Higgs and BSM searches at LHC: results and perspective

Xin Chen

University of Wisconsin-Madison

TeV Scale Physics workshop (7th) Tsinghua University, Beijing Nov. 12-15, 2012

The Large Hadron Collider (LHC)

ATLAS and CMS: general purpose detectors

ALICE: heavy ions

LHC-B: b-physics

• 27 km circumference, 100 m underground

• Two proton beam in parallel pipes, rotating in opposite directions

Dipole field increases from 0.54 T to 8.3 T in about 20 minitues. Protons are stored for 10 – 24 hours

• 25 ns bunch separation, 23 pp collisions per bunch crosing @ 10³⁴cm⁻²s⁻¹

ATLAS and CMS detector

To claim a discovery, it is important to have 2 independent experiments giving consistent results !

Tracking and calorimetry

Missing transverse energy (MET), a 2D vector of:

sign-inversed vectorial sum of all visible objects on the transverse plane

Higgs mechanism in a nutshell

The local gauge invariant Higgs (ϕ) Lagrangian is

$$L_{\phi} = \left\| i \partial_{\mu} - g \frac{\vec{\tau}}{2} \cdot \vec{W}_{\mu} - g' \frac{Y}{2} B_{\mu} \right| \phi \Big|^{2} - V(\phi),$$

with the Higgs potential defined as

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2,$$

which has a minimum at $\phi = v/\sqrt{2} = \sqrt{\mu^2/2\lambda}$. Make the substitution:

$$\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_1 + i \Phi_2 \\ \Phi_3 + i \Phi_4 \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \upsilon + h(x) \end{pmatrix},$$

 Φ_1, Φ_2 and Φ_4 become the Goldstone bosons in the Lorentz gauge – absorbed into the longitudinal polarizations of the three weak bosons in the Unitarity gauge. Electroweak gauge symmetry is broken, and Higgs field aquires a mass:

$$m_H = \sqrt{2\lambda} v$$
, $v = (\sqrt{2}G_F)^{-1/2} = 246 \text{ GeV}$

Thus, Higgs mass is not predicted in the Standard Model

Higgs production modes

Higgs couplings to fermions and bosons:

Higgs production channels at LHC:

Bounds on the Higgs mass as of June 2012

The paper for the discovery

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2012-218 Submitted to: Physics Letters B

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

The ATLAS Collaboration

Abstract

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb⁻¹ collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(*)} \rightarrow ev\mu\nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow WW^{(*)} \rightarrow ev\mu\nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 \pm 0.4 (stat) \pm 0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson.

Both ATLAS and CMS submitted the discovery papers on July 31, 2012. ATLAS result is published in Phys. Lett. **B**176, 1 (2012)

201

Jul

3

[hep-ex]

arXiv:1207.7214v1

Higgs decay channels

*** bbar**: highest BR, but suffers from bad mass resolution and large QCD background

*** WW**: only the dilepton decay modes are useful at low mass, and can not reconstruct the mass

*** π**: bad mass resolution (MET used), high signal efficiency (all final states are used: ll, lh, hh)

*** ZZ** and **\gamma\gamma**: low BR, but good mass resuliton. Very low background for ZZ and powerful S/B shape separation for $\gamma\gamma$

 $H \to \gamma \gamma$

10

$H \rightarrow \gamma \gamma$ candidate event (ATLAS)

$H \to ZZ \to 4]$

Both ATLAS and CMS have found a 4-lepton excess, and the mass is consistent with the one found in γγ channel !

Maximum Icoal significance: 3.6 (3.20) for ATLAS (CMS)

$H \rightarrow ZZ \rightarrow 2e2\mu$ candidate event

$H \to WW \to 2l2v$

The first proposal on WW at Tevatron by T. Han and R. Zhang in PRL 82, 1999

Due to spin correlation between the 2 Ws, the signal has the following properties:

Small m_"

• Large $p_{-}(II)$

● Small ΔΦ(*ll*)

$H \rightarrow WW \rightarrow 2l2v$

Combination of 3 channels at ATLAS

Combination of 5 channels at CMS

The July 4th Higgs discovery

Higgs coupling strengths

$H \rightarrow \tau \tau$ result from CMS

20

Low mass SM Higgs + 2jets

Wisconsin Pheno (D. Zeppenfeld, D. Rainwater, et al.) proposed searching for a low mass Higgs in association with 2 jets plus central jet veto

 Central jet veto is initially suggested by V. Barger, K. Cheung and T. Han in PRD 42 3052 (1990)

0

0

2

Very powerful to suppress the color-exchanging QCD backgrounds. Best suited for $H \rightarrow \tau \tau$ and $H \rightarrow \gamma \gamma$

10

Δη

8

VBF category in the $\gamma\gamma$ channel

The S/B ratio is much improved w.r.t. inclusive search (see slide 10)

$H \to \tau\tau$ channels and objects

	Pre-selection
ll+4v	Exactly 2 leptons with opposite signs $30 < m_{_{LL}} < 75$ (100) GeV for ee/µµ (eµ)
lh+3ν	Exactly 1 lepton and 1 hadronic τ $p_{\tau} > 25$ (20) GeV for e (μ) Di-lepton veto $m_{\tau} < 30$ GeV
hh+2ν	Exactly 2 hadronic taus $p_{T} > 35$ (25) GeV for the leading (subleading) tau Single lepton veto

Common object selection

Electron

 $p_{T} > 15 \text{ GeV}, |\eta| < 2.47 \text{ with}$ crack excluded Calo and track isolation

Muon

 $p_T > 10 \text{ GeV}, |\eta| < 2.5$ Calo and track isoltion

Hadronic tau

p_τ > 20 GeV, |η| < 2.5

1 or 3 tracks (prongs) in ΔR <0.2 Multivariate BDT for ID

Jet

 $p_{_{T}}$ > 25 GeV, $|\eta|$ < 4.5 AntiKt4 jets, |JVF| > 0.75 if $|\eta|$ < 2.4

Categories, MET cut and mass

II	lh	hh
2-jet VBF (p ₇ >40,25) 2-jet VH (p ₇ >40,25)	2-jet VBF (p ₇ >40,30)	2-jet VBF (p ₇ >50,30)
Boosted: p _{T,H} >100	Boosted: p _{T,H} >100	1-jet inclusive (p ₇ >70)
1-jet inclusive ($p_T > 40$)	1-jet inclusive (p _T >30)	
0-jet inclusive in eµ channel	0-jet exclusive (p ₇ <30)	
MET>40 for SF MET>20 for DF	MET>20	MET>20
MMC	MMC	MMC

All categories are mutually exclusive

All 3 channels: use $Z \rightarrow \mu\mu$ data to simulate $Z \rightarrow \tau\tau$ background

Control plots

Final mass distributions (VBF and boosted)

VBF and **boosted** categories are most sensitive

Statistical limits

The largst deviation of observed from expected limit is in the 2lep channel The best fitted signal strength @ 125 GeV: $\mu = 0.7 \pm 0.7$

The lower combined $H \to \tau\tau$ rate is consistent with CMS

H → ττ → $e\mu$ +4v candidate event im

The channels we are adding: 2l+h and 3l+h

* Adding the 2I+h and 3I+h channels for the VH production of Higgs:

★ These channels can be even more interesting in the context of MSSM or 2HDM, with possible double Higgs production modes and sensitivity to new physics:

An exclusion limit of ~10xSM has been reported by CMS with the 2l+h channel

$H \rightarrow bbar$

$ZH \rightarrow v \bar{v} b \bar{b}$	$WH \rightarrow \ell \nu b \bar{b}$	$ZH \rightarrow \ell^+ \ell^- b \bar{b}$
0 lepton	1 lepton	2 leptons
2 b-jets	2 b-jets	2 b-jets
2 or 3 jets	2 jets	no N _{jet} requirement
MET > 120	MET > 25-50	MET < 60
	40 < m _T < 120	83 < m _{LL} < 99
3 bins in p _T (Z)	5 bins in p _T (W)	5 bins in p _T (Z)
$z^{0} \rightarrow w$	$\begin{array}{c} q \\ W^{+} \rightarrow V \\ W^{+} \rightarrow W^{+} \rightarrow V \\ H^{0} \rightarrow bb \end{array}$	$\begin{array}{c} q \\ z^{0} \\ H^{0} \rightarrow bb \end{array}$

Signal regions bbar mass spectra

Statistical results

Does Higgs couple less to down-type fermions ?

Updated ATLAS Higgs signal strengths (1)

Higgs Boson	Subsequent	Sub-Channels	$\int L dt$	Ref.
Decay	Decay			
		2011 $\sqrt{s} = 7 \text{ TeV}$		
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	4.8	[1]
$H \rightarrow \gamma \gamma$	_	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	4.8	[1]
	$\tau_{\rm lep} \tau_{\rm lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	4.6	
$H \rightarrow \tau \tau$	$\tau_{\rm lep} \tau_{\rm had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[4]
$H \rightarrow \ell \ell$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6	
$VH \rightarrow Vbb$	$W \rightarrow \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[5]
	$Z \to \ell \ell$	$p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	

2012 $\sqrt{s} = 8 \text{ TeV}$

$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	5.8	[1]
$H \rightarrow \gamma \gamma$	—	10 categories $\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	5.9	[1]
$H \rightarrow WW^{(*)}$	evμv	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}\}$	13	[6]
	$\tau_{\rm lep} \tau_{\rm lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	13	
$H \rightarrow \tau \tau$	$\tau_{ m lep} \tau_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13	[4]
$\Pi \rightarrow \ell \ell$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13	
$VH \rightarrow Vbb$	$W \rightarrow \ell \nu$	$p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[5]
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	

Updates since ICHEP 2012 for HCP

Updated ATLAS Higgs signal strengths (2)

Higgs Boson Decay	$\mu \qquad (m_H=126 \text{GeV})$
$H \rightarrow ZZ^{(*)}$	1.2 ± 0.6
$H \rightarrow \gamma \gamma$	1.8 ± 0.5
$H \rightarrow WW^{(*)}$	1.4 ± 0.6
$H \to \tau \tau$	0.7 ± 0.7
$VH \rightarrow Vbb$	-0.4 ± 1.1

The signal strengths are not commensurate among different channels

Combined fitted strength is $\mu = 1.3 \pm 0.3$

Implication of a light Higgs

The running of Higgs quartic coupling λ

Higgs potential positive – vacuum stability

Expect new physics at high energy scales – is it SUSY ?

The top channels

Direct stop pair production. Assuming 100% BR of stop \rightarrow top+LSP for heavy stop (>200 GeV), and 100% BR of stop $\rightarrow b\chi_1 \rightarrow b+W+LSP$ for light stop (<200 GeV)

Gluino pair production with gluino \rightarrow ttbar+LSP: 4 tops + 2 LSPs in the final state

The generic modes

The electroweak modes

★ The electroweak modes becomes important if the gluino and squark masses are very high

★ Final state is 3 leptons + large MET with very few jets

★ Dominant background is WZ. The top is the sub-dominant background – require b-jet veto or on-shell $Z \rightarrow II$ to suppress top

MSSM neutral Higgs

39

Charged Higgs

Summary for SUSY

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: HCP 2012)

	MSUGRA/CMSSM : 0 lep + i's + E	L=5.8 fb ⁻¹ , 8 TeV IATLAS-CONF-2012-1091	1.50 TeV $\tilde{\alpha} = \tilde{\alpha}$ mass	
	MSUGRA/CMSSM : 1 lep + i's + E	L=5.8 fb ⁻¹ , 8 TeV IATLAS-CONF-2012-1041	1.24 TeV g = g mass	
	Pheno model : 0 lep + i's + $E_{T,max}$	L=5.8 fb ⁻¹ , 8 TeV IATLAS-CONF-2012-1091	1.18 TeV $\tilde{\mathbf{Q}}$ mass $(m(\tilde{\mathbf{Q}}) < 2$ TeV, light $\bar{\tau}^0$)	ATLAS
Jes	Pheno model : 0 lep + i's + E_{r}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV $\tilde{\mathbf{q}}$ mass $(m(\tilde{\mathbf{q}}) < 2 \text{ TeV}, \ \tilde{\mathbf{q}}\ ^2)$	Preliminary
101	Gluino med $\tilde{\chi}^{\pm}(\tilde{a} \rightarrow a \bar{a} \tilde{\chi}^{\pm})$: 1 lep + i's + E	/ =4.7 fb ⁻¹ . 7 TeV [1208.4688]	900 GeV $\tilde{\alpha}$ mass $(m(\pi^0) < 200 \text{ GeV} m(\pi^0) = \frac{1}{2}(m(\pi^0))$	z ⁰)+m(0))
ea.	GMSB(I,NI,SP) : 2 Ion(OS) + i's + F	/ =4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 TeV $\tilde{\alpha}$ mass (table < 15)	C 7 (B77
9	GMSB ($\bar{\tau}$ NLSP) : 1-2 τ + 0-1 lep + i's + $E^{T,miss}$	$l = 4.7 \text{ fb}^{-1}$ 7 TeV [1210 1314]	1 20 TeV $\vec{0}$ (mass $(\tan \beta > 20)$	<u> </u>
SiV	GGM (bino NLSP) ; $\gamma\gamma + E^{T,miss}$	$l = 4.8 \text{ fb}^{-1}$ 7 TeV [1209.0753]	$107 \text{ TeV} \tilde{\alpha} \text{ mass} (m/\pi^0) > 50 \text{ GeV}$	1-# - (0.1 10.0) #-1
n,	GGM (wino NLSP) : γ + lep + $E^{T,miss}$	L=4.0 fb ⁻¹ 7 TeV [ATLAS_CONE_2012_144]	sin cav g mass	Lat = (2.1 - 13.0) fb
4	GGM (higgsino-bino NLSP) : $\gamma + b + E^{T,miss}$	L=4.8 fb ⁻¹ 7 TeV [41211 1167]	900 GeV 0 mass (m/2) > 220 GeV)	
	GGM (biggsing NLSP) : 7 + jets + $E^{T,miss}$	1-5.9 fb ⁻¹ 8 ToV (ATLAS CONE 2012 152)	$\frac{1}{2} \frac{1}{2} \frac{1}$	rs - 7, 6 lev
	Gravitino I SP : 'monoiet' + E	1-40.5 4b ⁻¹ 0 TeV (ATLAS-CONF-2012-132)	$E^{1/2}$ scale $(m(\vec{n}) > 200 \text{ GeV})$	
	The second secon	L=10.510 , 8 TeV [AT LAS-CONF-2012-147]		
ed	$g \rightarrow bb\chi$ (virtual b): 0 lep + 3 b-j s + $E_{T,miss}$	L=12.0 10 , 0 1eV [A1LAS-CONF-2012-145]	1.24 TeV g (11235 (m(χ) < 200 GeV)	
m.	$g \rightarrow tr \chi$ (virtual t): 2 lep (SS) + J'S + $E_{T,miss}$	L=5.8 fb , 8 lev [AILAS-CONF-2012-105]		8 TeV results
ge ino	$g \rightarrow tt \chi_1$ (virtual t): 3 lep + J's + $E_{T,miss}$	L=13.0 fb , 8 TeV [ATLAS-CONF-2012-151]	860 GeV g mass (<i>m</i> (χ) < 300 GeV)	
plui g	$g \rightarrow tt \chi_{1}$ (virtual t): 0 lep + multi-j's + $E_{T,miss}$	L=5.8 fb", 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV g mass $(m(\chi_1) < 300 \text{ GeV})$	7 TeV results
	$g \rightarrow tt \chi$ (virtual t): 0 lep + 3 b-j's + $E_{T,miss}$	L=12.8 fb", 8 TeV [ATLAS-CONF-2012-145]	1.15 TeV g mass $(m(\chi_1) < 200 \text{ GeV})$	
0 0	bb, $b_1 \rightarrow b \tilde{\chi}_1$: 0 lep + 2-b-jets + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-106]	480 GeV D MASS $(m(\chi_{1}) < 150 \text{ GeV})$	
tion in the	$bb, b \rightarrow t \chi$: 3 lep + j's + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151]	405 GeV b mass $(m(\overline{\chi_1}) = 2m(\overline{\chi_1}))$	
nci	tt (very light), t \rightarrow b χ_1^+ : 2 lep + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4305] 130 GeV	t mass $(m(\chi_1) < 70 \text{ GeV})$	
S CO	\mathfrak{t} (light), t $\rightarrow \mathfrak{b} \mathfrak{T}_{1}^{+}$: 1/2 lep + b-jet + $E_{\mathfrak{T},miss}$	L=4.7 fb ⁻¹ , 7 TeV [1209.2102] 123-167	Gev t mass $(\underline{m}(\underline{\chi})) = 55 \text{ GeV})$	
en.	tt (medium), $t \rightarrow t \tilde{\chi}_{*}^{\circ}$: 2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	298-305 GeV t mass $(m(\tilde{\chi}_1) = 0)$	
l g	tt (heavy), t \rightarrow t $\tilde{\chi}_{*}^{*}$: 1 lep + b-jet + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2590]	230-440 GeV t mass $(m(\chi_1^0) = 0)$	
3rc dir	$_{\infty}$ tt (heavy), t \rightarrow t $\tilde{\chi}_{e}^{*}$: 0 lep + b-jet + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.1447]	370-465 GeV t mass $(m(\chi_{1}^{20}) = 0)$	
	tt (natural GMSB) $\frac{1}{2}$ Z(\rightarrow II) + b-jet + E	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	310 GeV t mass $(115 < m(\overline{\chi}_{0}^{\circ}) < 230 \text{ GeV})$	
	$ \vec{l}_1 , \rightarrow \vec{\chi}_1 : 2 \text{ lep } + E_{T \text{ miss}}^T$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884] 85-1	35 GeV mass $(m(\overline{\chi}^0) = 0)$	
act ∕	$\tilde{\chi}^+ \tilde{\chi}^-, \tilde{\chi}^+ \rightarrow \tilde{l}v(\tilde{l}\tilde{v}) \rightarrow lv\tilde{\chi}^-: 2 lep + E_{\tau min}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884]	110-340 GeV $\tilde{\chi}_{\pm}^{\pm}$ mass $(m(\chi_{\pm}^{0}) < 10 \text{ GeV}, m(\tilde{\chi}_{\pm}) = \frac{1}{2}(m(\chi_{\pm}^{\pm}) + m(\chi_{\pm}^{0})))$	
ШŚ	$\tilde{\chi}_{\tilde{\chi}}^{\pm} \tilde{\chi}_{\tilde{\chi}} \rightarrow [v]_{\tilde{\chi}}[(\tilde{v}v), \tilde{v}]_{\tilde{\chi}}[(\tilde{v}v) : 3 \text{ lep } + E_{\pi}^{+,\text{mass}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-154]	580 GeV $\tilde{\chi}^{\pm}$ Mass $(m(\tilde{\chi}^{\pm}) = m(\tilde{\chi}^{0}), m(\tilde{\chi}^{0}) = 0, m(\tilde{l}, \tilde{v})$ as ab	ove)
0	$\widetilde{\gamma}^{\pm} \widetilde{\gamma}^{\pm} \widetilde{\gamma}^{0} \rightarrow W^{(*)} \widetilde{\gamma}^{0} Z^{(*)} \widetilde{\gamma}^{0} : 3 \text{ lep } + E_{T, \text{miss}}^{T, \text{miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-154]	140-295 GeV $\tilde{\chi}_{\pm}^{\pm}$ MASS $(m(\tilde{\chi}_{\pm}^{\pm}) = m(\tilde{\chi}_{\pm}^{0}), m(\tilde{\chi}_{\pm}^{0}) = 0$, sleptons decoupled)	-
~	Direct \overline{y}^{+} pair prod. (AMSB) : long-lived \overline{y}^{+}	L=4.7 fb ⁻¹ , 7 TeV [1210.2852]	220 GeV $\tilde{\chi}^{\pm}$ MASS $(1 < \tau(\tilde{\chi}^{\pm}) < 10 \text{ ns})$	
es es	Stable q R-hadrons : low B By (full detector)	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	985 GeV g mass	
등 등	Stable f R-hadrons : low ß ßv (full detector)	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	683 GeV T mass	
art	GMSB : stable 7	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	300 GeV $\overline{\tau}$ mass (5 < tan β < 20)	
P Lc	$\tilde{\chi}^0 \rightarrow qqu (RPV) : u + beavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV $\tilde{\mathbf{Q}}$ mass $(0.3 \times 10^{15} \le \lambda^2) \le 1.5 \times 10^{15}$, 1 mm $\le c$	$\tau < 1 \text{ m}.\tilde{a}$ decoupled)
	$\chi_1 \rightarrow qq\mu (r(r, v), \mu + reavy displaced vertex$	(=4.6 fb ⁻¹ 7 TeV [Preliminary]	161 TeV V MASS (2 =0.10 2 =0.	05)
	$EV : pp \rightarrow v_{q} + X_{1} v_{q} \rightarrow e^{+}\mu^{-}resonance$	L=4.6 fb ⁻¹ 7 TaV [Preliminary]	1 10 TeV \tilde{V} mass ($\lambda^2 = 0.10$ $\lambda^2 = 0.05$)	
>	Bilinear RPV CMSSM : 1 len + 7 i's + F	1 =4.7 fb ⁻¹ .7 ToV [AT] AS CONE 2012 1401	1.10 TeV $\tilde{Q} = \tilde{Q} \text{ mass} (\alpha_{311} - 0.10, \alpha_{1(2)33} - 0.03)$	
d,	$\vec{x}^{\dagger}\vec{x}^{\dagger}$ \vec{x}^{\dagger} $W\vec{x}^{0}$ \vec{x}^{0} see out 1 by 1 js $E_{T,miss}$	1-12 0 15 ⁻¹ 9 Toy (ATLAS CONF 2012-140)	700 GeV $\widetilde{\mathcal{X}}$ mass $(m_{12}^{-0}) > 300 \text{ GeV}(3)$ or $3 > 300$	
<u>u</u> _	$\chi_1 \chi_2 \chi_1 \rightarrow v v \chi_0, \chi_0 \rightarrow e e v_{\mu}, e \mu v_e$, 4 lep + $E_{T,miss}$	1-42.045 ⁻¹ 8 T-V (ATLAS-CONF-2012-133)	100 GeV χ_1 (mass $(m(\chi_1) > 500 \text{ GeV}, \kappa_{121} \text{ or } \kappa_{122} > 0$	> 0)
	$I_{L}I_{L}, I_{L} \rightarrow I\chi_{1}, \chi_{1} \rightarrow eev_{\mu}, e\mu v_{e}$: 4 Iep + $E_{T,miss}$	L=13.010 , 8 TeV [ATLAS-CONF-2012-133]	430 GeV THIASS $(m(\chi_1) > 100 \text{ GeV}, m(\eta_2) - m(\eta_1) - m(\eta_1), \kappa_{121} \text{ of } \kappa_{122}$	2 ~ 0)
	g → qqq : 3-jet resonance pair	1=4.6 fb ⁻¹ 7 TeV [1210.4813]	100 000 000 Y 11005	
WIM	P interaction (D5, Dirac γ) : 'monoiet' + F	L=4.6 fD , 7 TeV [1210.4626]	THE STUDIE THASS (Incl. limit from 1110.2093)	- D81
	T,miss	L=10.5 fb , 8 TeV [ATLAS-CONF-2012-147]	704 GeV IVI SCALE (m_{χ} < 80 GeV, limit of < 687 GeV for	rups)
		<u> </u>		
		10 ⁻¹	1	10

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty. Mass scale [TeV] 41

The "prospect" for SUSY

★ So far, no evidence from direct SUSY search channels. Gluino/squark mass of ~1 TeV, stop mass of ~400 GeV, and chargino mass of ~250 GeV are excluded

★ The non-standard SUSY scenarios ("hidden modes") are also possible:

- R-parity vialating SUSY \rightarrow lead to low MET
- GMSB scenarios \rightarrow long-lived charged sleptons or R-hadrons

• Compressed scenariso \rightarrow sparticle masses are highly degenerate. Use ISR jet to trigger the event. For example, soft leptons + mono-jet

- Lower cross section \rightarrow Dirac gluino
- Sparticle mass > 10 TeV ?

★ However, care should be taken as many of the results have assumptions (e.g., branching ratios, particular mass hierarchy). Search should continue in all aspects, including the "hidden modes"

Exotics: fun in the wild

Extra Dimensions

Black Holes

Q*, W', Z' ...

44

W_{R} , leptoquark, extra dimention, H^{++} ...

45

Summary for Exotics

46

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)

	Large ED (ADD) : monojet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]		4.37 TeV M _D (δ=2)	
10	Large ED (ADD) : monophoton + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M	(δ=2)	ATLAS
ű	Large ED (ADD) : diphoton & dilepton, m	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4	18 TeV $M_{\rm S}$ (HLZ δ =3, NLO)	Preliminary
Sic	UED : diphoton + $E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.41 TeV Compa	ct. scale R ¹	,
ű	$S'/Z_2 ED$: dilepton, m_{\parallel}	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]		4.71 TeV M _{KK} ~ R	
ŭ	RS1: diphoton & dilepton, $m_{\gamma\gamma/\parallel}$	L=4.7-5.0 fb ⁻¹ , 7 TeV [1210.8389]	2.23 TeV	Graviton mass $(K/M_{\rm Pl} = 0.1)$	
di	RS1: ZZ resonance, m	L=1.0 fb ⁻¹ , 7 TeV [1203.0718]	845 GeV Graviton mass	$(K/M_{\rm Pl} = 0.1)$	$dt = (1.0 - 13.0) \text{ fb}^{-1}$
B	RST. WW resonance, $m_{T,NN}$ RST. WW resonance, $m_{T,NN}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton	mass $(k/M_{\rm Pl} = 0.1)$	ui = (1.0 - 13.0) ib
Xt	KS = KK KK = KK = KL = KL = KL = KL = KL = KL =	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-136]	1.9 TeV 9 _{KK}	mass	s = 7, 8 TeV
ш	ADD BH $(M_{TH}/M_D - 3)$. S5 diffuon, $N_{ch, part.}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 lev M _D (0=0)	-6)	• •
	Ouentum black hole : dijet E (m)	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV M _D (0-	=D)	
	and contact interaction : 2(m)	L=4.7 fb , 7 lev [1210.1718]	4	11 lev M _D (0=0)	
7	and CL: ee & w. m	L=4.8 fb , 7 TeV [ATLAS-CONF-2012-038]		7.8 lev A	(constructive int.)
0	uutt CL: SS dilepton + jets + E	L=4.9-5.0 fb , 7 TeV [1211.1150]	4774	13.9 lev A	(constructive int.)
	T' (SSM) : m	L=1.0 fb , / TeV [1202.5520]	1.7 lev /\	7' 2000	
	Z (SSM) : ///ee/µµ Z' (SSM) : m	L=5.9-6.1 ID , 8 TeV [ATLAS-CONF-2012-129]	2.49 lev	Z mass	
	2 (33NI) . III W' (SSM) : m	L=4.7 fb ,7 lev [1210.0004]	1.4 IEV Z IIIdos	W/ mase	
2	$W' (\rightarrow ta \ a = 1) : m$	L=4.7 fb , 7 lev [1209.4446]	2.55 TeV	W mass	
	W'_{-} (\rightarrow th SSM) : m	L=4.7 fb , 7 feV [1209.0595]	112 ToV W/ mass		
	W*:m	L=4.7 fb ⁻¹ 7 TeV (1209.4446)	2.42 TeV	W* mass	
	Scalar I O pair (8=1) : kin vars in eeii evii	1 = 1.0 fb ⁻¹ 7 TeV [1112.4828]	660 GeV 1 st den 10 mass	W 11035	
Q	Scalar LO pair ($\beta=1$) : kin. vars. in eejj, evjj	$L = 1.0 \text{ fb}^{-1}$ 7 TeV [112.4620]	BRE Gov 2 nd den 10 mass		
L	Scalar I O pair ($\beta = 1$) kin vars in $\pi \pi i$ πv i	/ =4.7 fb ⁻¹ . 7 TeV [Preliminary]	538 GeV 3 rd den LO mass		
60	4 th constation : tt > WhWh	/ =4.7 fb ⁻¹ , 7 TeV [1210,5070]	656 GeV t' mass		
X	4^{th} generation : b'b'(T T _{en}) \rightarrow WtWt	/ =4.7 fb ⁻¹ , 7 TeV [ATLAS-CONE-2012-130]	670 GeV b' (T) mass		
en	New quark b' : $b' \stackrel{5}{D} \rightarrow Zb+X, m$	(=2.0 fb ⁻¹ 7 TeV [1204.1265]	b' mass		
g.	Top partner : TT \rightarrow tt + A ₂ A ₂ (dilepton, M ^{2b})	L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 GeV T mass $(m(A) < 100 G$	eV)	
Š	Vector-like guark : CC. m.	L=4.6 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-1371	1.12 TeV VLQ mass	(charge -1/3, coupling $\kappa_{-0} =$	v/m _o)
ž	Vector-like guark : NC, m	L=4.6 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-1371	1.08 TeV VLQ mass	(charge 2/3, coupling $\kappa_{-0} = v$	/m_)
**	Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV	o* mass	Q/
<u>i Č</u>	Excited guarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.0	4 TeV g* mass	
Щæ	Excited lepton : I-y resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV	* mass (A = m(l*))	
	Techni-hadrons (LSTC) : dilepton, marking	L=4.9-5.0 fb ⁻¹ , 7 TeV (1209.2535)	850 GeV ρ_/ω ₊ mass (m	$(\rho_{-}/\omega_{T}) - m(\pi_{T}) = M_{-})$	
	Techni-hadrons (LSTC) : WZ resonance (vIII), m	L=1.0 fb ⁻¹ , 7 TeV [1204.1648]	483 GeV ρ_{-} mass $(m(\rho_{-}) = m(\pi_{-})$	$+ m_{\rm sc}, m(a_{\rm sc}) = 1.1 m(\rho_{\rm sc})$	
1	Maior, neutr. (LRSM, no mixing) ; 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mas	s (m(W_) = 2 TeV)	
he	W _e (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	2.4 TeV	W_R mass (m(N) < 1.4 TeV)	
õ	$H_{i}^{\pm\pm}$ (DY prod., BR($H_{i}^{\pm\pm}\rightarrow II$)=1) : SS ee (µµ), m	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 4	09 Gev H ^{±±} mass (limit at 398 Ge	V for μμ)	
	H^{\pm} (DY prod., BR($H^{\pm} \rightarrow e\mu$)=1) : SS $e\mu$, m_{μ}	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 37	5 Gev H ^{±±} mass		
	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Sca	alar resonance mass	
	······································				
		10 ⁻¹	1	10	10 ²
			•		
* 0				IV	ass scale [TeV]

Summary and outlook

- * We have found a new Higgs-like particle with mass around 125 GeV
- ★ The properties if the particle are not fully known
 - All Higgs decay channels seems to agree with SM so far
 - There is a tendencay that $\gamma\gamma$ is a bit high, and $\tau\tau$ and bbbar are a bit low. We need to analyze more data to shrink the error bars
 - The decay width, spin and CP are not determined yet
- ★ Searches for SUSY, including MSSM Higgs, are null
- $_{\bigstar}$ Searches for Exotics (q*, Z'/W', leptoquark, W $_{_{\rm R}}$, extra dimentions, ...) are null

For experimentalists: more data and higher energy (14 TeV 2014) For theorists: constraints and new models based on the current results stay tuned for more exciting news from LHC !

LHC timeline

-2012 End of December : Reach 20-25 fb⁻¹/experiment -2013-2014 : LS1

	Consolidation of the interconnections		Consolidation of the interconnectionsRun at 6.5 to 7 TeV To ~100 fb-1			Injection and collimation upgrade		Ultimate LHC To ~300fb ⁻¹		HL-LHC 3 ab ⁻¹		
		LS1		 	1 1 1,	1	LS2				LS3	
Å	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
		1		1	 	1					1 	

Backup Slides

Higgs decay width

The Higgs decay width increases dramatically when above 200 GeV, and its interference with SM processes becomes sizable – tough for heavy SM-like Higgs search

$H \to \gamma \gamma$

★ H → γγ proceeds via W and top loops (σ xBR≈50 fb @125 GeV)

New charged particle in the loop : enhanced H $\rightarrow \gamma \gamma$ rate

★ Irreducible $\gamma\gamma$ background ($\sigma\approx$ 40 pb, theoretical error ~20%)

★ Reducible background: γ +jet (σ ≈µb), and jet+jet (σ ≈mb)

One or more photons are fake photon from jets (mainly $\pi^0 \rightarrow \gamma$). The fake rate to hard to model with simulation

Have to rely on data to normalize the diphoton backgriunds

Categorization of events

Category	σ_{CB}	FWHM
	[GeV]	[GeV]
Inclusive	1.63	3.87
Unconverted central, low p_{Tt}	1.45	3.42
Unconverted central, high p_{Tt}	1.37	3.23
Unconverted rest, low p_{Tt}	1.57	3.72
Unconverted rest, high p_{Tt}	1.51	3.55
Converted central, low p_{Tt}	1.67	3.94
Converted central, high p_{Tt}	1.50	3.54
Converted rest, low p_{Tt}	1.93	4.54
Converted rest, high p_{Tt}	1.68	3.96
Converted transition	2.65	6.24
2-jets	1.57	3.70

★ Classify events with different mass resolution:

- High p_{Tt} is better than low pTt
- Unconverted is better than converted
- Central is better than rest, and rest better than transition

* There is a special 2-jet category for VBF. There are 10 categories in total

Mass and signal strength

 \bigstar Left: likelihood of the fit floating both the mass and signal strength parameter μ

***** Right: Fitted signal strength for 126.5 GeV: $\mu = 1.9 \pm 0.5$

Fermiophobic limits

 \bigstar For a fermiophobic Higgs, since only VBF and VH diagrams contribute, the Higgs $p_{_{\rm T}}$ is expected – better S/B separation

★ Higher (lower) σ xBR in low (high) mass region compared to SM. Expect to exclude m_H<123.5 GeV (2011)

$H \to ZZ \to 4]$

★ $H \rightarrow ZZ \rightarrow 4I$ is the gold-plated channel – good mass resolution, powerful rejection of SM background due to 4-lepton requirement

* Suffers from low rate and total lepton acceptance loss

BR(ZZ \rightarrow 4l)=0.45% $\implies \sigma x BR(H \rightarrow ZZ \rightarrow 4l)=2.6 \text{ fb}$

Single lepton acceptance (tracking volume, trigger and reconstruction) is high ($\approx 80\%$), but the total acceptance is low ($0.8^4=0.4$)

 \star Higgs mass resolutions – 1.8 to 2.5 GeV:

Selection cuts and mass spectrum

★ Require 2 pairs of same-flavor opposite-sign leptons

4 leptons with $p_{T} > 20, 15, 10, 7$ (6 for muon) GeV (lep1, 2, 3, 4)

50 GeV < $\rm m_{_{12}}$ < 106 GeV, and $\rm m_{_{min}}$ < $\rm m_{_{34}}$ < 115 GeV. $\rm m_{_{min}}$ depends on the 4I mass

 $m_{II} > 5$ GeV for all same-flavor opposite-sign pair – J/ ψ rejection

Lepton isolation (calo-energy and tracks around real leptons should be small) and track d0 cut (should come from hard IP)

Mass and signal strength

* Left: likelihood of the fit floating both the mass and signal strength parameter μ . Fitted signal strength: $\mu = 1.4 \pm 0.6$

***** Right: scan of discovery p-value abd significance: 3.6σ

$H \to WW \to l\nu l\nu$

Can not reconstruct the Higgs mass – background rates estimation is crucial in this channel

Devide analysis into 6 categories: ($e\mu$, μe) x (0-jet, 1-jet, \geq 2-jet)

• Lepton $p_{T} > 25$, 15 GeV, $m_{11} > 10$ GeV

Preselection

• $E_{T,rel}^{miss}$ > 25 GeV. $E_{T,rel}^{miss}$ is the MET component perpendicular to the closest object (lepton or jets). $E_{T,rel}^{miss} = E_T^{miss}$ if $\Delta \Phi > \pi/2$

• anti-kt jet p_25 GeV (>30 GeV if $|\eta|$ >2.5)

Final yields and distribution

Yields for 2012 5.8 fb⁻¹ (94 GeV < m_{τ} < 125 GeV):

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+0-jet	20 ± 4	101 ± 13	12 ± 3	8 ± 2	3.4 ± 1.5	1.9 ± 1.3	15 ± 7	142 ± 16	185
H+ 1-jet	5 ± 2	12 ± 5	1.9 ± 1.1	6 ± 2	3.7 ± 1.6	0.1 ± 0.1	2 ± 1	26±6	38
H+2-jet	0.34 ± 0.07	0.10 ± 0.14	0.10 ± 0.10	0.15 ± 0.10	-	-	-	0.35 ± 0.18	0

Higgs mass reconstruction

 \star Effective mass: invariant mass of the visible tau decay products and MET

★ Collinear mass:

 Assume neutrinos and visible decay products from the tau are collinear, then ditau mass can be calculated as

- $x_{1,2}$ are the fractions of momenta carried away by the visible decay products from the tau
- ★ Missing Mass Calculator (MMC):

 Mass estimation by requiring the mutual orientations between neutrinos and other tau decay products are consistent with the mass and decay kinematics of a tau

 Scan in the allowed phase space region (including MET variables) for the most likely solutions

$$m_{\tau\tau} = \frac{m_{\ell\ell}}{\sqrt{x_1\cdot x_2}}$$

Embedding sample for $Z \rightarrow \tau \tau$ background

★ $Z \rightarrow \tau \tau$ is the dominant background for all 3 sub-channels. To estimate this background from data, an embedding method is used:

- Select $Z \rightarrow \mu\mu$ events from data, replace the two muons by taus, and remove muons and calorimeter cells passed in the original event
- Pass the taus through Tauola decay, and fully simulate the tau decay products
- Embed the simulated tau decay products into the original event
- ★ The embedding procedure is validated by replacing the muons in data by muons from full simulation (mu-embedding)

★ Only shapes and relative efficiencies are provided by the embedding sample. The absolute normalization comes from MC predictions after lepton/tau selections or from control regions

61

ll-channel: Drell-Yan and top background

★ $Z \rightarrow ee, \mu\mu$ Drell-Yan is controlled by the MET distribution in events under the Z peak:

$$A_{\rm MC}^{\rm corrected} = A_{\rm MC} \times \frac{B_{\rm data}}{B_{\rm data} + D_{\rm data}} \frac{B_{\rm MC} + D_{\rm MC}}{B_{\rm MC}}$$

★ Top background: estimated from MC, and validated in top control regions:

lh-channel: background estimation – Same Sign sample

★ Basic idea is that the background in OS signal region is equal to the background in SS signal region, plus any excess expected from OS than SS:

$$n_{\rm OS}^{\rm bkg} = n_{\rm SS}^{\rm all} + n_{\rm OS-SS}^{QCD} + n_{\rm OS-SS}^{W+\rm jets} + n_{\rm OS-SS}^{Z \to \tau\tau} + n_{\rm OS-SS}^{\rm other}$$

• "other" contains $Z \rightarrow ee, \mu\mu$, top (ttbar and single top) and diboson

• QCD excess (OS than SS) is expected to be zero – checked in a control region with MET<15 GeV: $\times 10^3$

$$r_{OS/SS}^{QCD} = 1.10 \pm 0.01 (\text{stat.}) \pm 0.09 (\text{syst.}) \rightarrow n_{OS-SS}^{QCD} =$$

 \bullet W+jet excess is estimated from a control region with m_>50 GeV

• $Z \rightarrow \tau \tau$ excess is estimated from the embedding sample

"other" excess is estimated from MC simulation

hh-channel: background estimation – track fitting

 $_{\bigstar}$ Anti-K_ style track counting in a cone of $\Delta R{<}0.6$ around the tau

* 2-D fit to the track multiplicity distributions of the 2 taus

★ Signal tau ($Z \rightarrow \tau \tau$) template is taken from MC, fake tau (QCD) template is from SS taus in data

 \bigstar Fractions of QCD background can be obtained from the fits in both control sample and signal region

Pinning down the Higgs couplings

Equivalent to a global coupling ratio $k = g/g_{SM} = sqrt(\mu) = 1.19 \pm 0.13$ Boson vs. fermion coupling

Double minima because of the $H \rightarrow \gamma \gamma$ loop:

65

Pinning down the Higgs couplings

0

-3

-2

2

з

 λ_{la}

66

• Not enough data from $H \rightarrow \tau \tau$ to determine the lepton/quark coupling ratios

Higgs decay width, spin and CP

BR(H \rightarrow invisible/undetected) < 0.65 @ 68% CL

