shown in Figures 6.4 6.5.
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6.2 Efficiencies

The main sources of systematic uncertainties in €

ec&sellS the tracking correction factor

Wiracking - As shown in the Figure 5.5, tracking correction factor is not a fixed value. The

uncertainty in the tracking correction factor may propagate into e To study this

rec&sel -

effect, 500 toy Monte Carlo of tracking tables are generated from Gaussian distributions,
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of which u is the mean value and o the error bar for each bin. These tables are used
to measure the efficiencies, and the standard deviation of the efficiency for each bin is
used as the systematic uncertainty. The result is shown in Figure 6.6. An additional
uncertainty of 1.1%(1.4%) is assigned to the K (x) due to the hadronic interactions of
these particles with the detector. This uncertainty is dominated by the uncertainty on
the material budget and full correlation between kaons and pions is assumed 371, Total
uncertainty are 3.9% for D*, 3.6% for D;". Besides, the methods with different event
multiplicity variables introduce uncertainties at the level of 0.8% per track!'*% and 2.4%
on total for this analysis.

When study D/D™ ratio, the relative systematic uncertainties from tracking table
can be offset partially. The reason is that D} and D* use same tracking table, and they all
decay to three final hadrons. When study multiplicity dependence, PVZ distribution bias
in MC and data introduces 1%(fwd) and 0.5%(bwd) global systematic uncertainty. The
result is shown in Figure 6.7,6.8.

For PID efficiencies, the uncertainties mainly comes from the PIDCalib. The same
method (toy Monte Carlo) as estimate tracking table uncertainties is used. The 500 toy
Monte Carlo of PIDCalib tables are generated to measure the epyp, and the standard devi-
ation of the efficiency for each bin is used as the systematic uncertainty. This uncertainty
is shown in Figure 6.9.

When study D}/D" ratio, the relative systematic uncertainties from PIDCalib can be
offset partially. The reason is that DY and D™ use same binning scheme and input samples
are used in PIDCalib. The results are shown in Figure 6.10,6.11.

For the multiplicity corrections, three different variables(nVeloClusters, nLong-
Tracks, nDownstreamTracks) are applied for weighting as shown in the Figure 5.6. The
standard deviation for the three efficiency tables are taken as the systematic uncertainties,
which is determined in different kinematic bins. The Data/MC multiplicity difference in
the forward is less than backward, so the systematic uncertainty is also less than backward.
The results are shown in Figure 6.12.

For the trigger efficiencies, the TISTOS method is used to estimate trigger efficien-
cies and the difference is taken as the uncertainty. The TISTOS method determines
the trigger efficiency using data driven techniques!!>!
(Hlt1TrackMV ADecision_TOS == 1||HItITwoTrackMV ADecision_TOS == 1) . The
TIS (trigger independent of signal) is (HIt1Phys_TIS == 1). We apply TIS as denomina-

. The TOS (trigger on signal) is

84



CHAPTER 6 SYSTEMATIC UNCERTAINTIES

Table 6.1 systematic uncertainties summary

Source Relative uncertainty (%)
Correlated between bins Fwd Bwd
Tracking and multiplicity correction | 0.1-5.0 0.1-5.0
PID 0.1-10.0 0.1-10.0
Luminosity 2.6 2.5
Hadronic interactions (DY) 3.6 3.6
Hadronic interactions (D) 3.9 3.9
Branching fraction(DY) 5.8 5.8
Branching fraction(D%) 1.7 1.7
Uncorrelated between bins Fwd Bwd
Mass fit 0.1-3.0 0.1-6.0
log ;o1 fit 0.1-20.0 0.1-17.0
MC sample size 0.1-14.7 0.1-14.5

tor, TISTOS as numerator. The difference between data and MC is regarded as systematic
uncertainty. The result is shown in Figure 6.13 where it can be seen that the systematic
uncertainties from the trigger is negligible. We assuming relative systematic uncertainties

from ratio of e,; (D*/DY) can be offset totally.

6.3 Other systematics

The relative uncertainty of the corresponding luminosity is 2.6% for Fwd and 2.5%
for Bwd data sample. The uncertainties from branching fraction B(DY — KTK~z™)

with ¢(1020) mass window cut is 5.8%, B(D" — K~z z") is 1.7%.

6.4 Summary of systematic uncertainties

The systematic uncertainties are summarized in Table 6.1.
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Figure 6.4 Relative systematic uncertainties from mass fit as a function of p; and y* and PV nTracks.

(a) is forward DY, (b) is backward D}, (c) is forward D*, (d) is backward D*.
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Figure 6.6 Relative systematic uncertainties from tracking table as a function of p; and y*(display
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CHAPTER 7 RESULTS AND DISCUSSION

7.1 Production cross-section

The double-differential cross-section of prompt DY (D*) mesons can be obtained
with Egs. 3.1 and 3.2. The yields, integrated luminosities, efficiencies and branching
fractions have been presented in previous chapters. The measured values of the double-
differential cross-section of prompt D} (D*) mesons in proton-lead collisions at \/%
= 8.16 TeV in the forward and backward regions as a function of pp and y* are given in
Tabs. 7.1 and 7.2 and shown in Fig. 7.1. The one-dimensional differential prompt D7
(D) meson cross-sections as a function of py or y* are given in Tabs. 7.3, 7.4, 7.5, and
7.6, and displayed in Figs. 7.2 and 7.3.

The integrated cross-sections of prompt D (D™) meson production in pPb collisions
at \/% =8.16 TeV in the defined forward fiducial regions, summing over all the measured

bins, are:
(D )iorwara(1 < pr < 13GeVie, 1.5 < y* < 4.0) = 42.8 + 0.3(stat.) + 3.5(syst.) mb,
O'(D;")forward(l < pr < 13GeVie,2.5 < y* < 4.0) = 23.7 £ 0.2(stat.) + 1.8(syst.) mb,
(DM )gorwara(1 < pr < 14GeVie, 1.5 < y* < 4.0) = 94.0 + 0.2(stat.) + 5.0(syst.) mb,
(DM )gorwara(1 < pr < 14GeVie, 2.5 < y* < 4.0) = 49.7 + 0.1(stat.) + 2.5(syst.) mb.
The integrated cross-sections of prompt D] (D™) meson production in pPb collisions at
\/% = 8.16 TeV in the defined backward fiducial regions, summing over all the measured
bins, are:
(D) paekward(1 < pr < 13GeVie, =5.0 < y* < —=2.5) = 43.0 + 0.4(stat.) + 4.9(syst.) mb,
(D) ackward(1 < pr < 13 GeVie, —4.0 < y* < =2.5) = 31.0 + 0.3(stat.) + 3.6(syst.) mb,
(D) ackward(1 < pp < 14 GeVie, =5.0 < y* < =2.5) = 86.1 + 0.2(stat.) + 8.6(syst.) mb,
(D) paekward(1 < Pr < 14 GeVie, —4.0 < y* < —2.5) = 62.1 + 0.1(stat.) + 6.4(syst.) mb.

In the above cross-sections, the first error is statistical and the second one is systematic

CITor.
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Figure 7.1 Double differential cross-sections of prompt D} (up) and D* (down) in pPb collisions at
\/Sw = 8.16 TeV in the forward (left) and backward (right) rapidity regions. The vertical bar and the
vertical box on each data point represent statistical uncertainty and systematic uncertainty respectively.

7.2 Nuclear modification factor

According to Eq. 3.4, the D* and DY production cross-sections in pp collisions at

s = 8.16 TeV are needed as reference to calculate the nuclear modification factor R py,.
Due to the lack of experimental measurements at this particular energy, the reference
cross-sections are obtained from the interpolations of the LHCb measurements at \/_ =
5 TeVH4 and 13 Tev!!#! | within a rapidity range of 2.0<y*<4.5. The D* branching
fraction used at 4/s =5 TeV and 13 TeV is 9.13%, while the latest PDG value of 9.38% is
used in this thesis. Therefore, the pp cross-sections are re-scaled accordingly to be consis-
tent with this thesis. The default analytical function used for pp cross-section interpolation

is the power-law function, as in D° measurement 1421

65p = (V). (7.1)

The typical D} and D™ interpolation results are shown in Fig. 7.4, and the full D] and
D™ interpolation results for each kinematic bin can be found in Appxs. E.1 and E.2 re-

spectively. The uncertainties in the interpolation is calculated with the error propagation

94



CHAPTER 7 RESULTS AND DISCUSSION

= T T T — = OVp——T———— T
3 8= —e— DY(Forward,1.5<|y*|<4) b £ i —e— D}(Forward) ]
§ wp = {1 & | -
= F == —e— D{(Backward,2.5<|y*|<5) 3 - —e— D{(Backward) E
£ 3 b 30+ —
. [ =+ i - I<py <13 GeV/e E
-8 % —— - — 1
1L —— _ L - J
E —— E L 4
E ——— ] 20k H _
: e : F g - -
_1 i L ]
107 E LHeb Unofficial —— E L LHCb Unofficial n ]
E b (/syn =8.16TeV - o] 10 [ PPb /sy =8.16TeV 0
L. 1 L L L L 1 L — P I R T S
10 2 3 4 5

*

p, [GeV/c] Y|

Figure 7.2 Differential cross-section of prompt D mesons in pPb collisions at /s = 8.16 TeV
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vertical box on each data point represent statistical uncertainty and systematic uncertainty respectively.
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Figure 7.3 Differential cross-section of prompt D* mesons in pPb collisions at \/ﬂ = 8.16 TeV
as a function of p; (left) and y* (right) in the forward and backward regions. The vertical bar and the
vertical box on each data point represent statistical uncertainty and systematic uncertainty respectively.
formula. Alternatively, the linear function is also considered for the interpolation. The
difference with the default interpolation result is taken as an additional systematic uncer-
tainty for R,py,. The systematic uncertainties from hadronic interaction material budget
and branching fraction are correlated between the \/_ = 5 and 13 TeV pp measurements
and the m = 8.16 TeV pPb measurements. Therefore, they are completely canceled out
when calculating R py,.

The nuclear modification factors for prompt D and D* mesons as a function of
pr (v¥) integrated over y* (py) bins are shown in Figs. 7.5, 7.6, 7.7, and 7.8, and the
values are listed in Tabs. 7.7, 7.8, 7.9, 7.10, 7.11, and 7.12. The corresponding Rpr
values for prompt D] and D* mesons as a function of py in each y* bin are also shown
in Figs. 7.9, 7.10, 7.11, 7.12 and listed in Tabs. 7.13, 7.14. Both the D} and D" R,p,
results at forward rapidities show clearly a significant suppression at low py, similar to

the previous D measurements, confirming the existence of cold nuclear matter effects
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Figure 7.4  The typical interpolation results for D} (left) and D* (right) cross-sections in pp collisions
at \/— =8.16 TeV with a power-law function and a linear function. The black data points are LHCb
result at 4/s =5 and 13 TeV.

in charm production in proton-lead collisions. In backward rapidities, the R,p, of both
particles show a moderate pr dependence in the measured p range, but the overall values
slightly increase with the increasing |y*| to a value close to unity at y* = —4.25.

The R ,py, results are compared to the theoretical calculations from the HELAC-Onia
generator '3 U441t js based on a data-driven parton scattering model. First, the calcula-
tion is adjusted according to the cross-section measured in pp collisions at the LHC. Then,
the PDFs of nucleon binding in lead nucleus are introduced into the model to calculate the
cross-section of pPb collisions, and other cold and hot nuclear matter effects are not con-
sidered. The reweighted EPPS161°%! and nCTEQ15!%?! nPDF sets are used in the calcula-
tion. In these new nPDFs, the LHC heavy flavor hadrons results are included by perform-

ing Bayesian-reweighting analysis!'*>]

, which greatly reduces the nPDFs uncertainty at
low x and hence the uncertainties in the HELAC-Onia calculations. The main uncertainty
is determined by the parameterization of nPDFs which corresponds to the 68% confidence
band. At forward region, these nPDF theoretical calculations are in good agreement with
the data. At backward region, the nPDF calculations can still describe data well at low
Dt but it becomes systematically higher than the data at higher py (pt > 6 GeVic), in
particular for D*.

In the saturated region (small x), corresponding to py < 5 GeV/c at forward rapidity,
Color Glass Condensate (CGC) theoretical calculations are also included for comparisons.
The CGC11461 1691 calculates D mesons production with the color dipole formalism, the
optical Glauber model is used to relate the initial condition of a nucleus with a proton, and

does not distinguish DY and D*. The CGC2*7! calculates D™ production based on the

color dipole formalism and heavy-quark fragmentation function, but can not calculate D}
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Figure 7.5 Nuclear modification factor R p, as a function of p; for prompt D] mesons in the (left)
forward data and (right) backward data, integrated over the common rapidity ranges with the pp ref-
erence. The vertical bar and the vertical box on each data point represent statistical and systematic
uncertainty respectively. The coloured bands denote the theoretical calculations using the HELAC-
Onia generator, incorporating the nPDFs of EPPS16 (grey) and nCTEQ15 (cyan). The brown box
(which looks like a line) represents the CGC1 calculations.

yet. In forward rapidity, both the CGC1 and CGC2 calculations are in good agreement
with data points within uncertainties. The uncertainty band for CGCl1 is very small, since
CGC1 only contains the variation of charm quark masses and factorisation scale, which
are largely canceled in the ratio of cross-sections versus pr.

In Figs. 7.13 and 7.14, the D} and D* R,p, results are compared with those of D°
which have also been measured in pPb collisions at /sy = 8.16 TeV 42l These results
are almost consistent with each other within uncertainties. The slight difference seen in the
forward rapidities in Fig. 7.14 is due to the fact that py of DY is measured down to 0 GeV/c.
These data can also be compared with the R py, results of D mesons from ALICE (shown in
Fig. 7.15181) which is measured in pPb collisions at /sy =5.02 TeV. It is worth noting
that ALICE measures the D meson productions in the central rapidity region, while LHCb

measures at the forward/backward rapidity intervals. Nevertheless, the LHCDb results seem

to be consistent with the ALICE measurements within uncertainties.

7.3 Forward-backward ratio

The forward to backward ratio, Rgg, is obtained from Eq. 3.5 which is calculated
in the common rapidity region (2.5 < [y*| < 4). Unlike R,p,, Rpg does not require
pp measurements as a reference, which contributes most of the systematic uncertainty
in Rp,. The uncertainties from the branching fraction and tracking efficiencies, PID

efficiency are considered fully correlated, while the uncertainties from the signal yield and
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Figure 7.6  Nuclear modification factor R p, as a function of rapidity for prompt D{ mesons, inte-
grated over 1 < pp < 10GeV/c. The vertical bar and the vertical box on each data point represent
statistical and systematic uncertainty respectively. The coloured bands denote the theoretical calcu-
lations using the HELAC-Onia generator, incorporating the nPDFs of EPPS16 (grey) and nCTEQ15
(cyan). The brown box at forward rapidities represents the CGC1 calculations.
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Figure 7.7  Nuclear modification factor R,p, as a function of p; for prompt D* mesons in the (left) for-
ward data and (right) backward data, integrated over the common rapidity ranges with the pp reference.
The vertical bar and the vertical box on each data point represent statistical and systematic uncertainty
respectively. The coloured bands denote the theoretical calculations using the HELAC-Onia generator,
incorporating the nPDFs of EPPS16 (grey) and nCTEQ15 (cyan). The brown box (which looks like a
line) represents the CGC1 calculations and the red box denotes the CGC2 calculations.

the simulation sample size are uncorrelated. The values of Rpy as a function of py (|y*|)
are shown in Figs. 7.16 and 7.17 for D} and D™ respectively, and listed in Tabs. 7.15 and
7.16. The coloured bands show the HELAC-Onia theoretical calculations, incorporating
the nPDFs of EPPS16 and nCTEQ135. In this calculation, the D] and D] cross-sections
in pPb collisions is parameterised using the measured LHC pp data and the nPDFs are

used to account for the nuclear matter effects!!* 1481 " The uncertainty in the theoretical
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Figure 7.8  Nuclear modification factor R p, as a function of rapidity for prompt D™ mesons, inte-
grated over 1 < pp < 10GeV/c. The vertical bar and the vertical box on each data point represent
statistical and systematic uncertainty respectively. The coloured bands denote the theoretical calcu-
lations using the HELAC-Onia generator, incorporating the nPDFs of EPPS16 (grey) and nCTEQ15
(cyan). The brown and red boxes at forward rapidities represent the CGC1 and CGC2 calculations,
respectively.

calculation is dominated by the uncertainty of the nPDFs.

In the left of Figs. 7.16 and 7.17, the data points are in good agreement with the
theoretical predictions at low py and below unity. This suppression at forward rapidity
compared to the backward ones (also shown in the right of Figs. 7.16 and 7.17, in partic-
ular for |y*| > 3.5) suggests the presence of cold nuclear matter effects. But the data also
show a clear rising trend towards high p. Since the cross-section of high pt is small com-
pared to that at low pr, this difference is not visible in the right of Figs. 7.16 and 7.17. We

(ndata_ntheory)2

use y = 4 | —5———— to test the consistency of data and theory. The overall deviation

%data Gtheory

from EPPS16 by 7.36(D{) and 10.06(D™). This difference originates from the suppres-
sion (compared to the nPDF calculations) at high py in Rpp, in the backward rapidity
region. The underlying physics mechanism which causes this extra high py charm hadron

suppression at backward rapidity need further theory and experimental investigations.
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CHAPTER 7 RESULTS AND DISCUSSION

Table 7.3 Differential cross-section ;T"( mb/( GeV/c)) for prompt D} as a function of p; at forward

(1.5<y*<4.0) and backward (-5.0<y*<-2.5) rapidities in pPb collisions at /s, = 8.16 TeV. The first
error is statistical, the second one is the systematic uncertainty that is uncorrelated between bins, and
the third one is the correlated systematic error.

Forward
prl GeVie] %‘T [ mb/( GeVie)]
[1,2]  17.826 +0.433 + 0.955 + 1.808
[2,3] 12218 +0.104 +0.216 + 1.177
[3,4] 6.276 +0.123 + 0.083 + 0.592
[4,5] 3.051 +0.027 + 0.025 + 0.283
(5, 6] 1.576 +0.045 + 0.017 + 0.146
[6,7] 0.843 +0.012 + 0.019 + 0.079
[7,8] 0.476 +0.011 + 0.010 + 0.045
(8,9] 0.244 + 0.006 + 0.009 + 0.023
[9,10]  0.147 +0.005 + 0.004 + 0.014
[10,11]  0.095 + 0.003 + 0.005 + 0.009
[11,12]  0.059 + 0.002 + 0.002 + 0.006
[12,13]  0.034 + 0.002 + 0.001 + 0.003

Backward

prl GeVie] ;75 [ mb/( GeVie)]

[1,2] 20.196 +0.421 + 0.975 +2.700
[2,3] 12.163 £ 0.119 + 0.196 + 1.490
[3,4] 5.729 £ 0.050 + 0.073 + 0.694
[4,5] 2.553 +£0.025 + 0.029 + 0.300
[5, 6] 1.182 £ 0.014 £ 0.020 + 0.143
[6,7] 0.524 +£0.009 + 0.012 + 0.063
[7,8] 0.276 + 0.004 + 0.005 + 0.031
[8,9] 0.153 +0.004 + 0.004 + 0.018
[9,10] 0.083 £0.002 + 0.003 + 0.011
[10,11] 0.053 +0.002 + 0.003 + 0.007
[11,12] 0.029 + 0.001 + 0.001 + 0.003
[12,13] 0.019 +£ 0.001 + 0.001 + 0.002
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CHAPTER 7 RESULTS AND DISCUSSION

Table 7.4 Differential cross-section ;7‘7( mb/( GeV/c)) for prompt D as a function of p; at forward
T

(1.5<y*<4.0) and backward (-5.0<y*<-2.5) rapidities in pPb collisions at /s, = 8.16 TeV. The first

error is statistical, the second one is the systematic uncertainty that is uncorrelated between bins, and

the third one is the correlated systematic error.

Forward

prl GeVie] %‘T [ mb/( GeVie)]

[1,2]  40.806 +0.177 + 0.728 + 2.327
[2,3] 26351 +0.058 + 0.467 + 1.356
[3,4]  13.201 +0.019 + 0.223 + 0.650
[4,5] 6.407 + 0.012 + 0.137 + 0.305
[5,6] 3.231 £ 0.007 + 0.065 + 0.153
[6,7] 1.712 + 0.012 + 0.042 + 0.082
[7,8] 0.951 + 0.005 + 0.022 + 0.046
(8,9] 0.563 + 0.005 + 0.014 + 0.029
[9,10]  0.307 +0.001 + 0.008 + 0.015
10,111 0.195 + 0.002 + 0.004 + 0.010
11,12]  0.132 +0.001 + 0.004 + 0.007
12,13]  0.072 +0.001 = 0.002 + 0.004
13,14]  0.048 = 0.001 = 0.002 = 0.003

_ —. —_. —

Backward

prl GeVie] jﬁ [ mb/( GeVic)]

[1,2]  41.403 +0.166 + 0.801 + 4.415
[2,3] 24424 +0.032 +0.413 +2.307
[3,4]  10.956 +0.014 + 0.174 + 1.007
[4,5] 4.814 + 0.009 + 0.096 + 0.422
5, 6] 2.207 + 0.005 + 0.042 + 0.191
[6,7] 1.064 + 0.005 + 0.020 + 0.094
[7,8] 0.563 + 0.006 + 0.013 + 0.051
(8,9] 0.292 + 0.002 + 0.007 + 0.026
[9,10]  0.168 +0.001 + 0.004 + 0.015
10,11]  0.102 +0.001 + 0.003 + 0.010
11,12]  0.070 +0.001 =+ 0.003 + 0.007
12,13]  0.038 + 0.000 + 0.002 + 0.003
13,14]  0.025 +0.000 = 0.001 = 0.002
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CHAPTER 7 RESULTS AND DISCUSSION

Table 7.5 Differential cross-section f—;(mb) for prompt D} as a function of y* (1<p;<13 GeVic)

in pPb collisions at 4/s,, = 8.16 TeV. The first error is statistical, the second one is the systematic
uncertainty that is uncorrelated between bins, and the third one is the correlated systematic error.

Forward
v o [mb]
[1.5,2.0] 19.032 +0.474 + 1.622 +2.098
[2.0,2.5] 19.347 + 0.231 £ 0.790 + 1.854
[2.5,3.0] 18.918 +0.276 + 0.482 + 1.749
[3.0,3.5] 17.129 + 0.344 + 0.449 + 1.606

[3.5,4.0] 11.262 + 0.627 + 0.421 + 1.117

Backward

y* o7 [mb]
—2.5,-3.0] 22.148 +0.434 +1.383 +3.142
-3.0,-3.5] 21.695+0.392 +0.539 + 2.667
-3.5,-4.0] 18.086+0.342 +0.414 +2.214
—4.0,—4.5] 15.176 £0.329 + 0.714 + 1.962
-4.5,-5.0] 8.814 +0.459 + 1.047 + 1.002

~— ~— — —
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Table 7.6 Differential cross-section ﬁ(mb) for prompt D* as a function of y* (1<p<14 GeVic)

in pPb collisions at /s, = 8.16 TeV. The first error is statistical, the second one is the systematic
uncertainty that is uncorrelated between bins, and the third one is the correlated systematic error.

Forward

y o7 lmb]
[1.5,2.0] 44.72 +£0.32 + 1.00 +£ 2.97
[2.0,2.5] 43.80+0.10 £ 0.72 +£2.29
[2.5,3.0] 40.21 +0.09 +0.75 + 1.91
[3.0,3.5] 34.12 +0.09 £ 0.59 + 1.64
[3.5,4.0] 2511 +0.12+094 +1.24

Backward

yx o [mb]
[-3.0,-2.5] 45.67 +0.23 +0.99 +4.87
[-3.5,-3.0] 41.97 +0.08 +0.69 + 3.87
[-4.0,-3.5] 36.53 +0.07 +0.60 + 3.55
[-4.5,-4.0] 28.50+0.21 +£0.77 +2.80
[-5.0,-4.5] 19.59 +0.07 +1.01 +2.18

Table 7.7  Nuclear modification factor R, for prompt DY mesons as a function of py forward rapidity
regions, integrated over the common rapidity region of 2.0 < |y*| < 4.0 with pp reference. The first
and second errors are statistical and systematic uncertainties, respectively.

pr [ GeVie ] R p,(Forward)
[1,2] 0.800 +£0.021 +£0.112
[2,3] 0.705 + 0.005 + 0.066
[3,4] 0.734 = 0.017 + 0.058
[4,5] 0.742 + 0.007 + 0.058
[5,6] 0.764 = 0.008 + 0.063
[6,7] 0.816 + 0.014 + 0.080
[7,8] 0.829 + 0.022 + 0.090
[8,9] 0.852 +0.016 = 0.117
[9, 10] 0.845 +£0.019 + 0.109
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Figure 7.10 Prompt D nuclear modification factor R,p, as a function of py in different backward
y* bins. The vertical bar and the vertical box on each data point represent statistical and systematic
uncertainty respectively. The coloured bands denote the theoretical calculations using the HELAC-
Onia generator, incorporating the nPDFs of EPPS16 (grey) and nCTEQ15 (cyan).

Table 7.8 Nuclear modification factor R,p, for prompt D{ mesons as a function of p; backward
rapidity regions, integrated over common rapidity region of 2.5 < |y*| < 4.5 with pp reference. The
first and second errors are statistical and systematic uncertainties, respectively.

pr [ GeVie ] R p,(Backward)
[1,2] 0.957 £ 0.022 £ 0.160
[2,3] 0.967 +0.009 + 0.111
[3,4] 0.956 + 0.008 + 0.101
[4,5] 0.928 + 0.009 + 0.099
[5,6] 0.896 + 0.010 £ 0.107
[6,7] 0.817 + 0.015 + 0.100
[7,8] 0.883 +0.013 +0.110
[8,9] 0.862 + 0.018 + 0.136
[9, 10] 0.819 +0.028 +0.127
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Figure 7.11 Prompt D" nuclear modification factor R p, as a function of p; in different forward y*
bins. The vertical bar and the vertical box on each data point represent statistical and systematic un-
certainty respectively. The coloured bands denote the theoretical calculations using the HELAC-Onia
generator, incorporating the nPDFs of EPPS16 (grey) and nCTEQ15 (cyan). The red line represents
the CGC2 calculations.

Table 7.9 Nuclear modification factor R, for prompt D} mesons as a function of y*, integrated over
1 < pr < 10GeV/ce. The first and second errors are statistical and systematic uncertainties, respectively.

ly*l Rypy
[-4.5,-4.0] 1.172+0.012 +0.147
[-4.0,-3.5] 1.016 +0.019 +0.123
[-3.5,-3.0] 0941 +0.017+£0.112
[-3.0,-2.5] 0.869 +0.017 +0.144
[2.0,2.5]  0.887+£0.011 +£0.131
[2.5,3.0] 0.742+0.011 +£0.072
[3.0,3.5]  0.743 +£0.015 = 0.067
[3.5,4.0] 0.637+0.035+0.070
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Figure 7.15  ALICE results of nuclear modification factors R p, of prompt D mesons in pPb collisions
at 1/s =5.02 TeV*®! . These figures are taken from Ref. [48].
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Table 7.10 Nuclear modification factor R,p, for prompt D* mesons as a function of p; forward
rapidity regions, integrated over common rapidity region of 2.0 < |y*| < 4.0 with pp reference. The
first and second errors are statistical and systematic uncertainties, respectively.

pr [ GeVie ] R pp,(Forward)
[1,2] 0.660 + 0.002 + 0.059
[2,3] 0.708 + 0.002 + 0.055
[3,4] 0.728 +0.001 + 0.052
[4,5] 0.738 + 0.001 + 0.060
[5,6] 0.755 +0.002 + 0.059
[6,7] 0.788 + 0.005 + 0.071
[7,8] 0.794 £ 0.005 + 0.072
[8,9] 0.790 + 0.010 + 0.079
[9, 10] 0.932 + 0.006 + 0.087

Table 7.11  Nuclear modification factor R, for prompt D™ mesons as a function of p; backward
rapidity regions, integrated over common rapidity region of 2.5 < |y*| < 4.5 with pp reference. The
first and second errors are statistical and systematic uncertainties, respectively.

pr [ GeVie ] R p,(Backward)
[1,2] 0.826 + 0.004 +0.102
[2,3] 0.875 +0.001 + 0.091
[3,4] 0.855 +0.001 + 0.085
[4,5] 0.847 + 0.001 + 0.087
[5,6] 0.823 +0.002 + 0.086
[6,7] 0.818 + 0.003 + 0.089
[7,8] 0.804 + 0.008 + 0.086
[8,9] 0.764 + 0.004 + 0.089
[9,10] 0.846 + 0.005 + 0.098
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Table 7.12  Nuclear modification factor R,p, for prompt D* mesons as a function of y*, integrated
over 1 < pr < 10GeVic. The first and second errors are statistical and systematic uncertainties,
respectively.

[y Rpr
[—4.5,—4.0] 0.915 +0.007 + 0.098
[—4.0,-3.5] 0.874 +0.002 + 0.089
[_
[_

3.5,-3.0] 0.811 +0.002 +0.089
3.0,-2.5] 0.813 +0.004 +0.105
[2.0,2.5]  0.775 +£0.002 + 0.079
[2.5,3.0] 0.715+£0.002 + 0.054
[3.0,3.5]  0.659 +0.002 + 0.046
[3.5,4.0]  0.603 +£0.003 £+ 0.056

m 2 — T T m 2 — T
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Figure 7.16 D} Forward and backward production ratio Ry as a function of p; (left) and |y*| (right).
The vertical bar and vertical box represent statistical and systematic uncertainty respectively. The
coloured bands denote the HELAC-Onia theoretical calculations, incorporating the nPDFs of EPPS16
(gray) and nCTEQ15 (cyan).
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Reg

15

05|

Figure 7.17 D" Forward and backward production ratio Ry as a function of py (left) and | y*| (right).
The vertical bar and vertical box represent statistical and systematic uncertainty respectively. The
coloured bands denote the HELAC-Onia theoretical calculations, incorporating the nPDFs of EPPS16
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Table 7.15 D} Forward and backward production ratio Ry as a function of py and |y*|. Integrated
over common py and y* range : 1 < pp < 13GeVic for 2.5 < |y*| < 3.0, 1 < py < 11GeV/c for
30 < [yl <3.5,1 < pr < 7GeVie for 3.5 < |y*| < 4.0. The first and second errors are statistical

and systematic uncertainty respectively.

m T T
o 4 LHCb8.16 Tev D*  LHCb Unofficial
EPPS16 D*
nCTEQ15 D*
' ;Hi """"""""""""""""""""""""" ]
05F _
P L
25 3 35 4
ly*|

pr [ GeVie ]

RFB

(1,2]
[2,3]
(3.4]
[4,5]
(5. 6]
[6,7]
[7.8]
(8.9]
[9, 10]
[10,11]
[11,12]
[12,13]

0.763 +0.032 + 0.103
0.743 +0.011 + 0.079
0.756 + 0.026 + 0.076
0.764 + 0.013 + 0.073
0.858 + 0.016 + 0.084
0.982 +0.030 +0.102
0.980 + 0.030 + 0.089
0.921 +0.028 + 0.092
1.028 +0.051 +0.119
0.978 +0.057 £ 0.148
1.028 + 0.074 + 0.144
1.068 +0.144 + 0.161

[v*|

RFB

[2.5,3.0]
[3.0,3.5]
[3.5,4.0]

0.854 +0.021 +0.119
0.790 + 0.021 + 0.084
0.625 +0.037 + 0.071
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Table 7.16 D* Forward and backward production ratio Rz a function of p; and |y*|. Integrated
over common py and y* range : 1 < pp < 14GeVic for 2.5 < |y*| < 3.0, 1 < pr < 11GeVic for
30 < |y] <3.5,1 < pr < 8GeVic for 3.5 < |y*| < 4.0. The first and second errors are statistical
and systematic uncertainty respectively.

pr [GeVie | Rpp
[1,2] 0.775 + 0.004 + 0.092
[2,3] 0.785 + 0.003 + 0.082
[3,4] 0.832 +0.002 + 0.083
[4,5] 0.878 +0.003 + 0.086
[5,6] 0.913 +0.004 + 0.088
[6,7] 0.979 +0.010 + 0.097
[7,8] 0.993 +0.014 + 0.101
[8,9] 1.048 +0.022 + 0.111
[9,10] 1.081 +0.013 +0.118
[10,11] 1.103 +0.022 + 0.127
[11,12] 1.097 +0.028 +0.126
[12,13] 1.101 +0.049 + 0.137
[13,14] 1.272 +0.044 + 0.163

[v*] R
[2.5,3.0] 0.881 +0.005 +0.104
[3.0,3.5] 0.814 +0.003 + 0.086
[3.5,4.0] 0.690 +0.004 + 0.072
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7.4 D]/D" cross-section ratio

The measurement of the relative abundances of the DY and D* in pPb collisions can
provide clue about the modification of the hadronisation mechanism in small system.

The py-differential DY /D™ ratios are shown in Figs. 7.18 and listed in Tab. 7.17. The
uncertainties from the luminosity is canceled out due to the same data sample. The un-
certainties from K () hadronic interactions with the detector, tracking efficiencies and
PID efficiency are considered partially correlated, while the uncertainties from the signal
yield and the simulation sample size are uncorrelated. The pp-differential D/D™ ratios
are compatible in each rapidity intervals and in agreement with the theoretical calcula-
tion. This implies that relative abundance does not change and is independent of rapidity.
Similarly, it is also consistent with the ALICE results as shown in Fig. 7.19148]

The D}/D% ratios are also studied in different py and rapidity intervals as a function
of the PV nTracks. The results are shown in Figs. 7.20 and 7.21 and listed in Tabs. 7.18
and 7.19. In these figures, the x-axis is scaled with the average numbers of PV ntracks in
minimum bias events, which are 60.25 and 68.97 for the forward and backward collisions
respectively. In order to improve the statistics, we also integrate kinematic bins to obtain
the ratios versus multiplicity in low (2 — 6 GeV/c) and high momentum (6 — 12 GeV/c)
ranges, shown in Figs. 7.22 and 7.23. To estimate the significance of the rising trend, a
linear function is used to fit the data point in these two figures. This line deviates from flat
distribution by 7.3c(forward) and 12.6c(backward) in the 2 — 6 GeV/c pt range, and by
5.2c0(forward) and 4.90(backward) in the 6 — 12 GeV/c py range. This result is compared
horizontally with result of ALICE, as shown in Figs. ??. Our result have more statistics
and more obvious enhancement trend in each momentum interval. This result confirms
that the D} /D" ratios show an increasing trend with the increasing event multiplicity (PV
ntracks), especially in the low pt region of the backward collisions. The current data pre-
cision can provide a firm conclusion that D¥/D* ratio enhancement is observed in high
multiplicity pPb collisions. This enhancement might be due to the charm hadronisation
via sequential coalescence in a s quark rich soup, however further comparisons with the-

oretical calculations are needed to confirm this physics mechanism.
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Figure 7.18 The D}/D" ratio (including branching fraction) as functions of p; in different y* bins in
pPb collisions at \/% =8.16 TeV. The error bars mark statistical uncertainties and the red boxes mark
uncorrelated systematic uncertainties, the blue boxes mark correlated systematic uncertainties. The
coloured bands mark the HELAC-Onia theoretical calculations, incorporating the nPDFs of EPPS16
(gray) and nCTEQ15 (cyan).
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Figure 7.19 ALICE results of the prompt D-meson relative abundances as a function of p; in pPb
collisions at /s, =5.02 TeV*¥. Taken from Ref. [48].
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CHAPTER 8 SUMMARY AND OUTLOOK

8.1 Summary

In this thesis, the prompt D} and D™ production cross-sections are measured in pPb
collisions at /s = 8.16TeV at LHCb.

The integrated cross-sections of prompt D meson production in pPb forward data in
the full and common fiducial regions are:

Ctorward(] < P < 13GeVie, 1.5 < y* < 4.0) = 42.84 + 0.29(stat.) & 3.45(syst.) mb,
Ctorward(] < p1 < 13GeVie,2.5 < y* < 4.0) = 23.65 + 0.22(stat.) + 1.79(syst.) mb.
The integrated cross-sections of prompt D meson production in Pbp backward data in

the full and common fiducial regions are:

Obackward(1 < pr < 13GeVie, 5.0 < y* < =2.5) = 42.96 + 0.36(stat.) + 4.91(syst.) mb,

Obackward(1 < pr < 13GeVie, —4.0 < y* < =2.5) = 30.96 + 0.27(stat.) + 3.62(syst.) mb.
The integrated cross-sections of prompt D™ meson production in pPb forward data in

the full and common fiducial regions are:

Crorward(1 < P < 14GeVie, 1.5 < y* < 4.0) = 93.98 + 0.19(stat.) + 5.04(syst.) mb,
Grorward(l < pr < 14 GeVie, 2.5 < y* < 4.0) = 49.72 + 0.09(stat.) & 2.49(syst.) mb.
The integrated cross-sections of prompt Dt meson production in Pbp backward data in

the full and common fiducial regions are:
Opackward(l < pr < 14GeVie, —5.0 < y* < —2.5) = 86.13 + 0.17(stat.) + 8.59(syst.) mb,
Obackward(1 < pp < 14GeVie, —4.0 < y* < =2.5) = 62.08 + 0.13(stat.) + 6.42(syst.) mb.
Combined with the previous D mesons measurement in pp collisions at LHCb, the
nuclear modification factor R p;, of D! and D* is calculated. A significant suppression of
the D} and D cross-sections at forward rapidities is observed, suggesting the existence
of cold nuclear matter effects in pPb collisions. In forward rapidity, the CGC and nPDF
calculations are in good agreement with the data. In backward rapidity, the nPDF calcula-
tions can still describe data well at low pr, but it is systematically higher than data at high

pr- The forward to backward ratio Rgp is also calculated. It reflects the same fact as R py,

but with more precision: consistent with the nPDF theoretical predictions at low pt but
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CHAPTER 8 SUMMARY AND OUTLOOK

shows more significant tensions at high p. This tension indicates that further theoretical
and experimental investigations are needed for a full understanding of charm productions
at backward rapidity.

The D}/D™ ratios are also studied in different py and rapidity intervals as a func-
tion of the event multiplicity (PV nTracks). These ratios show an significant increasing
trend with the increasing event multiplicity (PV ntracks), especially at low pt and in the
backward collisions. So the DY /D" ratio enhancement in high multiplicity pPb collisions
is observed for the first time in this study. This enhancement might be explained by the
charm hadronisation via sequential coalescence in a s quark rich soup, and theoretical in-
puts are urgently needed to further investigate the physics mechanism of this enhancement

in high multiplicity small system (pPb) events.

8.2 Outlook

It can be seen from the previous research that there is also strangeness enhancement
in small systems. Can’t help wondering the limit of strangeness enhancement, smaller
collision system? Less energy?

In order to meet the needs of more meta research in the future, LHCb has made many
updates before Run 3. First, a new particle filled in the beam: oxygen. Unlike the previous
lead, it is lighter and can explore new and smaller collision systems, such as \/m =
7TeV OO collisions and /sy y = 9.9TeV pO collisions. OO collisions fill the multiplicity
gap between pPb and PbPb collisions (pO<pPb<OO<PbPb). As predicted by ALICE in
Figure 8.1, the transition of strangeness enhancement from small system to large system
can be studied by measuring the ratio of strange hadrons to non-strange hadrons in different
systems. In addition, pO collision can also be used to solve the muon puzzle in cosmic
ray. High energy cosmic rays hit the earth and collided with oxygen and nitrogen in the
atmosphere and then decay. As an important decay product, muon mainly comes from two
sources: prompt production (pO interaction point) and hadronic cascade production. The
prediction of the latter process by the existing model has significant deviation from the
experimental measurement. This is the Muon Puzzle!'*°!. LHCb can accurately measure
this process due to its forward acceptance.

Another major update is the upgrade of VELO. The updating of the tracking system
greatly improves the reconstruction ability to adapt to the high luminosity. For example,

Run 2 can only reconstruct 60% centrality class PbPb collision events, but Run 3 can
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Figure 8.1 The ratio of strange hadrons to non-strange hadrons in different systems, predicted
by ALICE!,

reconstruct 30% centrality class PbPb collision events. The System for Measuring Overlap
with Gas (SMOG) based on VELO has also been upgraded to SMOG2. This is a fixed
target experiment in which the proton beam hits the noble gases (helium, neon and argon...)
in the storage cell. Compared with SMOG, SMOG?2 can provide larger and more stable
air pressure. In addition, SMOG?2 distinguishes the beam-gas collision zone from the
beam-beam collision zone. It is easy to simultaneous data-taking. The above upgrading

1511 Dye to

is to increase our sample statistics and you can find more information here
the beam energy limitation, it is impossible to run low energy collision experiments on
LHC. Therefore, the fixed target experiment has become the only direction to study the
low energy strangeness enhancement. Besides, fixed target mode allows to access large x

region as shown in Figure 8.2 and imposes more restrictions on the nPDFs.
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Figure 8.2 Detection area of SMOG!3?!,
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APPENDIX A EFFICIENCY TABLES

APPENDIX A EFFICIENCY TABLES

The efficiencies only show statistical uncertainties.

Table A.1 Geometrical acceptance efficiencies in bins of D} p; and y* for Fwd collision configura-
tion.
prl GeVie]\y= [1.5,2] [2,2.5] [2.5,3] [3,3.5] [3.5,4]
[1,2] 0.850 £ 0.002 0.950 +0.001 0.961 +£0.001 0.892+0.002 0.729 + 0.003
[2,3] 0.897 +£0.002 0.977 +£0.001 0.984 +£0.001 0.954 +0.002 0.858 + 0.003
[3,4] 0.930 £0.002 0.992 +0.001 0.995+0.001 0.985+0.001 0.948 +0.002
[4,5] 0.954+0.002 0.998 +£0.001 0.999+0.000 0.995+0.001 0.978 + 0.002
[5,6] 0.967 +0.003  0.999 +0.001 0.998 +0.001 0.997 +0.001 0.986 + 0.003
[6,7] 0.981 £0.003 1.000 +0.001 0.997 +£0.001 0.998 +0.001 0.992 + 0.003
[7,8] 0.988 £0.003 1.000+0.001 1.000+0.001 1.000=+0.001 0.987 + 0.005
[8,9] 0.990 +0.003 1.000 +0.001 1.000 +0.001 0.998 +0.003 0.988 + 0.007
[9,10] 0.991 £0.004 1.000 +0.002 1.000+0.002 0.997 +0.004 1.000 + 0.004
[10,11] 0.998 +0.003 1.000 +0.003 1.000 +0.003 1.000 +0.004 1.000 + 0.007
[11,12] 1.000 £ 0.003  1.000 + 0.004 1.000 +0.006 1.000 £ 0.007 1.000 + 0.012
[12,13] 1.000 +£0.005 1.000 +0.007 1.000+0.007 1.000+0.011 1.000 + 0.020
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Table A.2 Geometrical acceptance efficiencies in bins of Df p; and y* for Bwd collision configura-

tion.
prl GeVie\yx* [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5,—4] [-5,—-4.5]
[1,2] 0.880 +0.002 0.956 +£0.001 0.957+0.001 0.877 +0.002 0.689 + 0.003
[2,3] 0.921 +£0.002 0.982+0.001 0.981 +0.001 0.946+0.002 0.835 +0.003
[3,4] 0.948 +0.002 0.994 +0.001 0.995 +0.001 0.982 +0.001 0.935 +0.003
[4,5] 0.966 £0.002 0.999 +£0.000 0.998 +0.001 0.995+0.001 0.973 +0.002
[5,6] 0.979 £0.002 1.000+0.000 0.998 +0.001 0.996 +0.001 0.982 + 0.003
[6,7] 0.986 +0.002 1.000+0.001 0.997+0.001 0.997+0.001 0.991 + 0.003
[7,8] 0.995 +0.002 1.000+0.001 1.000+0.001 0.999 +0.002 0.982 + 0.006
[8,9] 0.997 +0.002 1.000 +0.001 1.000 +0.001 0.996 +0.003 0.987 + 0.007
[9,10] 0.994 £0.003 1.000+0.002 1.000+0.002 0.997 +0.004 1.000 + 0.005
[10,11] 0.998 +0.003 1.000 +0.003 1.000 +0.003 1.000 + 0.005 1.000 + 0.008
[11,12] 1.000 + 0.004 1.000 +0.004 1.000 +0.006 1.000 + 0.007 1.000 + 0.014
[12,13] 1.000 +£0.005 1.000 +0.007 1.000 +0.007 1.000+0.012 1.000 + 0.021

Table A.3 Geometrical acceptance efficiencies in bins of D} p; and y* and PV nTracks for Fwd
collision configuration.

prl GeViel, y # \PVnTracks [10, 60] [60, 80] [80, 100] [100, 120] [120, 140] [140,200]
[2,4],[1.8,2.3] 0.9667 + 0.0009 0.9667 + 0.0009 0.9667 +0.0009 0.9667 + 0.0009 0.9667 + 0.0009  0.9667 + 0.0009
[2,4],[2.3,2.8] 0.9911 £ 0.0005 0.9911 +0.0005 0.9911 £0.0005 0.9911 +£0.0005 0.9911 +0.0005 0.9911 + 0.0005
[2,4],[2.8,3.3] 0.9758 +0.0009  0.9758 +0.0009 0.9758 +0.0009 0.9758 +0.0009 0.9758 +0.0009  0.9758 + 0.0009
[4,6],[1.8,2.3] 0.9912 +0.0008  0.9912 + 0.0008 0.9912 + 0.0008 0.9912 + 0.0008 0.9912 + 0.0008 0.9912 + 0.0008
[4,6],[2.3,2.8] 0.9988 + 0.0003  0.9988 + 0.0003  0.9988 +0.0003 0.9988 +0.0003  0.9988 +0.0003  0.9988 + 0.0003
[4,6],[2.8,3.3] 0.9973 +£0.0005 0.9973 +0.0005 0.9973 +£0.0005 0.9973 +0.0005 0.9973 +0.0005 0.9973 + 0.0005

Table A.4 Geometrical acceptance efficiencies in bins of DY p; and y* and PV nTracks for Bwd
collision configuration.

prl GeVic], y # \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140, 180] [180,250]
[2,4],[-3.3,-2.8] 0.9737 +£0.0008  0.9737 +0.0008 0.9737 +0.0008 0.9737 +0.0008 0.9737 +0.0008 0.9737 +0.0008 0.9737 + 0.0008
[2,4],(-3.8,-3.3] 0.9904 + 0.0005  0.9904 +0.0005 0.9904 +£0.0005 0.9904 £ 0.0005 0.9904 +0.0005 0.9904 + 0.0005  0.9904 + 0.0005
[2,4],[—4.3,-3.8] 0.9724 £0.0009  0.9724 £0.0009 0.9724 £ 0.0009 0.9724 +0.0009 0.9724 + 0.0009  0.9724 + 0.0009  0.9724 + 0.0009
[4,6].[-3.3,-2.8] 0.9953 £ 0.0006 0.9953 +0.0006 0.9953 +0.0006 0.9953 +£0.0006 0.9953 +0.0006 0.9953 +0.0006 0.9953 + 0.0006
[4,6],[-3.8,-3.3] 0.9984 +0.0004  0.9984 +0.0004 0.9984 +0.0004 0.9984 +£0.0004 0.9984 +0.0004 0.9984 +0.0004 0.9984 + 0.0004
[4,6],[—4.3,-3.8] 0.9965 +0.0006  0.9965 £ 0.0006 0.9965 +0.0006  0.9965 + 0.0006  0.9965 + 0.0006 0.9965 + 0.0006 0.9965 + 0.0006
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Table A.5 Geometrical acceptance efficiencies in bins of D* p; and y* for Fwd collision configura-

tion.

Dprl GeVie\y= [1.5,2] [2,2.5] [2.5,3] [3,3.5] [3.5,4]
[1,2] 0.698 +0.005 0.918 £0.003 0.973 +0.002 0.909 +0.003 0.746 + 0.005
[2,3] 0.801 +£0.005 0.970+0.002 0.982+0.002 0.953+0.003 0.884 + 0.005
[3,4] 0.879 £0.005 0.986 +0.002 0.997 +0.001 0.981 +0.003 0.908 + 0.006
[4,5] 0.927 £0.005 0.996 +0.001 0.995+0.002 0.987 +0.003 0.946 + 0.007
[5,6] 0.934 +0.007 1.000 +0.000 1.000+0.000 0.984 +0.004 0.983 + 0.005
[6,7] 0.967 +0.007 1.000 £ 0.000 1.000 +0.000 1.000 +0.000 1.000 =+ 0.000
[7,8] 0.977 +0.008 1.000 +£0.000 1.000+0.000 1.000+0.000 1.000 + 0.000
[8,9] 0.968 +0.010 1.000 +0.000 1.000 +0.000 1.000 +0.000 1.000 =+ 0.000

[9,10] 1.000 + 0.000 1.000 +£0.000 1.000 +£0.000 1.000 +0.000 1.000 =+ 0.000
[10,11] 1.000 + 0.000 1.000 +0.000 1.000 +0.000 1.000 +0.000 1.000 = 0.000
[11,12] 1.000 +£0.000 1.000 +0.000 1.000 £ 0.000 1.000+0.000 1.000 + 0.000
[12,13] 1.000 + 0.000 1.000 +0.000 1.000 +0.000 1.000 +0.000 1.000 = 0.000
[13,14] 1.000 +0.000 1.000 +0.000 1.000 +0.000 1.000 +0.000 1.000 =+ 0.000

Table A.6 Geometrical acceptance efficiencies in bins of D* p; and y* for Bwd collision configura-

tion.

Dl GeVie]\y= [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5, 4] [-5,-4.5]
[1,2] 0.746 +0.004 0.936 +0.003 0.969 +0.002 0.893 +0.004 0.706 + 0.006
[2,3] 0.839+0.004 0.977£0.002 0.979+0.002 0.946 +0.003 0.866 + 0.005
[3.4] 0.917+£0.004 0.991 £0.002 0.997+0.001 0.973 +£0.003 0.901 + 0.006
[4,5] 0.942 £0.005 0.999 +£0.001 0.995+0.002 0.983 +0.004 0.929 + 0.008
[5,6] 0.969 £0.005 1.000 £0.000 1.000+0.000 0.983 +£0.005 0.978 +0.006
[6,7] 0.986 +0.004 1.000 +0.000 1.000 +0.000 1.000 =+ 0.000 1.000 =+ 0.000
[7,8] 0.985+£0.006 1.000+0.000 1.000+0.000 1.000+0.000 0.992+0.008
[8.9] 0.969 +0.010 1.000 £ 0.000 1.000 £ 0.000 1.000 +0.000 1.000 + 0.000

[9.10] 1.000 + 0.000  1.000 £ 0.000 1.000 +0.000 1.000 +0.000 1.000 + 0.000
[10,11] 1.000 £ 0.000 1.000 +0.000 1.000 +0.000 1.000 +0.000 1.000 + 0.000
[11,12] 1.000 +0.000 1.000 +0.000 1.000 +0.000 1.000 +0.000 1.000 =+ 0.000
[12,13] 1.000 + 0.000 1.000 +0.000 1.000 +0.000 1.000 +0.000 1.000 = 0.000
[13,14] 1.000 +£0.000 1.000 +0.000 1.000 £ 0.000 1.000+0.000 1.000 + 0.000
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Table A.7 Geometrical acceptance efficiencies in bins of D* p; and y* and PV nTracks for Fwd
collision configuration.

prl[ GeViel, y = \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140,200]
[2,4],[1.8,2.3] 0.9479 +£0.0021  0.9479 +£0.0021  0.9479 +£0.0021  0.9479 £ 0.0021  0.9479 +0.0021  0.9479 + 0.0021
[2,4],[2.3,2.8] 0.9911 +£0.0010 0.9911 +£0.0010 0.9911 +£0.0010 0.9911 £0.0010 0.9911 +0.0010  0.9911 + 0.0010
[2,4],[2.8,3.3] 0.9776 £ 0.0016  0.9776 +0.0016  0.9776 +0.0016 0.9776 +0.0016 0.9776 +0.0016 0.9776 + 0.0016
[4,6],[1.8,2.3] 0.9842 +0.0021  0.9842 + 0.0021  0.9842 + 0.0021  0.9842 + 0.0021  0.9842 + 0.0021  0.9842 + 0.0021
[4,6],[2.3,2.8] 0.9971 £ 0.0010  0.9971 +£0.0010 0.9971 £0.0010 0.9971 £0.0010 0.9971 +0.0010  0.9971 + 0.0010
[4,6],[2.8,3.3] 0.9958 +£0.0013  0.9958 +0.0013  0.9958 +£0.0013  0.9958 +0.0013  0.9958 +0.0013  0.9958 + 0.0013

Table A.8 Geometrical acceptance efficiencies in bins of D* p; and y* and PV nTracks for Bwd
collision configuration.

prl GeVicl, y # \PVnTracks [10, 60] [60, 80] [80, 100] [100, 120] [120, 140] [140, 180] [180,250]
[2,4],[-3.3,-2.8] 0.9587 +£0.0019  0.9587 +£0.0019 0.9587 £0.0019  0.9587 £0.0019  0.9587 £ 0.0019  0.9587 +0.0019  0.9587 + 0.0019
[2,4],[-3.8,-3.3] 0.9896 +0.0011  0.9896 +0.0011  0.9896 +0.0011  0.9896 +0.0011  0.9896 + 0.0011  0.9896 + 0.0011  0.9896 + 0.0011
[2,4],[-4.3,-3.8] 0.9766 +0.0017  0.9766 +0.0017  0.9766 +0.0017  0.9766 +0.0017  0.9766 + 0.0017  0.9766 + 0.0017  0.9766 + 0.0017
[4,6],[-3.3,-2.8] 0.9892 +0.0018 0.9892 +0.0018 0.9892 +0.0018 0.9892 +0.0018 0.9892 +0.0018 0.9892 +0.0018 0.9892 + 0.0018
[4,6],[-3.8,-3.3] 0.9977 +0.0009  0.9977 +0.0009  0.9977 +0.0009  0.9977 +0.0009 0.9977 +0.0009 0.9977 +0.0009 0.9977 + 0.0009
[4,6],[—4.3,-3.8] 0.9923 +£0.0018 0.9923 +£0.0018  0.9923 +£0.0018 0.9923 +0.0018 0.9923 + 0.0018  0.9923 + 0.0018  0.9923 + 0.0018

Table A.9 Ratio of geometrical acceptance efficiencies (D*/DY) in bins of p; and y* for Fwd collision

configuration.

prl GeVie]\y= [1.5,2] [2,2.5] [2.5,3] [3,3.5] [3.5,4]
[1,2] 0.821 £0.006 0.966 +0.003 1.012+0.002 1.019+0.004 1.023 +0.009
[2,3] 0.894 £0.006 0.993 £0.002 0.998 £0.002 0.999 +0.004 1.030 £ 0.007
[3.4] 0.945 +0.006 0.995+0.002 1.002+0.001 0.996 +0.003 0.958 +0.007
[4,5] 0.971 £0.006 0.998 +£0.001 0.996 +0.002 0.992 +0.003 0.967 + 0.007
[5,6] 0.966 +0.008 1.001 +£0.001 1.002+0.001 0.987 +0.004 0.998 + 0.006
[6,7] 0.985 +0.007 1.000+0.001 1.003+0.001 1.002+0.001 1.008 +0.003
[7,8] 0.988 +0.008 1.000 +£0.001 1.000+0.001 1.000+0.001 1.013 +0.005
[8.9] 0978 +£0.011 1.000 +£0.001 1.000+0.001 1.002+0.003 1.012 + 0.007

[9,10] 1.010 £ 0.004 1.000 £0.002 1.000 +0.002 1.003 +0.004 1.000 + 0.004
[10,11] 1.002 +£0.003 1.000 +0.003 1.000 +0.003 1.000 +0.004 1.000 + 0.007
[11,12] 1.000 +0.003 1.000 +0.004 1.000 +0.006 1.000 +0.007 1.000 + 0.012
[12,13] 1.000 + 0.005 1.000 +£0.007 1.000 +£0.007 1.000+0.011 1.000 + 0.020
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Table A.10 Ratio of geometrical acceptance efficiencies (D*/D}) in bins of p; and y* for Bwd col-
lision configuration.

prl GeVic\y=  [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5,—4] [-5,-4.5]
[1,2] 0.848 +£0.005 0.979+£0.003 1.013+0.002 1.018+0.005 1.024 +0.010
[2,3] 0.912+0.005 0.996 +£0.002 0.998 +0.002 1.001 +0.004 1.037 +0.007
[3,4] 0.967 £0.005 0.997 £0.002 1.002+0.001 0.991 +£0.003 0.963 + 0.007
[4,5] 0.976 £ 0.005 1.000 £0.001 0.996 +£0.002 0.988 +£0.004 0.955 + 0.008
[5,6] 0.990 +0.006 1.000 +0.000 1.002+0.001 0.987 +0.005 0.995 + 0.007
[6,7] 1.000 + 0.005 1.000 +£0.001 1.003 +0.001 1.003 +0.001 1.009 + 0.003
[7,8] 0.990 +£0.006 1.000 +0.001 1.000+0.001 1.001 +0.002 1.010+0.010
[8,9] 0.972+0.010 1.000 +0.001 1.000+0.001 1.004+0.003 1.013 +0.007
[9,10] 1.006 +0.003  1.000 +£0.002 1.000 +£0.002 1.003 £0.004 1.000 £ 0.005
[10,11] 1.002 +0.003  1.000 +0.003 1.000 +0.003 1.000 +0.005 1.000 + 0.008
[11,12] 1.000 + 0.004 1.000 + 0.004 1.000 + 0.006 1.000 + 0.007 1.000 + 0.014
[12,13] 1.000 = 0.005 1.000 +0.007 1.000 +0.007 1.000+0.012 1.000 + 0.021
Table A.11 Ratio of geometrical acceptance efficiencies (D*/DY) in bins of p; and y* and PV nTracks
for Fwd collision configuration.
prl GeVicl, y * \PVnTracks [10,60] [60.80] (80, 100] [100, 120] [120, 140] 140, 200]
2.4].[1.8,2.3] 0.9805+0.0024 0.9805+0.0024 0.9805 +0.0024 09805 +0.0024 0.9805 +0.0024 0.9805 + 0.0024

2,4],[2.3,2.8]
2,4],2.8,3.3]
4,61,[1.8,2.3]
4,6],2.3,2.8]
[4,6],[2.8,3.3]

[
L
L
L

1.0000 + 0.0011
1.0018 + 0.0019
0.9930 + 0.0023
0.9984 + 0.0011
0.9984 + 0.0014

1.0000 + 0.0011
1.0018 + 0.0019
0.9930 + 0.0023
0.9984 +0.0011
0.9984 +0.0014

1.0000 £ 0.0011
1.0018 + 0.0019
0.9930 + 0.0023
0.9984 +0.0011
0.9984 +0.0014

1.0000 £ 0.0011
1.0018 + 0.0019
0.9930 + 0.0023
0.9984 +0.0011
0.9984 +0.0014

1.0000 + 0.0011
1.0018 + 0.0019
0.9930 + 0.0023
0.9984 + 0.0011
0.9984 + 0.0014

1.0000 + 0.0011
1.0018 + 0.0019
0.9930 + 0.0023
0.9984 + 0.0011
0.9984 + 0.0014

Table A.12  Ratio of geometrical acceptance efficiencies (D*/D}) in bins of p; and y* and PV nTracks
for Bwd collision configuration.

prl GeVic], y # \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140, 180] [180,250]
[2,4],[-3.3,-2.8] 0.9846 +0.0022  0.9846 +0.0022  0.9846 + 0.0022 0.9846 + 0.0022 0.9846 +0.0022 0.9846 +0.0022 0.9846 + 0.0022
[2,4],[-3.8,-3.3] 0.9992 +£0.0012  0.9992 +£0.0012  0.9992 +£0.0012 0.9992 +£0.0012  0.9992 +0.0012  0.9992 +0.0012  0.9992 + 0.0012
[2,4],[—4.3,-3.8] 1.0043 £0.0020  1.0043 £0.0020 1.0043 £0.0020 1.0043 +0.0020 1.0043 +0.0020 1.0043 + 0.0020 1.0043 + 0.0020
[4,6].[-3.3,-2.8] 0.9938 +£0.0019  0.9938 +£0.0019 0.9938 +£0.0019 0.9938 £ 0.0019  0.9938 £ 0.0019  0.9938 + 0.0019  0.9938 + 0.0019
[4,6],[-3.8,-3.3] 0.9993 +£0.0010  0.9993 +£0.0010 0.9993 £0.0010 0.9993 £0.0010 0.9993 £ 0.0010 0.9993 +0.0010  0.9993 + 0.0010
[4,6],[—4.3,-3.8] 0.9958 +£0.0019  0.9958 +£0.0019  0.9958 £ 0.0019  0.9958 £0.0019  0.9958 £ 0.0019  0.9958 + 0.0019  0.9958 + 0.0019
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Table A.21

collision configuration.

Ratio of selection and reconstruction efficiencies (D*/DY) in bins of p; and y* for Fwd

prl GeVic\y* [1.5,2] [2,2.5] [2.5,3] [3,3.5] [3.5,4]
[1,2] 1.043 +0.067 2.022 +0.060 2.998 +0.089 4.107 +0.162 5.590 = 0.386
[2,3] 1.048 £0.022 1.645+0.018 2.214+0.025 2.655+0.037 3.375 +0.080
[3,4] 1.190 £ 0.020 1.628 +0.015 1.950+0.019 2.257+0.027 2.787 +0.056
[4,5] 1.244 +£0.020 1.633 +£0.017 1.863+0.021 1.990+0.026 2.118 +0.047
[5,6] 1.318+£0.024 1.647 +£0.021 1.839£0.025 1.892+0.030 1.719 +0.052
[6,7] 1.341 £0.029 1.656 £0.026 1.784 +0.030 1.727 +£0.036 1.385 + 0.066
[7,8] 1.349+£0.034 1.661 +£0.032 1.812+0.038 1.585+0.043 1.052 +0.088
[8,9] 1.359 £ 0.042 1.638 +£0.039 1.735+0.046 1.384 +0.052 0.945 +0.157

[9,10] 1.445 +0.054 1.613+0.048 1.719+0.057 1.337+0.072 0.557 +0.240
[10,11] 1.380+0.061 1.578 +£0.055 1.623+0.066 1.151 +0.088 -
[11,12] 1.506 +0.085 1.604 +0.070 1.490+0.076 1.017 +£0.125 -
[12,13] 1451 +0.090 1.653+0.085 1.690+0.114 0.830+0.162 -

Table A.22 Ratio of Selection and reconstruction efficiencies (D*/D?) in bins of p; and y* for Bwd
collision configuration.

Dl GeVie]\y= [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5, 4] [-5,-4.5]
[1,2] 1.196 +0.088 2.363 +0.100 3.077 £0.141 4.313+0.291 4.656 +0.570
[2,3] 1.170 £ 0.030 1.724 +£0.027 2.327 £0.041 2.833+0.068 3.569 +0.175
[3.4] 1.270 £0.026 1.675+0.023 2.021 +£0.032 2.340+0.050 2.761 £0.116
[4,5] 1.387 +£0.029 1.724 +£0.027 1.879+0.034 2.100+0.052 2.140 +0.107
[5,6] 1.395+0.033 1.672+0.032 1.894+0.043 1.924+0.060 1.681 +0.125
[6,7] 1.349 +0.038 1.614+0.038 1.755+0.051 1.693+0.071 1.371+0.173
[7,8] 1.424 +0.049 1.643 +0.050 1.810+£0.069 1.688+0.100 0.923 +0.253
[8.9] 1.555+0.066 1.744+0.069 1.766 +£0.085 1.353+0.115 0.453 +0.256

[9,10] 1.399 +0.071 1.662 +0.080 1.584 +0.096 1.141 +0.147 -
[10,11] 1.409 +0.087 1.768 +0.110 1.540+0.129 1.142 +0.229 -
[11,12] 1.381 +£0.102 1.793 +0.139 1.400+0.139 0.905 + 0.289 -
[12,13] 1.458 +0.128 1.684 +0.158 1.644 +0.220 1.725 +1.160 -
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Table A.23 Ratio of selection and reconstruction efficiencies (D*/D?) in bins of p; and y* and PV
nTracks for Fwd collision configuration.

prl GeVie], y + \PVnTracks [10, 60] [60, 80] (80, 100] [100, 120] [120, 140] [140, 200]
[2,4],[1.8,2.3] 14422 £0.0413  1.5174 £0.0487 14741 £0.0411 1.4854 +0.0396 1.3683 +0.0365 1.5475 + 0.0328
[2,4],[2.3,2.8] 19251 +0.0496  1.8773 +0.0533 1.9264 +0.0485 2.0365 +0.0498 1.9573 + 0.0480 2.0994 + 0.0397
[2,4],[2.8,3.3] 2.3299 +0.0700 2.4018 +0.0826 2.2519+0.0661 2.3042 +0.0638 2.3660 + 0.0679 2.5419 + 0.0555
[4,6],1.8,2.3] 1.6155 + 0.0519  1.5548 +0.0538 15061 +0.0453 1.5869 + 0.0458 1.5256 + 0.0446 1.6205 + 0.0364
[4,6],[2.3,2.8] 1.8219 +0.0566  1.7091 +0.0574 1.7981 +0.0539 1.7549 +0.0486 1.8100 +0.0523 19575 + 0.0430
[4,6],[2.8,3.3] 2.0509 +0.0724 1.9033 +0.0739 1.9394+0.0661 2.1589 +0.0725 1.9881 +0.0649 2.1265 + 0.0532

Table A.24 Ratio of Selection and reconstruction efficiencies (D*/D?) in bins of p; and y* and PV
nTracks for Bwd collision configuration.

prl GeVic], y # \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140, 180] [180,250]
[2,4],[-3.3,-2.8] 1.6327 £0.0769  1.5520 £0.0725 1.4703 £0.0579 1.5808 £0.0545 1.5886 +£0.0502 1.7048 +0.0381 1.8572 +0.0415
[2,4],[-3.8,-3.3] 1.9588 +£0.0877 2.1297 £0.1018  2.1218 £ 0.0844  2.0284 +0.0691 2.1616 +0.0693 2.1507 + 0.0468 2.6183 + 0.0586
[2,4].[-4.3,-3.8] 2.5971 £0.1539  2.3724 £0.1384  2.4437 £0.1230 2.4010 £0.1027 2.5906 +0.1044 2.7602 + 0.0775 2.8861 + 0.0785
[4,6],[-3.3,-2.8] 1.7290 +£0.0940  1.6452+0.0892 1.6541 +0.0748 1.6562 +0.0638 1.7119 +0.0615 1.7632 +0.0437 2.0487 +0.0511
[4,6],[-3.8,-3.3] 1.9807 £0.1190  2.0216 £0.1206 1.8784 £0.0911 1.8827 +0.0781 1.9704 +0.0757 2.0255 +0.0535 2.2655 + 0.0595
[4,6].[-4.3,-3.8] 1.9983 £0.1404 1.8217 £0.1315  2.1303 £0.1323  2.1782 £0.1222  2.0036 £ 0.0946 2.2484 + 0.0764 2.4221 + 0.0797

Table A.25 PID efficiencies in bins of D{ p; and y* for Fwd collision configuration.

Dprl GeVie\y= [1.5,2] [2,2.5] [2.5,3] [3,3.5] [3.5,4]
[1,2] 0.736 £ 0.009 0.729 +£0.004 0.791 +£0.003 0.728 +0.006 0.551 + 0.007
[2,3] 0.796 £ 0.003  0.794 £0.001 0.842+0.001 0.774 £0.002 0.562 + 0.003
[3.4] 0.839 £0.002 0.854 +£0.001 0.889 +0.001 0.804 +0.001 0.532 +0.003
[4,5] 0.879 £0.001 0.899 +£0.001 0.926 +0.009 0.802 +0.002 0.455 + 0.004
[5,6] 0911 +£0.001 0.925+0.001 0.924 +0.001 0.767 +=0.002 0.377 + 0.006
[6,7] 0.935+0.001 0.937+0.001 0.919+0.001 0.702+0.003 0.275 +0.007
[7,8] 0.947+0.001 0.938 £0.001 0.902+0.002 0.618+0.005 0.178 £ 0.009
[8.9] 0.952+0.001 0.929 +£0.003 0.871+£0.002 0.543 +0.007 0.126 +0.013

[9,10] 0.953 £0.002 0912 +0.002 0.823+0.004 0.452+0.011 0.068 +0.014
[10,11] 0.946 +0.002 0.888 +£0.002 0.783 +0.005 0.368 +0.014 -
[11,12] 0.933 +0.003 0.868 +0.003 0.729 +0.007 0.324 + 0.020 -
[12,13] 0.921 +£0.004 0.829 +£0.005 0.665+0.012 0.268 + 0.024 -
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Table A.26 PID efficiencies in bins of D p; and y* for Bwd collision configuration.

Dprl GeVie\y= [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5,—4] [-5,—-4.5]
[1,2] 0.556+0.012 0.615+0.007 0.725+0.006 0.625+0.012 0.455 +0.013
[2,3] 0.678 £0.006 0.710+0.002 0.780 +0.002 0.685 +0.004 0.474 + 0.007
[3,4] 0.764 +0.003  0.800 +£0.002 0.834+0.002 0.701 +£0.003 0.421 + 0.006
[4,5] 0.828 +0.003 0.854 +0.002 0.863 +0.002 0.695 +0.004 0.354 + 0.008
[5,6] 0.882+£0.002 0.893+£0.002 0.865+0.002 0.645+0.005 0.260+0.011
[6,7] 0.914 +0.003 0.907 £0.002 0.857+0.003 0.577+0.008 0.191 +0.015
[7,8] 0.926 +0.002 0.906 +0.002 0.830+0.004 0.502+0.012 0.115+0.020
[8,9] 0.933+0.002 0.895+0.003 0.782+0.006 0.411+0.016 0.082 +0.033

[9,10] 0.940 +0.002 0.876 +£0.004 0.760 + 0.007 0.322 +0.022 -
[10,11] 0.929 +0.003 0.839+0.005 0.695+0.012 0.272 +0.032 -
[11,12] 0.925+0.004 0.813 +£0.006 0.645+0.019 0.151 +0.035 -
[12,13] 0.895+0.007 0.787 £0.008 0.590+0.021 0.117 +0.026 -

Table A.27 PID efficiencies in bins of D} p; and y* and PV nTracks for Fwd collision configuration.

prl GeVie], y + \PVnTracks [10, 60] [60, 80] (80, 100] (100, 120] [120, 140] [140, 200]
[2,4],[1.8,2.3] 0.9104 +0.0016 0.9174+0.0018 0.8714+0.0026 0.8144 +0.0023 0.7808 + 0.0029 0.7037 = 0.0027
[2,4],[2.3,2.8] 0.9358 +0.0011 0.9320+0.0013 0.9010+0.0016 0.8596 +0.0016 0.8374 +0.0020 0.7650 + 0.0018
[2,4],[2.8,3.3] 0.9208 +0.0022  0.9029 +0.0025 0.8856 +0.0023 0.8520 = 0.0025 0.8266 + 0.0028 0.7627 + 0.0027
[4,6],1.8,2.3] 0.9595 +0.0011  0.9606 +0.0011 0.9350 +0.0016 0.8980 + 0.0015 0.8804 + 0.0020 0.8342 + 0.0018
[4,6],[2.3,2.8] 0.9731 +0.0009 0.9665 +0.0010 0.9509 +0.0011 0.9231 +0.0011 0.9102+0.0014 0.8724 + 0.0014
[4,6],[2.8,3.3] 0.9320 +0.0020 0.9127 +0.0022 0.8985+0.0021 0.8706 + 0.0023 0.8604 + 0.0025 0.8112 + 0.0024

Table A.28 PID efficiencies in bins of D p; and y* and PV nTracks for Bwd collision configuration.

prl GeVic], y * \PVnTracks [10, 60] [60, 80] [80, 100] [100, 120] [120, 140] [140, 180] [180,250]
[2,4].[-3.3,-2.8] 0.8749 £ 0.0047 0.8619 +£0.0051 0.8056 +0.0052 0.7586 £ 0.0045 0.7128 +£0.0046 0.6160 + 0.0031  0.5389 + 0.0031
[2,4],[-3.8,-3.3] 0.9368 +0.0028 0.9089 +0.0033  0.8756 +0.0033  0.8407 £0.0031 0.7875 £0.0034  0.6921 +0.0023  0.5990 + 0.0044
[2,4],[-4.3,-3.8] 0.9180 £ 0.0048  0.8845 +0.0054 0.8510 £0.0052 0.8064 £0.0046 0.7553 £0.0051 0.6498 +0.0038  0.5328 + 0.0036
[4,6],[-3.3,-2.8] 0.9488 +£0.0031  0.9445 +0.0034 0.9183 £0.0033  0.8880 +0.0032 0.8505 + 0.0035 0.7791 + 0.0027 0.7154 + 0.0034
[4,6].[-3.8,-3.3] 0.9688 +0.0020  0.9537 +£0.0021  0.9358 £0.0025 0.9139 £0.0022 0.8815 +£0.0029 0.8092 +0.0022 0.7178 + 0.0029
[4,6],[—4.3,-3.8] 0.9159 +£0.0045 0.8916 +£0.0053  0.8585 £ 0.0055 0.8219 £0.0055 0.7668 +0.0058 0.6914 +0.0044 0.5741 + 0.0043
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Table A.29 PID efficiencies in bins of D" p; and y* for Fwd collision configuration.

Dl GeVie\y= [1.5,2] [2,2.5] [2.5,3] [3,3.5] [3.5,4]
[1,2] 0.787 £0.005 0.783 £0.002 0.793 +£0.001 0.747 £0.001 0.613 + 0.002
[2,3] 0.828 +£0.001 0.822 +£0.001 0.836+£0.000 0.779 +0.001 0.591 £ 0.001
[3.4] 0.850 £0.001 0.859 +£0.000 0.872+0.000 0.794 +0.001 0.544 +0.001
[4,5] 0.870 £ 0.001 0.887 +£0.000 0.890+0.000 0.777 +0.001 0.488 +0.002
[5,6] 0.891 £0.001 0.903 £0.000 0.892+0.000 0.734+0.001 0.424 +0.003
[6,7] 0.908 +0.001 0.907 £0.001 0.877 £0.001 0.671 +£0.002 0.370 & 0.004
[7,8] 0.917+0.001 0.902 +£0.001 0.851+0.001 0.616+0.003 0.309 £ 0.007
[8.9] 0.921 +£0.001 0.887 +£0.001 0.813 +£0.002 0.562+0.004 0.239 +0.013

[9,10] 0915 +0.001 0.864 +£0.001 0.773 +£0.003 0.505 +0.006 0.170 +0.024
[10,11] 0.901 +0.002 0.838 +£0.002 0.731 +0.004 0.460 = 0.008 -
[11,12] 0.882 +0.003 0.807 +0.003 0.688 +0.005 0.415+0.013 -
[12,13] 0.852 +£0.004 0.771 £0.004 0.652 +0.006 0.361 +0.020 -
[13,14] 0.815+0.006 0.743 +0.005 0.616 +0.008 0.302 +0.027 -

Table A.30 PID efficiencies in bins of D* p; and y* for Bwd collision configuration.

prl GeVie\y* [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5,—4] [-5,—-4.5]
[1,2] 0.679 £0.006 0.685+0.003 0.717+0.002 0.672 +0.003 0.548 + 0.005
[2,3] 0.743 £0.002 0.741 +£0.001 0.767 +0.001 0.700 = 0.001 0.515 + 0.002
[3.4] 0.787 £0.001 0.792 +£0.001 0.809 +£0.001 0.707 +0.001 0.459 + 0.003
[4,5] 0.823 +0.001 0.830 +£0.001 0.827+£0.001 0.680+0.002 0.402 + 0.003
[5,6] 0.853+0.001 0.853+0.001 0.825+0.001 0.629+0.002 0.337 + 0.005
[6,7] 0.876 +0.001 0.862 +0.001 0.810+0.002 0.563 +0.004 0.285 +0.010
[7,8] 0.892 +0.001 0.857+0.001 0.778 +£0.003 0.517 +0.005 0.232 +0.020
[8,9] 0.898 +0.001 0.844 +0.002 0.742 +0.004 0.456 +0.008 0.202 + 0.039
[9,10] 0.894 +0.002 0.822+0.002 0.700+0.005 0.416+0.013 0.082 + 0.017
[10,11] 0.877 +£0.003 0.790 +0.003 0.662 +0.007 0.388 +0.018 -
[11,12] 0.867 +0.004 0.767 £0.005 0.633 +0.009 0.276 +0.028 -
[12,13] 0.829 +0.006 0.731 +£0.006 0.598 +0.011 0.306 = 0.048 -
[13,14] 0.813 +0.008 0.706 +0.008 0.590 +0.016 0.112 +0.017 -
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Table A.31 PID efficiencies in bins of D* p; and y* and PV nTracks for Fwd collision configuration.
prl GeVicl, y  \PVnTracks [10, 60] 60, 80] [80, 100] [100, 120] [120, 140] [140,200]
[2,41,11.8,2.3] 0.9221 £0.0007 0.9116+0.0008 0.8802+0.0010 0.8382+0.0009 0.8122+0.0013 0.7292 +0.0012
[2,4],[2.3,2.8] 0.9394 +0.0005 0.9244 £0.0005 0.8951 +0.0007 0.8568 £0.0007 0.8296 + 0.0009 0.7477  0.0009
[2,4],[2.8,3.3] 0.9149 +0.0007 0.8921 £0.0009 0.8694 +0.0009 0.8351 £0.0009 0.8100+0.0011 0.7349 £ 0.0010
[4,6],[1.8,2.3] 0.9499 +0.0005 0.9399 +0.0006 0.9180 +0.0007 0.8883 +£0.0007 0.8694 +0.0009 0.8124  0.0010
[4,61,[2.3,2.8] 0.9603 £0.0005 0.9475+0.0005 0.9274+0.0006 0.9018 +0.0006 0.8830 = 0.0008 0.8232 = 0.0009
[4,61,[2.8,3.3] 0.9042 +0.0012  0.8891 £0.0015 0.8668 +0.0014 0.8393 £0.0014 0.8209 +0.0016 0.7681 £ 0.0014

Table A.32 PID efficiencies in bins of D* p; and y* and PV nTracks for Bwd collision configuration.

prl GeVicl, y # \PVnTracks [10,60] [60, 80] [80,100] [100, 120] [120, 140] [140, 180] [180,250]
[2,4].[-3.3,-2.8] 0.9072 +£0.0014  0.8880 +0.0018 0.8398 +£0.0019 0.7997 £0.0016  0.7363 £ 0.0020  0.6265 + 0.0014  0.4867 + 0.0017
[2,4],[-3.8,-3.3] 0.9322 +£0.0010  0.9075 £0.0012 0.8706 +£0.0013  0.8279 £0.0012 0.7637 £ 0.0016  0.6449 + 0.0011 0.4881 +0.0013
[2,4],[-4.3,-3.8] 0.9001 £0.0014  0.8743 £0.0016 0.8322+0.0017 0.7907 £ 0.0016  0.7305 + 0.0019  0.6218 + 0.0014  0.4787 +0.0016
[4,6].[-3.3,-2.8] 0.9416 £0.0011  0.9299 +£0.0013  0.8999 +0.0015  0.8722 +0.0012 0.8255 +0.0016 0.7375 +0.0013  0.6125 + 0.0017
[4,6].[-3.8,-3.3] 0.9534 +£0.0010 0.9357 £0.0010 0.9108 £0.0011 0.8797 £0.0012 0.8334 £0.0016 0.7392 +0.0013  0.6006 + 0.0018
[4,6],[—4.3,-3.8] 0.8691 +0.0030  0.8508 +0.0032  0.8197 +0.0029  0.7842 +0.0028 0.7371 +0.0029 0.6468 +0.0022 0.5233 +0.0023

Table A.33 Ratio of PID efficiencies (D*/D?) in bins of p; and y* for Fwd collision configuration.

prl GeVie\y* [1.5,2] [2,2.5] [2.5,3] [3,3.5] [3.5,4]
[1,2] 1.069 £ 0.015 1.074 +£0.007 1.003 +0.005 1.026 +0.009 1.113 +0.015
[2,3] 1.041 +£0.004 1.035+0.002 0.992+0.001 1.006 +0.002 1.051 + 0.006
[3,4] 1.012+0.002 1.006 +£0.001 0.981 +£0.001 0.988 +0.002 1.022 + 0.006
[4,5] 0.990 +0.002 0.986 +0.001 0.961 +0.010 0.970+0.002 1.073 +0.010
[5.6] 0.978 £0.002 0.977 £0.001 0.965+0.001 0.956 +0.003 1.126 +0.018
[6,7] 0.971 +£0.001  0.968 +£0.001 0.954 +0.001 0.956+0.005 1.343 +0.039
[7,8] 0.968 +0.001 0.961 +£0.001 0.944 +0.002 0.997 +0.009 1.731 +0.096
[8,9] 0.968 +0.002 0.954 +0.003 0.933 +0.003 1.034+0.016 1.895+0.218
[9,10] 0.960 £0.002 0.948 £0.002 0.939 £0.005 1.116 £0.029 2.515 +0.622

[10,11] 0.953 +£0.003 0.943 +0.003 0.934 +0.007 1.249 +0.051 -
[11,12] 0.945+0.005 0.929 +0.005 0.943 +0.011 1.280 + 0.089 -
[12,13] 0.924 +0.006 0.930 +0.007 0.981 +0.019 1.348 +0.143 -
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Table A.34 Ratio of PID efficiencies (D*/DY) in bins of p; and y* for Bwd collision configuration.

Dl GeVie]\y= [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5, 4] [-5,-4.5]
[1,2] 1.221 +0.029 1.113+0.014 0.988 +0.009 1.074 +0.021 1.205 +0.035
[2,3] 1.096 +£0.009 1.044 +£0.004 0.982+0.003 1.023 +0.006 1.085+0.017
[3.4] 1.030£0.005 0.990 +£0.003 0.970 £0.002 1.009 +£0.005 1.090 +0.017
[4,5] 0.994 +0.003 0.973 +£0.002 0.958 +0.002 0.978 +0.006 1.135+0.028
[5,6] 0.967 +0.003  0.955+£0.002 0.954+0.003 0.976 +0.009 1.299 + 0.061
[6,7] 0.959 +£0.003 0.950+0.002 0.945+0.003 0.975+0.015 1.490 +0.127
[7,8] 0.964 +0.002 0.946 +0.003 0.936 +0.005 1.030+0.027 2.019 +0.390
[8.9] 0.963 +0.003 0.943 £0.003 0.948 +0.008 1.109 +0.048 2.476 +1.106
[9,10] 0.952 +0.003 0.939 +£0.005 0.921 +£0.011 1.292 +0.098 -

[10,11] 0.943 +0.005 0.943 +0.007 0.953 +0.019 1.426 +0.181 -
[11,12] 0.937 £0.006 0.943 +£0.009 0.981 +0.032 1.831 +0.465 -
[12,13] 0.926 +0.009 0.929 +0.012 1.014 +0.041 2.610+0.705 -

Table A.35 Ratio of PID efficiencies (D*/DY) in bins of p; and y* and PV nTracks for Fwd collision

configuration.
prGeVicl, y  \PVnTracks [10, 60] 60, 80] [80, 100] [100, 120] [120, 140] [140,200]
[2,4],[1.8,2.3] 1.0129 £0.0019  0.9937+0.0022 10101 £0.0032 1.0293 +0.0031 1.0402+0.0042 1.0362 + 0.0043
2,41,[2.3,2.8] 1.0039 £0.0013  0.9918 +0.0016 0.9935 +0.0020 0.9968 0.0020 0.9908  0.0026 0.9773 % 0.0026
[2,4],[2.8,3.3] 0.9937 +0.0025 0.9880 £0.0029 0.9817 +0.0027 0.9802£0.0030 0.9798 +0.0036 0.9635  0.0036
[4,6],[1.8,2.3] 0.9901 +0.0012 0.9784 £0.0013 0.9819+0.0019 0.9893 £0.0019 0.9875 +0.0025 0.9739 + 0.0024
[4,6],[2.3,2.8] 0.9869 +0.0011 0.9803 +0.0011 0.9752+0.0014 0.9769 +0.0014 0.9702 +0.0018 0.9437 +0.0018
[4,61,[2.8,3.3] 09702 +0.0024 0.9742£0.0029 0.9648 +0.0028 0.9641 +0.0031 0.9541 +0.0033 0.9469 + 0.0033

Table A.36 Ratio of PID efficiencies (D*/DY) in bins of p; and y* and PV nTracks for Bwd collision

configuration.
prl GeVice], y * \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140, 180] [180,250]
[2.4],[-33,-28] 10369 £0.0058 1030400064 1.0425+00071 10542+0.0066 1.0330=00072 10170+0.0056 0.9032 % 0.0061
[2,41,[-38,-33] 09951 £0.0031 0998500039 09944+ 00041 0.9848+0.0039 0.9698=0.0047 09317 £0.0035 0.8149 +0.0064
[2,4],[-4.3,-3.8] 0.9805 £ 0.0053  0.9885 +0.0063  0.9779 + 0.0063  0.9806 + 0.0059 0.9671 +0.0070 0.9570 + 0.0060 0.8984 + 0.0068
[4.61.[-33,-2.8] 09924500034 0984600039 0.9799+0.0039 09821 +0.0038 0.9706=0.0044 09465 +0.0037 0.8561 +0.0046
[4.61,[-3.8,-33] 09841 £0.0023 0981100024 09733 +£00028 09625+0.0026 0.9454=00036 09134+0.0030 0.8367 = 0.0042
[4,6],[—4.3,-3.8] 0.9489 +0.0057 0.9543 +£0.0067 0.9548 +£0.0070 0.9541 £0.0073 0.9613 £0.0081 0.9355 +0.0068 0.9116 + 0.0080
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Table A.37 Trigger efficiencies in bins of D} p; and y* for Fwd collision configuration.

prl GeVic]\yx* [1.5,2] [2,2.5] [2.5,3] (3,3.5] [3.5,4]
[1,2] 0.781 £0.019 0.970 +£0.004 0.980 +0.003 0.988 +0.004 0.970 +0.012
[2,3] 0.938 £0.004 0.987 +£0.001 0.994+0.001 0.994 +0.001 0.996 + 0.001
[3,4] 0.983 +0.001 0.997 +0.000 0.998 +0.000 0.998 +0.000 0.999 + 0.001
[4,5] 0.995 +0.001 0.998 +0.000 0.999 +0.000 1.000 +0.000 0.999 + 0.001
[5,6] 0.997 £0.001 0.999 +£0.000 1.000+0.000 0.999 +0.000 1.000 + 0.001
[6,7] 1.000 £0.000 0.999 +0.000 1.000 +0.000 1.000 +0.000 1.000 + 0.003
[7,8] 0.997 £0.001 0.999 +£0.001 0.999 +0.001 0.999 +0.001 1.000 +0.011
[8,9] 0.998 +0.001  0.999 +0.000 1.000 +0.000 1.000 +0.001 1.000 + 0.068

[9,10] 0.999 +0.001 1.000 +0.000 0.999 +0.001 1.000 + 0.003 -
[10,11] 1.000 +£ 0.001  1.000 +0.001 1.000 + 0.001  1.000 = 0.005 -
[11,12] 1.000 £ 0.002 1.000 + 0.001 1.000 = 0.002 1.000 +0.016 -
[12,13] 1.000 + 0.002 1.000 + 0.002 1.000 +0.003 1.000 + 0.039 -
Table A.38 Trigger efficiencies in bins of DY p; and y* for Bwd collision configuration.

prl GeVic\y* [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5, 4] [-5,—-4.5]
[1,2] 0.842 +0.013 0.975+0.003 0.969 +0.004 0.986 +0.004 1.000 + 0.007
[2,3] 0.952 +0.002 0.985+0.001 0.992+0.001 0.996 +0.001 0.996 + 0.002
[3,4] 0.991 £0.001 0.996 +£0.000 0.999 +0.000 0.998 +0.001 0.994 + 0.002
[4,5] 0.996 +0.001  0.999 £ 0.000 0.998 +£0.000 0.999 +0.000 1.000 + 0.001
[5,6] 0.997 +0.001 1.000 +0.000 0.998 +0.000 1.000 +0.000 0.988 + 0.007
[6,7] 0.998 +0.001 1.000 +0.000 0.998 +0.001 1.000+0.001 1.000 + 0.020
[7,8] 0.997 +0.001 1.000 +0.000 1.000 +0.000 1.000=+0.001 1.000 +0.036
[8,9] 1.000 +£0.001 1.000 +0.000 1.000+0.001 1.000+0.003 1.000 + 0.062

[9,10] 1.000 £ 0.000 1.000 +0.001 1.000 +0.001 1.000 + 0.007 -
[10,11] 1.000 £ 0.001 1.000 +£0.001 1.000 +0.002 0.994 +0.018 -
[11,12] 1.000 +£0.001 1.000 +0.001 1.000 = 0.002 - -
[12,13] 1.000 +0.001  1.000 + 0.002 1.000 + 0.006 - -
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Table A.39 Trigger efficiencies in bins of DY p; and y* and PV nTracks for Fwd collision configu-
ration.

prl GeVic], y = \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140,200]
[2,4],[1.8,2.3] 0.9852 +0.0026  0.9917 +0.0021  0.9889 +0.0023 0.9898 +0.0023  0.9891 +0.0028  0.9868 + 0.0032
[2,4],[2.3,2.8] 0.9963 +0.0013  0.9946 + 0.0016  0.9982 + 0.0009 0.9945 + 0.0016 0.9951 +0.0019  0.9956 + 0.0017
[2,4],[2.8,3.3] 0.9976 +0.0013  0.9990 + 0.0010  0.9982 + 0.0011  0.9942 + 0.0020 0.9963 + 0.0020 0.9968 + 0.0018
[4,6],[1.8,2.3] 1.0000 + 0.0006  0.9978 +0.0013  0.9993 +0.0008 0.9977 +£0.0013  0.9992 +0.0011  0.9981 + 0.0014
[4,6],[2.3,2.8] 1.0000 £ 0.0006  0.9981 +0.0012  1.0000 + 0.0005 0.9984 +0.0011  0.9984 +0.0014  0.9984 + 0.0013
[4,6],[2.8,3.3] 1.0000 + 0.0008  0.9986 + 0.0013  0.9988 + 0.0012 0.9988 + 0.0013  0.9979 + 0.0019  0.9980 + 0.0018

Table A.40 Trigger efficiencies in bins of D p; and y* and PV nTracks for Bwd collision configu-
ration.

prl GeVice], y * \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140, 180] [180,250]
[2.4],[-33,-2.8]  09913+0.0036 0.9877+0.0039 0.9875+0.0036 09890+0.0033 0.9873=00039 09896 +0.0031 0.9868 = 0.0079
(2,41,[-3.8,-33]  09980+£0.0020 0.9962+0.0025 0.9986+0.0016 09950+0.0024 0.9958+0.0024 09934 +0.0024 0.9975 = 0.0053
[2,4],[-4.3,-3.8] 1.0000 +£0.0023  0.9892 +0.0049  0.9943 +0.0036 0.9958 +0.0031  0.9934 +0.0043  0.9993 + 0.0019 0.9969 + 0.0084
[4,6],[-3.3,-2.8] 1.0000 + 0.0018  1.0000 +0.0015  1.0000 + 0.0012  1.0000 +0.0011  1.0000 + 0.0013  0.9987 +0.0014  0.9974 + 0.0054
[4,6],[~3.8,-3.3] 10000400022 1.0000+0.0019 09976=00023 0.9981+0.0020 1.0000+0.0015 1.0000£0.0011 0.9982 +0.0056
[4,6],[-4.3,-3.8] 1.0000 £ 0.0033  1.0000 £ 0.0030 0.9964 +0.0041  1.0000 £ 0.0026 0.9974 £ 0.0039  1.0000 + 0.0021  0.9966 + 0.0107

Table A.41 Trigger efficiencies in bins of D* p; and y* for Fwd collision configuration.

Dl GeVic\yx [1.5,2] [2,2.5] [2.5,3] [3,3.5] [3.5,4]
[1,2] 0.740 £ 0.006 0.964 +0.001 0.979 +0.001 0.977 +0.001 0.981 + 0.001
[2,3] 0.938 £0.001 0.986 +0.000 0.992+0.000 0.994 +0.000 0.993 + 0.000
[3,4] 0.985+0.000 0.996 +£0.000 0.997+0.000 0.998 +0.000 0.998 + 0.000
[4,5] 0.994 £0.000 0.998 £0.000 0.998 +0.000 0.999 +0.000 0.999 + 0.000
[5,6] 0.997 £0.000 0.999 +£0.000 0.999 +0.000 0.999 +0.000 1.000 £ 0.000
[6,7] 0.998 £0.000 0.999 +£0.000 0.999 +0.000 1.000+0.000 1.000 =+ 0.000
[7,8] 0.998 +0.000 0.999 +0.000 0.999 +0.000 1.000+0.000 1.000 =+ 0.000
[8,9] 0.999 +0.000 0.999 +0.000 1.000 +0.000 0.999 +0.000 1.000 =+ 0.002

[9,10] 1.000 +0.000  0.999 + 0.000 1.000 +0.000 0.999 +0.000 1.000 + 0.012
[10,11] 1.000 + 0.000  1.000 +0.000  0.999 +0.000 1.000 + 0.000 -
[11,12] 0.999 +0.000 0.999 +0.000 0.999 +0.000 1.000 + 0.001 -
[12,13] 0.998 +£0.001  0.999 +£0.000 0.999 +0.001 1.000 + 0.002 -
[13,14] 1.000 + 0.000 1.000 +0.000 1.000 #+ 0.000 1.000 = 0.004 -
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Table A.42 Trigger efficiencies in bins of D* p; and y* for Bwd collision configuration.

prl GeVic\y* [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5,—4] [-5,—-4.5]
[1,2] 0.804 +£0.004 0.965+0.001 0.978+0.001 0.982+0.001 0.972 +0.001
[2,3] 0.955+0.001 0.988 +£0.000 0.992+0.000 0.994 +0.000 0.993 + 0.000
[3,4] 0.987 £0.000 0.996 +£0.000 0.997 £0.000 0.998 +£0.000 0.998 + 0.000
[4,5] 0.996 £0.000 0.998 £0.000 0.999 £0.000 0.998 +£0.000 1.000 + 0.000
[5,6] 0.996 +0.000 0.998 +£0.000 0.999 +0.000 0.999 +0.000 0.999 + 0.000
[6,7] 0.997 £ 0.000 0.999 £0.000 0.999 +0.000 0.999 +0.000 0.999 + 0.001
[7,8] 0.999 +0.000 0.999 +£0.000 0.999 +0.000 0.999 +0.000 1.000 + 0.002
[8,9] 0.999 +0.000 0.999 +0.000 1.000+0.000 1.000+0.000 1.000 +0.012
[9,10] 0.998 + 0.000 0.999 +£0.000 1.000 +0.000 1.000 + 0.000 -
[10,11] 1.000 + 0.000 1.000 + 0.000 0.999 +0.000 1.000 + 0.001 -
[11,12] 0.999 + 0.000 1.000 +0.000 1.000 +0.000 1.000 =+ 0.003 -
[12,13] 0.999 + 0.000 1.000 +0.000 1.000 +0.000 1.000 + 0.007 -
[13,14] 1.000 + 0.000 1.000 + 0.000 1.000 +0.001 1.000 + 0.024 -
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Table A.43 Trigger efficiencies in bins of D* p; and y* and PV nTracks for Fwd collision configu-
ration.

prl GeVic], y * \PVnTracks [10, 60] [60, 80] (80, 100] [100, 120] [120, 140] [140, 200]
[2,4],[1.8,2.3] 0.9870 + 0.0007 0.9890 +0.0007 0.9898 +0.0007 0.9899 +0.0007 0.9875 +0.0010 0.9858 + 0.0011
[2,4],[2.3,2.8] 0.9958 +0.0003  0.9943 +0.0004 0.9949 +0.0004 0.9954 + 0.0004 0.9952 + 0.0005 0.9926 + 0.0006
[2,4],[2.8,3.3] 0.9955 +0.0004 0.9948 +0.0004 0.9958 +0.0004 0.9966 = 0.0004 0.9966 + 0.0004  0.9959 + 0.0005
[4,6],1.8,2.3] 0.9976 +0.0003  0.9972 +0.0004 0.9977 +0.0003 0.9987 = 0.0003 0.9974 + 0.0005 0.9979 + 0.0004
[4,6],[2.3,2.8] 0.9981 +0.0003  0.9987 +0.0003 0.9994 +0.0002 0.9988 +0.0002 0.9989 + 0.0003 0.9976 + 0.0004
[4,6],[2.8,3.3] 0.9995 +0.0002  1.0000 +0.0001  0.9990 + 0.0002 0.9990 + 0.0003 0.9989 + 0.0003  0.9989 + 0.0003

Table A.44 Trigger efficiencies in bins of D* p; and y* and PV nTracks for Bwd collision configu-
ration.

prl GeVic], y # \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140, 180] [180,250]
[2,4],[-3.3,-2.8] 0.9876 +0.0005 0.9887 £ 0.0006 0.9910 +£0.0005 0.9896 + 0.0005 0.9899 + 0.0006 0.9892 + 0.0006 0.9900 + 0.0013
[2,4].[-3.8,-3.3] 0.9942 +0.0003  0.9939 +0.0004 0.9953 £ 0.0003  0.9935 +£0.0004 0.9942 +0.0004 0.9944 +0.0004 0.9938 + 0.0009
[2,4],[-4.3,-3.8] 0.9978 +£0.0002  0.9950 +0.0004 0.9951 +£0.0004 0.9978 +£0.0003  0.9960 + 0.0004 0.9951 +0.0005 0.9946 + 0.0010
[4,6],[-3.3,-2.8] 0.9966 +0.0003  0.9957 £ 0.0004  0.9981 +£0.0003  0.9982 +0.0003  0.9987 + 0.0002  0.9975 + 0.0003  0.9975 + 0.0007
[4,6],[-3.8,-3.3] 0.9994 +0.0002  0.9973 £0.0003  1.0000 £ 0.0000 0.9977 +0.0003  0.9988 + 0.0002  0.9989 + 0.0002  0.9989 + 0.0005
[4,6].[-4.3,-3.8] 0.9991 £ 0.0002  1.0000 £ 0.0001  1.0000 £ 0.0001  0.9982 +0.0003  0.9994 +0.0002 0.9988 + 0.0003  0.9986 + 0.0007
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Table A.45 Ratio of trigger efficiencies (D*/D?) in bins of p; and y* for Fwd collision configuration.
prl GeVic]\yx* [1.5,2] [2,2.5] [2.5,3] (3,3.5] [3.5,4]
[1,2] 0.948 +0.025 0.994 +0.004 0.999 +0.003 0.989 +0.004 1.012+0.013
[2,3] 1.000 +0.004  0.999 +£0.001 0.998 +0.001 1.001 +0.001 0.997 + 0.001
[3,4] 1.002 +0.002  0.999 +0.000 0.999 +0.000 1.000 +0.000 0.999 + 0.001
[4,5] 0.998 +0.001  0.999 +0.000 1.000 +0.000 0.999 +0.000 1.000 + 0.001
[5,6] 1.000 +0.001  1.000 +0.000 1.000 #+ 0.000 1.000 +0.000 1.000 =+ 0.001
[6,7] 0.999 +£0.000 1.000+0.000 1.000+ 0.000 1.000=+0.000 1.000 + 0.003
[7,8] 1.001 £0.001 1.000 +0.001 1.000+0.001 1.001+0.001 1.000+0.011
[8,9] 1.001 +£0.001 1.000 +0.001 1.000 +0.000 0.999 +0.001 1.000 + 0.068
[9,10] 1.001 £0.001  0.999 +0.000 1.000 +0.001 0.999 + 0.003 -
[10,11] 1.000 +£ 0.001  1.000 +0.001  0.999 + 0.001  1.000 = 0.005 -
[11,12] 0.999 +£0.002 0.999 £0.001 0.999 +0.002 1.000 = 0.016 -
[12,13] 0.998 +£0.002 0.999 +£0.002 0.999 +0.003 1.000 + 0.039 -

Table A.46 Ratio of trigger efficiencies (D*/DY) in bins of p; and y* for Bwd collision configuration.

Dl GeVie]\y= [-3,-2.5] [-3.5,-3] [—4,-3.5] [—4.5, 4] [-5,-4.5]
[1,2] 0.955+0.015 0.989 +0.004 1.010+0.004 0.995+0.005 0.972 +0.007
[2,3] 1.004 +0.003 1.003 £0.001 1.000 +0.001 0.998 +0.001 0.997 + 0.002
[3.4] 0.996 +0.001 1.000 £ 0.000 0.998 +0.000 1.000+0.001 1.004 + 0.002
[4,5] 1.000 £ 0.001  0.999 £ 0.000 1.000 +0.000 0.999 +0.000 1.000 + 0.001
[5,6] 0.999 +0.001  0.999 +0.000 1.001 +£0.000 0.999 +0.000 1.011 +0.007
[6,7] 0.999 +£0.001  0.999 +0.000 1.001 +£0.001 0.999 +0.001  0.999 + 0.020
[7,8] 1.002 £ 0.001  1.000 £ 0.000 0.999 +0.000 0.999 +0.001 1.000 + 0.036
[8,9] 0.999 +0.001  0.999 +0.000 1.000 +0.001 1.000+0.003 1.000 + 0.063

[9,10] 0.998 +0.001 0.999 +0.001 1.000 +0.001 1.000 + 0.007 -
[10,11] 1.000 +0.001 1.000 +£0.001 0.999 +0.002 1.006 +0.019 -
[11,12] 0.999 +0.001 1.000 +0.001 1.000 + 0.002 - -
[12,13] 0.999 +0.002 1.000 +0.002 1.000 + 0.006 - -
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Table A.47 Ratio of trigger efficiencies (D*/DY) in bins of p; and y* and PV nTracks for Fwd col-
lision configuration.

prl GeViel, y = \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140,200]
[2,4],[1.8,2.3] 1.0018 +£0.0028 0.9973 +0.0023 1.0010 +0.0024 1.0001 £ 0.0025 0.9984 +0.0030  0.9991 + 0.0034
[2,4],[2.3,2.8] 0.9995 +0.0013  0.9997 +0.0016  0.9967 +0.0010  1.0008 + 0.0017 1.0001 +0.0019  0.9970 + 0.0018
[2,4],[2.8,3.3] 0.9979 +£0.0013  0.9957 +£0.0011  0.9976 + 0.0012 1.0024 + 0.0020 1.0004 + 0.0021  0.9991 + 0.0019
[4,6],[1.8,2.3] 0.9976 + 0.0007  0.9994 +0.0014  0.9984 +0.0009 1.0010 +£0.0013  0.9982 +0.0012  0.9999 + 0.0015
[4,6],[2.3,2.8] 0.9981 + 0.0006  1.0007 +0.0012  0.9994 +0.0006 1.0004 +0.0011 1.0005 +0.0014  0.9992 + 0.0014
[4,6],[2.8,3.3] 0.9995 + 0.0008 1.0014 +0.0013  1.0001 +0.0012 1.0001 +0.0014 1.0011 +0.0020 1.0009 + 0.0018

Table A.48 Ratio of trigger efficiencies (D*/DY) in bins of p; and y* and PV nTracks for Bwd
collision configuration.

prl GeVic], y # \PVnTracks [10,60] [60, 80] [80, 100] [100, 120] [120, 140] [140, 180] [180,250]
[2,4].[-3.3,-2.8] 0.9962 +0.0037 1.0010 £ 0.0040 1.0036 + 0.0037  1.0006 + 0.0034  1.0026 +0.0040  0.9996 + 0.0032  1.0033 + 0.0081
[2,4],[-3.8,-3.3] 0.9962 +0.0021  0.9977 £0.0025 0.9966 +0.0016  0.9985 +£0.0024  0.9984 +0.0025 1.0010 +0.0024  0.9964 + 0.0054
[2,4],[-4.3,-3.8] 0.9978 +£0.0023  1.0059 £ 0.0050  1.0009 +0.0036  1.0020 £ 0.0031  1.0025 £ 0.0044 0.9959 +0.0019  0.9977 + 0.0084
[4,6],[-3.3,-2.8] 0.9966 +0.0018  0.9957 +£0.0016  0.9981 £ 0.0013  0.9982 +0.0011  0.9987 + 0.0013  0.9988 + 0.0015 1.0001 + 0.0055
[4,6].[-3.8,-3.3] 0.9994 +0.0022  0.9973 £0.0020 1.0024 £ 0.0024  0.9996 + 0.0021  0.9988 £ 0.0015 0.9989 +0.0011 1.0007 + 0.0056
[4,6],[—4.3,-3.8] 0.9991 £ 0.0033  1.0000 £ 0.0030  1.0036 +0.0041  0.9982 +0.0026  1.0020 £ 0.0039 0.9988 +0.0022  1.0021 +0.0108
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APPENDIX B YIELDS AND FRACTIONS

The raw yields candidates from mass fit are given in Tables B.1, B.2, B.3, B.4, B.5,
B.6. The fractions of prompt D} mesons are listed in Table B.7, B.8. The fractions of
non-prompt Dt mesons are listed in Table B.9, B.10. The prompt yield D} mesons are
listed in Table B.11, B.12. The prompt yield D* mesons are listed in Table B.13, B.14.

Statistical uncertainties only.
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APPENDIX C MASS FIT RESULTS

The M (D;') fit results are included in Figure C.1,C.2,C.3 and C 4.
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Figure C.1 Invariant mass fit result in each p; and y* bin in the Fwd sample in 1 < p; < 7 GeVic.
The column runs for p; bins, the row runs for y* bins.
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Figure C.2 Invariant mass fit result in each p; and y* bin in the Fwd sample in 7 < p; < 13 GeVic.
The column runs for p; bins, the row runs for y* bins.
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Figure C.4 Invariant mass fit result in each p; and y* bin in the Bwd sample in 7 < p; < 13 GeVic.
The column runs for p; bins, the row runs for y* bins.

185



APPENDIX C MASS FIT RESULTS

The M (D) fit results are included in Figure C.5,C.6,C.7 and C.8.
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Figure C.5 Invariant mass fit result in each p; and y* bin in the Fwd sample in 0 < p;
The column runs for p; bins, the row runs for y* bins.
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Figure C.7 Invariant mass fit result in each p; and y* bin in the Bwd sample in 0 < p; < 7 GeVic.
The column runs for p; bins, the row runs for y* bins.
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Figure C.8 Invariant mass fit result in each p; and y* bin in the Bwd sample in 7 < p; < 14 GeVic.
The column runs for p; bins, the row runs for y* bins.
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APPENDIX D LOG 2, FIT RESULTS

The log ;(IZP(D;') fit results are included in Figure D.1,D.2,D.3 and D.4.
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Figure D.1 log,, x5 (D7) fit result in each p; and y* bin in the Fwd sample in 1 < p; < 7 GeVie. The
column runs for py bins, the row runs for y* bins.
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Figure D.2  log,oxi(DY) fit result in each py and y* bin
The column runs for p; bins, the row runs for y* bins.
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Figure D.3 log,, ;(IZP(Dj) fit result in each p; and y* bin in the Bwd sample in 1 < p; < 7GeVie.
The column runs for p; bins, the row runs for y* bins.
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Figure D.4 log,, ;(IZP(Dj) fit result in each p; and y* bin in the Bwd sample in 7 < p; < 13 GeVic.
The column runs for p; bins, the row runs for y* bins.
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The log;, ;(IZP(D+) fit results are included in Figure D.5,D.6,D.7 and D.8.
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Figure D.6 log,oxi(D™) fit result in each p; and y* bin in the Fwd sample in 7 < p; < 14 GeVie.
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Figure D.7 log,, ;(IZP(D+) fit result in each p; and y* bin in the Bwd sample in 1 < p; < 7GeVie.
The column runs for p; bins, the row runs for y* bins.
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Figure E.1 The interpolation of D} cross-sections in pp at 8.16 TeV with a power function and a
linear function in rapidity range 1 < p; < 10GeV/c and 2.0 < y* < 4.5. The data points are LHCb
result at 5,13 TeV. The column runs for p; bins, the row runs for y* bins.
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Figure E.2 The interpolation of D* cross-sections in pp at 8.16 TeV with a power function and a
linear function in rapidity range 0 < p; < 10GeV/c and 2.0 < y* < 4.5. The data points are LHCb
result at 5,13 TeV. The column runs for p; bins, the row runs for y* bins.
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