Physics at BESIII

Yifang Wang Institute of High Energy Physics

Beijing Electron Positron Collider (BEPC)

A long history of e⁺e⁻ colliders at the Tau-Charm energy region

Luminosity(cm⁻²s⁻¹)

BESIII data taking status & plan

	Previous data	BESIII present & future	Goal
J/ ψ	BESII 58M	1.2 B 20* BESII	10 B
ψ'	CLEO: 28 M	0.5 B 20* CLEOc	3B
ψ"	CLEO: 0.8 /fb	2.9/fb 3.5*CLEOc	20 /fb
ψ(4040)/ψ(4160)/ ψ(4260) /ψ(4360)	CLEO: 0.6/fb @ψ(4160)	2011:0.4/fb @ ψ(4040) 2013: 1/fb@4260, 4360	5-10 /fb
R scan & Tau	BESII	2012: 12/pb@2.23,2.4,2.8,3.4 25/pb tau 2013, 2014: high mass R, tau	

BESIII results

- Charmonium physics
 Charmonium spectroscopy
 Transitions and decays
 Light hadron spectroscopy
 Meson & baryon spectroscopy
 Search for unconventional
 - hadrons glueballs, hybrids, multi-quark states
- Charm physics

•

•

- Decay constant f_D
- CKM matrix elements: Vcd, Vcs

38 papers published/submitted

Charmonium states ψ' , h_c(¹P₁), η_c (1S), η_c (2S)

Y.P. Kuang's contribution to BES: heavy quarkonium transitions and decays:

- (1) Hadronic transition QCD multipole expansion
- (2) Coupled channel effect
- (3) 2S-1D mixing for ψ (3770) –non-DDbar decays
- (4) improved potential model for charmonium decays
- In fact, Prof. Kuang is the main player in early days of BES for charmonium physics
- Theoretical support for the study at BES on charmonium transitions
- BESIII yellow book on hadronic transitions of charmonium
- Proposed the study of $\chi_{c1} \rightarrow \eta_c \pi \pi$ at BESIII
- Many other suggestions to BESIII...

Incomplete list of Kuang's papers on the **BESIII** physics

Y.-P. Kuang et al, Q. Lu and Y.-P. Kuang, Y.-P. Kuang, Y.-P Kuang, Y.-P. Kuang et al, Y.Q. Chen, et al, Y.Q. Chen et al, Y.Q. Chen et al, H.Y. Zhong and Y.-P. Kuang, Phys.Rev. D44 (1991) 756-769 Y.-P. Kuang et al, Y.-P. Kuang et al, Y.-P. Kuang and T.M.Yan, Y.-P. Kuang and T.M.Yan,

Phys.Rev. D85 (2012) 114010 Phys.Rev. D75 (2007) 054019 Front.Phys.China 1 (2006) 19-37 Phys.Rev. D65 (2002) 094024 Phys. Rev.D37 (1998) 1210 Phys.Rev. D52 (1995) 264-270 Z.Phys. C67 (1995) 627-632 Phys.Rev. D46 (1992) 1165 Phys.Rev. D42 (1990) 2300-2308 Phys.Rev. D37 (1988) 1210-1219 Phys.Rev. D41 (1990) 155 Phys.Rev. D24 (1981) 2874

h_c(¹P₁)

- Physics motivation even at BES I
- Prof. Kuang gave the first calculatio of $\psi' \rightarrow \pi^0 h_c$ in 1988 , updated in 20(28

- Unfortunately, BES I and BESII did not have the capability due to the poor energy resolution (~20%) of EM calorimeter
- After 20 years, CLEOc observed the signal for the first time right before the BESIII, thanks to its crystal EM calorimeter(~2.5%)

Impossible at BES I, nor at BESII

Search for $h_c(^1P_1)$ at BESII

LU Feng, DU ShuXian

June 14, 2005

BESII Memo

1	Introduction	1
2	BESII Detector	3
3	h_c search by $\eta_c \longrightarrow \pi^+ \pi^- \pi^+ \pi^-$ channel 3.1 Signal topology and yield expectation 3.2 Signal preselection 3.3 Final selection	3 3 4 6
4	h_c search by $\eta_c \longrightarrow K^0_s K^+ \pi^- + { m c.c.}$ channel	13
5	Summary	13

Abstract

 h_c searches by the chains of $\psi' \longrightarrow h_c \pi^0$, $h_c \longrightarrow \eta_c + \gamma$, $\eta_c \to 4\pi$, $K_a^0 K^+ \pi^- + c.c$, 4K and $2K2\pi$ channels have beed presented, no clear h_c signals are observed in the $\gamma \eta_c$ invariant mass spectra at BESII 14M ψ' decays. 90% C. L. upper limits are set: $Br(\psi' \to \pi^0 h_c) \times Br(h_c \to \gamma \eta_c) < 3.3 \times 10^{-3}$ by $\eta_c \to 4\pi$ channel, 4.3×10^{-3} by $\eta_c \to K_a^0 K^+ \pi^- + c.c.$ channel and 15.4×10^{-3} by $\eta_c \to 4K$ channel respectively.

1 Introduction

Contents

 h_c , P-wave spin singlet charmonium state $({}^{1}P_{1})$, due to the $c\bar{c}$ system relativistic and other effects are less important than the light quarkonia system because of heavy charm quark mass, is extremely important to determine spin-dependent component of the $q\bar{q}$ confinement potential by ${}^{1}P_{1}{}^{-3}P_{oog}$ mass splitting for lattice QCD and NRQCD. With scalar confinement, h_c should be degenerate in mass with the center of gavity of the $\chi_{cl}({}^{3}P_{l})$ states [1]:

$$M_{cog} = \frac{m(\chi_{c0}) + 3m(\chi_{c1}) + 5m(\chi_{c2})}{9} = (3525.30 \pm 0.12) MeV/c^2$$
(1)

The measurement of the deviation of the h_c mass from M_{cos} is a good test of Lorentz nature of the confining potential. Therefore searching h_c and measuring its

Search for $h_c via \psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_{c} \eta_c \rightarrow 4\pi/\eta_c \rightarrow k_s k\pi$ from 14M Ψ' at BESII: Br $(\Psi' \rightarrow \pi^0 h_c) \times Br(h_c \rightarrow \gamma \eta_c) < 3.3 \times 10^{-3}$ (90% C.L.)

A memo was written but no paper was published since CLEO-c observed the signal

First BESIII PRL paper: $\psi(2S) \rightarrow \pi^0 h_c$

BESIII: PRL 104, 132002 (2010) Mass: 3525.40±0.13±0.18 MeV Width: 0.73±0.45±0.28 MeV (<1.44 MeV @ 90% C.L.)

CLEOc: PRL101, 182003 (2008) Mass: 3525.28±0.19±0.12 MeV Width: fixed to 0.9 MeV

 $\Delta M_{hf} = \langle M(^{3}P_{J}) \rangle - M(^{1}P_{1})$ Agrees with zero within ~0.5 MeV

Information on spin-spin interaction.

Combined inclusive and E1-photon-tagged spectrum (First measurements)

B($\psi' \rightarrow \pi^0 h_c$) = [8.4±1.3(stat.) ±1.0(syst.)]×10⁻⁴ B($h_c \rightarrow \gamma \eta_c$) = [54.3±6.7(stat.) ±5.2(syst.)] %

Agree with predictions of Kuang, Godfrey, Dudek, et al. 11

BESII

BESIII

没有钱是万万不行的!

$h_c(1P1)$ in $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow X_i$ (exclusive)

Simultaneous fit to π^0 recoiling mass in 106M ψ' sample (preliminary results):

$$\begin{array}{lll} \textbf{M}(h_c) = 3525.31 \pm 0.11_{(stat)} \pm 0.15_{(sys)} \ \textbf{MeV/c^2} \\ \Gamma(h_c) = & 0.70 \pm 0.28_{(stat)} \pm 0.25_{(sys)} \ \textbf{MeV} \\ \textbf{N} &= & 832 \pm 35 \\ \chi^2/d.o.f. = & 32/46 \end{array}$$

Accepted for publication at PRD

Consistent with BESIII inclusive Results: PRL104,132002(2010) CLEOc exlusive results: $M(h_c)=3525.21\pm0.27\pm0.14$ MeV/c² PRL101, 182003(2008)

$\eta_c(1S)$

• The lowest lying S-wave spin singlet charmonium, discovered in 1980 by MarkII. Confusion properties:

Charmonium radiative transition: M ~ 2978.0MeV/ c^2 , Γ ~ 10MeV

γγ process: $M = 2983.1 \pm 1.0 \text{ MeV}/c^2$, $\Gamma = 31.3 \pm 1.9 \text{ MeV}$

- CLEOc found the distortion of the η_c line shape in ψ' decays.
- $_{CC}\overline{C}$ hyperfine splitting M(J/ ψ)-M($\eta_{c}(1S)$) is the important exp. input to test LQCD, but is dominated by error on M($\eta_{c}(1S)$).

Asymmetric lineshape in J/ψ decay

Symmetric lineshape in $\gamma\gamma$ production

Symmetric η_c lineshape from $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$

η_{c} resonance parameters from $\psi' \rightarrow \gamma \eta_{c}$ at BESIII

Interference taken into account

PRL 108 (2012) 222002

Relative phase ϕ values from each mode are consistent within 3σ .

→ use a common phase value in the simultaneous fit.

mass: 2984.3 \pm 0.6_{stat} \pm 0.6_{sys} MeV/*c*² width: 32.0 \pm 1.2_{stat} \pm 1.0_{sys} MeV ϕ : 2.40 \pm 0.07_{stat} \pm 0.08_{sys} rad (constructive) or 4.19 \pm 0.03_{stat} \pm 0.09_{sys} rad (destructive)

Comparison of the mass and width for $\eta_c(1S)$

Mass = $2984.3 \pm 0.6 \pm 0.6$ MeV/c² Width = $32.0 \pm 1.2 \pm 1.0$ MeV

- The most precise measurement
- Agree well with LQCD calculation.

• Crystal Ball's "first observation" of $\psi' \rightarrow \gamma X$ never been confirmed

PRL 48 70 (1982)

- Observed in different production mechanisms
 - B→Kη_c(2S)
 - $\gamma\gamma \rightarrow \eta_c(2S) \rightarrow KK\pi$
 - double charmonium production

Belle: PRL 89 102001 (2002), NPPS.184 220 (2008), PRL 98 082001(2007) CLEOc: PRL 92 142001 (2004) BaBar: PRL 92 142002 (2004); PR D72 031101(2005),

PR D84 012004 (2011)

Experiment	$M \; [MeV]$	$\Gamma [MeV]$	Process
Belle [1]	$3654 \pm 6 \pm 8$		$B^{\pm} \to K^{\pm} \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
CLEO [2]	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [3]	$3630.8 \pm 3.4 \pm 1.0$	$17.0 \pm 8.3 \pm 2.5$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [4]	$3645.0 \pm 5.5^{+4.9}_{-7.8}$		$e^+e^- \rightarrow J/\psi c \bar{c}$
PDG [5]	3638 ± 4	14 ± 7	—

• CLEOc did not find signals in 25M ψ' M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$ BF($\psi' \rightarrow \gamma \eta_c(2S)$) < 7.6 $\times 10^{-4}$ CLEOC: PRD 81 052002 (2010)

Experimental challenge : detect photons of 50 MeV

First observation of $\psi' \rightarrow \gamma \eta_c(2S)$

Statistical significance >10 σ

BESIII: PRL109, 042003 (2012)

19

New discovery! Great effort since BESI

- Observed signal in $K_sK^+\pi^-+c.c.$, found evidence in $K^+K^-\pi^0$
- First measured Br($\psi' \rightarrow \gamma \eta_c(2S)$)=(6.8±1.1±4.5) ×10⁻⁴

 Potential model expectation: (0.1-6.2)×10⁻⁴
 PRL 89 162002 (2002)

 CLEOc: <7.6×10⁻⁴
 PRD 81 052002 (2010)

Y.P. Kuang's prediction: $\Gamma[\psi(1^{3}D \rightarrow 1^{3}D \pi\pi)] = [11 \sim 160] \text{ keV}$ PRD41 (1990) 155 M.B. Voloshin's prediction: $\Gamma[\psi(1^{3}D \rightarrow 1^{3}D \pi\pi)] < 0.1 \text{ keV}$

Non-DD decay of \psi(3770) : discovered at BESII

$$BF(\psi(3770) \rightarrow J/\psi\pi^+\pi^-) = (0.34 \pm 0.14 \pm 0.09)\%$$

Kuang's QCDME prediction: BF[ψ (3770) \rightarrow J/ $\psi \pi^+ \pi^-$]=(0.1-- 0.7)%

M.Voloshin's QCDME prediction:

BF[ψ(377J/ψπ⁺π⁻]<0.001%

Results from BES-II in agreement with Kuang's prediction. Observation later confirmed by CLEOC

D-wave charmonium hadronic transition at BES-III

- ✓ Branching ratio and decay width of the following process:
 - $\psi(3770) \rightarrow J/\psi \pi^{+}\pi^{-}, J/\psi \pi^{0}\pi^{0}$
 - ψ(3770)→J/ψ π⁰
 - ψ(3770)→J/ψ η
- ✓ S-D mixing angle θ_{mix}
- ✓ ππ invariant mass spectrum from $\psi(3770)$ →J/ ψ ππ for parameters c₁and c₂ in the Kuang's QCDME model

Light hadron physics

Confirmation of the BESII observation: pp threshold enhancement in J/ψ decays

PWA of J/ $\psi \rightarrow \gamma p \overline{p}$ @ BESIII

BESIII: PRL 108, 112003 (2012)

 $f_0(2100) / f_2(1910)$ fixed to PDG. Sig. of X(ppbar) >>30 σ

- The fit with a BW and S-wave FSI(I=0) factor can well describe ppb mass threshold structure.
- It is much better than that without FSI effect, and $\Delta 2 \ln L = 51$ $\Rightarrow 7.1\sigma$.

$$\begin{split} M &= 1832_{-5}^{+10}(\text{stat.})_{-17}^{+18}(\text{syst}) \pm 19(\text{model}) \text{ MeV/c}^2 \\ \Gamma &= 13 \pm 39(\text{stat.})_{-13}^{+10}(\text{syst}) \pm 4(\text{model}) \text{ MeV/c}^2 (\Gamma < 60 \text{ MeV/c}^2 @ 90 \text{ C.L.}) \\ \text{Br}(J/\psi \to \gamma X) \text{Br}(X \to p\overline{p}) = (9.0_{-1.1}^{+0.4}(\text{stat.})_{-5.0}^{+1.5}(\text{syst}) \pm 2.3(\text{model})) \times 10^{-5} \end{split}$$

Different FSI models \rightarrow Model dependent uncertainty

X(1835) and two new structures

- X(1835) was observed in $J/\psi \rightarrow \gamma \eta' \pi \pi$ at BESII.
- X(1835) is confirmed at BESIII with 225 M J/ψ.
- Two new structures are observed.

BESII result(Stat. sig. ~ 7.7 σ): $M = 1833.7 \pm 6.1(stat) \pm 2.7(syst)MeV$ $\Gamma = 67.7 \pm 20.3(stat) \pm 7.7(syst)MeV$

X(1870) in J/ $\psi \rightarrow \omega X$, X $\rightarrow a_0(980)\pi\pi$

$J/\psi \rightarrow \gamma 3\pi$

BESIII: PRL 108 (2012) 182001

First observed large isospin breaking : $\eta(1405) \rightarrow f_0(980)\pi^0$

 \blacklozenge observed narrow f₀(980) – much narrow than PDG value

General speaking, the isospin breaking in hadronic decays < 1% or at 0.1% level.

For example:

$$\frac{BR(\psi' \to \pi^0 J/\psi)}{BR(\psi' \to \eta J/\psi)} = 0.2\% \times \frac{|P_{\pi}|^3}{|P_{\eta}|^3}, \ \frac{BR(\eta' \to \pi^+ \pi^- \pi^0)}{BR(\eta' \to \pi^+ \pi^- \eta)} = 0.9\%$$

However:

$$\frac{\text{BR}(\eta(1405) \to f_0(980)\pi^0)}{\text{BR}(\eta(1405) \to a_0(980)\pi)} \approx (17.9 \pm 4.2)\%$$

How to understand? Stimulated many theoretical speculations.

J.J.Wu et al, PRL 108, 081803(2012)

Charm Physics

Preliminary study of $D^+ \rightarrow \mu \nu$ at BESIII

Experiment	f _D (MeV)	Average	
CLEO-c	(205.8±8.5±2.5)		
BES-III(PRLMNRY)	(203.91±5.72±1.97)	(204.5±5.0)	

The error is still statistical dominated.

Preliminary study of $D^0 \rightarrow \pi e \nu$ and $Ke \nu$

- Systematic uncertainties are preliminary
- Good consistency with CLEO-c, statistical precision comparable with only 1/3 data analyzed

Summary

BESIII collected

- 1 billion J/ ψ , 0.5 billion ψ ' data
- R scan between 2.4 3.6 GeV
- tau mass measurement (25/pb)
- Phase measurement and J/psi lineshape
- Next physics run:
 - ~500 pb⁻¹ at 4260 MeV
 - ~500 pb⁻¹ at 4360 MeV
 - R scan at high mass region
- A lot of physics results. More are coming

Happy birthday, Prof. Kuang. I learned a lot from you since 1986. Thanks

