Higgs pair production in the bbWW channel

Li Lin Yang Peking University

> In collaboration with Andreas Papaefstathiou and José Zurita arXiv:1209.1489

Outline

- Higgs discovery and coupling measurement
- Higgs self-coupling and Higgs pair production
- Higgs pair in the bbWW channel
- Summary and Outlook

Higgs day

Higgs couplings to gauge bosons and fermions

- Production rates consistent with SM within 2 sigma
- Di-photon rate a bit higher than SM. New physics? Waiting for more data!

Today and Tomorrow HCP2012@Tokyo

See also talks by Ren-Yuan Zhu and Xin Chen

H→bb at Tevatron

Talk by Weiming Yao

• Consistent with SM

ttH production: yet to be discovered

- Measurable at the upgraded LHC? Linear collider required?
- Htt coupling also probed in gg→H assuming no new particles in the loop

Higgs potential: self-couplings

Direct verification of the Higgs mechanism

After EWSB:
$$V = \frac{1}{2}m_h^2h^2 + (\lambda vh^3 + \frac{1}{4}\tilde{\lambda}h^4)$$

probed by single Higgs production
well-measurable @ 7–8 TeV LHC
probed by Higgs pair production
discovery @ 14 TeV LHC?

probed by triple Higgs production difficult @ LHC

In the SM
$$\tilde{\lambda} = \lambda = \frac{m_h^2}{2v^2} \approx 0.13$$

 $m_h = 125~{\rm GeV}$

Higgs production: single vs. double vs. triple

Perturbative behavior

Ahrens, Becher, Neubert, LLY: 0809.4283

Single Higgs NNLO+NNNLL good convergence small uncertainty

Figure from Papaefstathiou, LLY, Zurita: 1209.1489

Higgs pair huge correction large uncertainty higher order desirable

Higgs pair production and decay

Channels with biggest rates overwhelmed by QCD backgrounds

- First channel containing leptons: bbWW→bblvjj
 - τ decays hadronically

Papaefstathiou, LLY, Zurita: 1209.1489

Previous studies

- Baur, Plehn, Rainwater: hep-ph/0310056
 - bbyy most promising, S ~ 6 and B ~ 11 @ 600/fb
- Dolan, Englert, Spannowsky (DES): 1206.5001
 - bbττ best channel assuming excellent τ-jet tagging
- Both studies concluded that bbWW channel is impossible due to large backgrounds from top-quark pair production

Signal and backgrounds

Signal and backgrounds

Top quark pair production

- Main background: precise knowledge important! (total cross section and distributions)
- Our works: NLO+NNLL and/or approximate NNLO
 - Invariant mass distribution Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827
 - Transverse momentum and rapidity distributions
 Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1103.0550
 - Total cross section
 Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1105.5824
 - Forward-backward asymmetry Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1106.6051
 - Transverse momentum of tt system

Zhu, Li, Li, Shao, LLY: 1208.5774

Boosted jet techniques

Butterworth, Davison, Rubin, Salam (BDRS): 0802.2470

(disregarded by earlier studies)

applying to $hh \rightarrow bbWW$ also employed by DES in $hh \rightarrow bb\tau\tau$

NEW

- Mass drop: fight against QCD initiated jets
- Filtering: fight against underlying events
- We use it also for capturing the hadronic decaying W boson

Event topology & basic selection cuts

After the basic cuts

Process	σ_{initial} (fb)	σ_{basic} (fb)
$hh o b \overline{b} \ell \nu j j$	2.34	0.134
$t\bar{t} \to b\bar{b}\ell\nu jj$	240×10^3	15.5
$W(\rightarrow \ell \nu) b \bar{b} + jets$	2.17×10^3	0.97
$W(\rightarrow \ell \nu) + jets$	2.636×10^6	$\mathcal{O}(0.01)$
$h(\rightarrow \ell \nu j j) + jets$	36.11	$\mathcal{O}(0.0001)$
$h(\rightarrow \ell \nu j j) b \overline{b}$	6.22	$\mathcal{O}(0.001)$
$ h(\to b\bar{b}) + WW(\to \ell\nu jj) $	0.0252	-

- B-tagging efficiency 70%, light jet fake rate 1%
- h+jets and W+jets backgrounds can be safely negl
- Basic cuts great performance: keep 5% signal, 0.0
- Backgrounds still 100 times bigger, further analysis needed

Light jet rejection

Further analysis

Further improvement requires more kinematic variables
 multivariate analysis: Boosted Decision Trees (BDT)

Boosted Decision Trees

Roe, Yang, Zhu, Liu, Stancu, McGregor: physics/0408124

- Greater power to distinguish signal and background than simple cuts
- Widely used in modern HEP experiments (alternative to neural networks)
- Implemented in ROOT TMVA package
- Boosting: stability against trainingsample-dependence

BDT output

Good separation between signal and background

- Optimal point: S ~ 9, B ~ 5 @ 600/fb, about 3.1 σ evidence!
- Including $W \to \tau \nu_{\tau} \ (\epsilon_{\tau} = 0.7)$ increases significance to 3.6 σ DES assumed 0.8 for bb $\tau\tau$

Summary

- Higgs coupling measurements crucial to finally establish the SM, or provide hints to new physics
- Higgs self-couplings: direct probe of the Higgs potential
- Probe Higgs trilinear coupling via Higgs pair production in the bbWW channel (disregarded in previous studies due to large background)
- Employ jet substructure techniques, event reconstruction and multivariate analysis to enhance sensitivity
- Can achieve 3.6 σ evidence at the 14 TeV LHC with 600/fb

Future prospects

 Improved analysis: detector effects, underlying events, hh+jet and tt+jet Change of energy? 13 TeV or 14 TeV?

• New physics effects (may enhance the signal)

Possible improvements in pQCD

- NLO QCD corrections only available in the heavy top quark limit (not a very good approximation, especially for distributions)
 - Exact NLO very difficult
 - May attempt an expansion in 1/mt

Done for single Higgs at NNLO

Harlander, Ozeren: 0909.3420 Pak, Rogal, Steinhauser: 0911.4662

- Higher orders: resummation and/or NNLO (of course in the heavy top limit)
 - Will bring down the scale uncertainty