Neutralinos and Charginos in the Light of the Higgs Boson

Tao Han PITT PACC & TsingHua Center for HEP

Work to appear, in collaboration with Sanjay Padhi, Shufang Su

T. Han

Outline

- Introduction/Motivation
- Surrent exp search limits on MSSM EW sector
- MSSM EW-ino sector
- Neutralinos/Charginos: production and decay
- Collider analyses:
 - Wh, Zh, hh final states
 - Comparison with conventional Neutralino/Chargino search channels
- Gonclusion

Motivation

- Higgs connection
 - natural SUSY: light gauginos and Higgsinos
- DM connection
 - neutralinos: DM candidate
- Colored superparticle might be very heavy
 - no indication from current LHC search: m_{sq}, m_{gluino} > 1 TeV
 - EW sector (+stop/sbottoms) might be the only particles accessible at the LHC
- Neutralinos and Charginos
 - suffer from small electroweak production
 - current search mostly focused on slepton assisted channels
 - current reach of neutralino/chargino w/o slepton: limited
- Connection to Lepton Collider

Exploring LHC reach for the electroweak sector of MSSM gauginos, Higgsinos with the help of the Higgs boson

Current limits: neutralino/chargino

trilepton+MET from $\chi_1^{\pm} \chi_2^0$

CDF Note 10636 D0: arXiv:0901.0646

mχ1⁰ > 47/50 GeV (CMSSM, mSUGRA) No mass limit in general

Current limits: neutralino/chargino

ATLAS Limits: LHC 7 TeV with 4.7 fb^{-1}

dilepton + MET, with or w/o jets

trilepton + MET

ATLAS 1208.2884

ATLAS Limits: LHC 7 TeV with 4.7 fb^{-1}

T. Han

60 GeV < $m_{\chi 1\pm}$ < 500 GeV

MSSM EW-ino sector 101

Neutralinos

T. Han

7

Neutralinos

T. Han

7

Neutralinos

T. Han

• Charginos

$$\psi^{\pm} = (\tilde{W}^{+}, \tilde{H}_{u}^{+}, \tilde{W}^{-}, \tilde{H}_{d}^{-})$$

$$M_{\tilde{C}} = \begin{pmatrix} 0_{2\times 2} & X_{2\times 2}^{T} \\ X_{2\times 2} & 0_{2\times 2} \end{pmatrix}, \text{ with } X_{2\times 2} = \begin{pmatrix} M_{2} & \sqrt{2}s_{\beta}m_{W} \\ \sqrt{2}c_{\beta}m_{W} & \mu \end{pmatrix}$$

$$\begin{pmatrix} \chi_1^+ \\ \chi_2^+ \end{pmatrix} = \begin{pmatrix} 1 & \mathcal{O}(\frac{m_Z}{M}) \\ \mathcal{O}(\frac{m_Z}{M}) & 1 \end{pmatrix} \begin{pmatrix} \tilde{W}^+ \\ \tilde{H}_u^+ \end{pmatrix}$$

$$\left(\begin{array}{c} \chi_1^- \\ \chi_2^- \end{array}\right) = \left(\begin{array}{cc} 1 & \mathcal{O}(\frac{m_Z}{M}) \\ \mathcal{O}(\frac{m_Z}{M}) & 1 \end{array}\right) \left(\begin{array}{c} \tilde{W}^- \\ \tilde{H}_d^- \end{array}\right)$$

T. Han

Order of M1, M2 and µ

Case All

Higgsino NLSP $M_1 < \mu < M_2$

Bino LSP case

Masses: Bino LSP

T. Han

11

Masses: Bino LSP

Masses: Wino LSP

T. Han

12

Masses: Higgsino LSP

Production

Dominant production:

- Wino pair production: cha-cha, cha-neu
- Higgsino pair production: cha-cha, cha-neu, neu-neu

Production: Bino LSP - Wino NLSP

 $\chi_1^0 h$

 $\chi_1^0 Z$

300 M₂ (GeV)

400

500

Neutralino and Chargino mixing

	Neutralinos	Charginos
case Al	$\chi_1^0 \sim \tilde{B} + \mathcal{O}(\frac{m_Z}{\mu})(\frac{m_Z}{M_2}) \tilde{W}^0 + \mathcal{O}(\frac{m_Z}{\mu}) \tilde{H}_d^0 + \mathcal{O}(\frac{m_Z}{\mu}) \tilde{H}_u^0$ $\chi_2^0 \sim \mathcal{O}(\frac{m_Z}{\mu})(\frac{m_Z}{M_2}) \tilde{B} + \tilde{W}^0 + \mathcal{O}(\frac{m_Z}{\mu}) \tilde{H}_d^0 + \mathcal{O}(\frac{m_Z}{\mu}) \tilde{H}_u^0$	$\chi_1^+ \sim \tilde{W}^+ + \mathcal{O}(\frac{m_Z}{\mu})\tilde{H}_u^+$ $\chi_1^- \sim \tilde{W}^- + \mathcal{O}(\frac{m_Z}{\mu})\tilde{H}_d^-$
case All	$\chi_1^0 \sim \tilde{B} + \mathcal{O}(\frac{m_Z}{M_2})(\frac{m_Z}{\mu}) \tilde{W}^0 + \mathcal{O}(\frac{m_Z}{\mu}) \tilde{H}_d^0 + \mathcal{O}(\frac{m_Z}{\mu}) \tilde{H}_u^0$ $\chi_2^0 \sim \mathcal{O}(\frac{m_Z}{\mu}) \tilde{B} + \mathcal{O}(\frac{m_Z}{M_2}) \tilde{W}^0 + \frac{1}{\sqrt{2}} \tilde{H}_d^0 - \frac{1}{\sqrt{2}} \tilde{H}_u^0$ $\chi_3^0 \sim \mathcal{O}(\frac{m_Z}{\mu}) \tilde{B} + \mathcal{O}(\frac{m_Z}{M_2}) \tilde{W}^0 + \frac{1}{\sqrt{2}} \tilde{H}_d^0 + \frac{1}{\sqrt{2}} \tilde{H}_u^0$	$\chi_1^+ \sim \mathcal{O}(\frac{m_Z}{M_2}) \tilde{W}^+ + \tilde{H}_u^+$ $\chi_1^- \sim \mathcal{O}(\frac{m_Z}{M_2}) \tilde{W}^- + \tilde{H}_d^-$

T. Han

decay occur via mixing through Higgsino
 M₂ >> M₁, $\chi_2^0 \rightarrow \chi_1^0 Z$ dominated by the decay via Z_L (goldstone mode G⁰)
 h, G⁰ as mixture of H_u⁰ and H_d⁰

$$\Gamma(\chi_2^0 \to \chi_1^0 h) \propto \left(2s_{2\beta} + \frac{M_2}{\mu}\right)^2 \left[(M_2 + M_1)^2 - m_h^2\right],$$

$$\Gamma(\chi_2^0 \to \chi_1^0 Z) \propto \left(c_{2\beta} \frac{M_2}{\mu}\right)^2 \left[(M_2 - M_1)^2 - m_Z^2\right].$$

decay occur via mixing through Higgsino
 M₂ >> M₁, $\chi_2^0 \rightarrow \chi_1^0 Z$ dominated by the decay via Z_L (goldstone mode G⁰)
 h, G⁰ as mixture of H_u⁰ and H_d⁰

decay occur via mixing through Higgsino
 M₂ >> M₁, $\chi_2^0 \rightarrow \chi_1^0 Z$ dominated by the decay via Z_L (goldstone mode G⁰)
 h, G⁰ as mixture of H_u⁰ and H_d⁰

Production: Bino LSP - Higgsino NLSP

Case AII: Bino LSP-Higgsino NLSP

X1[±] decay 100% via on/off-shell W

T. Han

Case AII: Bino LSP-Higgsino NLSP

Case AII: Bino LSP-Higgsino NLSP

Monday, November 12, 2012

Monday, November 12, 2012

$$\begin{split} h &= -\sqrt{2} \quad (s_{\beta} \operatorname{Re}(H_{u}^{0}) + c_{\beta} \operatorname{Re}(H_{d}^{0})), \\ G^{0} &= \sqrt{2} \quad (s_{\beta} \operatorname{Im}(H_{u}^{0}) - c_{\beta} \operatorname{Im}(H_{d}^{0})). \end{split}$$

$$\chi_{2}^{0} &\approx \frac{1}{\sqrt{2}} (\tilde{H}_{d}^{0} - \tilde{H}_{u}^{0}) \qquad \qquad \chi_{3}^{0} \approx \frac{1}{\sqrt{2}} (\tilde{H}_{d}^{0} + \tilde{H}_{u}^{0}) \\ \Gamma(\chi_{2}^{0} \to \chi_{1}^{0}h) \propto (s_{\beta} + c_{\beta})^{2} \left[(\mu + M_{1})^{2} - m_{h}^{2} \right], \\ \Gamma(\chi_{2}^{0} \to \chi_{1}^{0}Z) \propto (s_{\beta} - c_{\beta})^{2} \left[(\mu - M_{1})^{2} - m_{Z}^{2} \right]. \qquad \Gamma(\chi_{3}^{0} \to \chi_{1}^{0}D) \propto (s_{\beta} + c_{\beta})^{2} \left[(\mu + M_{1})^{2} - m_{Z}^{2} \right]. \end{split}$$

Production: Wino LSP - Bino NLSP

Production: Wino LSP - Bino NLSP

Production: Wino LSP - Bino NLSP

Case BI: Wino LSP- Bino NLSP

Production: Wino LSP - Higgsino NLSP

Production: Wino LSP - Higgsino NLSP

Monday, November 12, 2012

 $\chi^0_{2,3}\approx \frac{1}{\sqrt{2}}(\tilde{H}^0_d\pm\tilde{H}^0_u)$

Monday, November 12, 2012

Production: Higgsino LSP - Bino NLSP

Production: Higgsino LSP - Bino NLSP

Production: Higgsino LSP - Bino NLSP

Case CI: Higgsino LSP- Bino NLSP

Monday, November 12, 2012

Case CI: Higgsino LSP- Bino NLSP

Monday, November 12, 2012

Production: Higgsino LSP - Wino NLSP

Production: Higgsino LSP - Wino NLSP

Case CII: Higgsino LSP- Wino NLSP

Monday, November 12, 2012

Case CII: Higgsino LSP- Wino NLSP

$$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$$

$$XY = W^+W^-, W^{\pm}W^{\pm}, WZ, Wh, Zh, ZZ, and hh$$

Br(WZ) < 100%, sometime highly suppressed</p>

- Wh complementary to WZ channel: new discovery potential
- Zh could also be important
- hh usually is small

Channel	Signal
W+M-	OS2L + MET
W [±] W [±]	SS2L + MET
WZ	3L + MET
Wh	1L + bb + MET
Zh	OS2I +bb + MET

simulated using Delphes + published resolution functions

Channel	Signal
W+M-	OS2L + MET
W [±] W [±]	SS2L + MET
WZ	3L + MET
Wh	1L + bb + MET
Zh	OS2I +bb + MET

simulated using Delphes + published resolution functions

 Wh Is Ve 2 Ve 2 Ve 2 Ne 2 In M M Signal (MT, N 	channel: olated e(µ eto any ad eto any Ta Jets Pt > 3 eto 3rd Jet bjets with bjets in on variant ma T (MET ar ET > 50 G I regions: IET) > (20	1I+jets + I), Pt > 30(2 ditional e/p us or isola 30 GeV, [e with Pt > Pt > 30 Ge e hemi-sp ass of two nd the Higg eV 0, 50), (60	VET 20) GeV J with Pt ted Trac ta < 2.5 20 GeV eV, eta here bjets 10 gs) > 200 0, 50), (2	(, eta < 2 > 10 Ge ks < 2.5 0 < M _{bb} (0 GeV 200, 100	2.5 eV, eta < 2 GeV) < 140), (600,100	2.5 0 0) GeV	
MET > 50, MT > 200 (Baseline)	MET > 50, 200< MT < 400	MET > 50, 400 < MT < 600	MET > 50, MT > 600	MET > 100, MT > 200	MET > 100, 200 < MT < 400	MET > 100, 400 < MT < 600	MET > 100, MT > 600
46.15 ± 12.01	43.27 ± 11.96	2.40 ± 1.02	0.48 ± 0.48	33.63 ± 10.69	30.75 ± 10.63	2.40 ± 1.02	0.49 ± 0.48

T. Han

10 fb-1

Processes

Total bg

 Wh Is Ve Ve 2 Ve 2 Ve 2 Ne M M Signal (MT, M 	channel: olated $e(\mu)$ eto any ad eto any Tar Jets Pt > 3 eto 3rd Jet bjets with bjets in on variant ma T (MET ar ET > 50 G regions: IET) > (20	11+jets + I), Pt > 30(2 ditional e/µ us or isola 30 GeV, [e] with Pt > Pt > 30 Ge e hemi-sp ass of two nd the Higg eV	VET 20) GeV J with Pt ted Trac ta < 2.5 20 GeV eV, eta here bjets 10 gs) > 200 0, 50), (2	, eta < 2 > 10 Ge ks < 2.5 0 < M _{bb} (0 GeV 200, 100	2.5 eV, eta < 2 GeV) < 140), (600,100	2.5) GeV	
200 (Baseline)	200< MT < 400	< MT < 600	MET > 50, MT > 600	MET > 100, MT > 200	< MT < 400	< MT < 600	MET > 100, MT > 600
46.15 ± 12.01	43.27 ± 11.96	2.40 ± 1.02	0.48 ± 0.48	33.63 ± 10.69	30.75 ± 10.63	2.40 ± 1.02	0.49 ± 0.48

T. Han

10 fb-1

Processes

Total bg

35

• Z	h signal: OS2I+ bb + MET			
•	Isolated $e(\mu)$, Pt > 20/10 GeV, $ eta < 2.5$			
•	Invariant mass of OS dileptons 76 GeV $< m_{\parallel} < 106$ GeV			
•	Veto any additional $e(\mu)$ with Pt > 10 GeV, $ eta < 2.5$			
•	2 Jets Pt > 30 GeV, eta < 2.5			
•	2 bjets with Pt > 30 GeV , $ eta < 2.5$			
•	2 bjets in One hemi-sphere			
•	Invariant mass of two bjets 90 GeV < M _{bb} < 150 GeV			
•	MT (MET and the Higgs) > 200 GeV			
•	MET > 50 GeV			
Signal regions:				
High MET: (MT. MET) > (200.50) GeV				

10 fb-1

Processes	MET > 50, MT >	MET > 50,	MET > 50, 400	MET > 50,	MET > 100,	MET > 200, 200	MET > 100, 400	MET > 100,
	200 (Baseline)	200< MT < 400	< MT < 600	MT > 600	MT > 200	< MT < 400	< MT < 600	MT > 600
Total	5.97 ± 5.22	5.87 ± 5.22	0.13 ± 0.13	0.00093 ± 0.0006	0.45 ± 0.23	0.31 ± 0.19	0.13 ± 0.13	0.00093 ± 0.0006

95% CL upper limit on cross sections

Monday, November 12, 2012

95% CL upper limit on cross sections

Monday, November 12, 2012

Conclusions

- LHC has great reach for colored particles, but more studies needed to explore LHC potential for EW particles.
- SSM EW-ino sector: neutralinos, charginos, M1, M2, μ, tanβ
- $rac{1}{9}$ Six cases with different ordering of M1, M2, μ

	Case A	Case B	Case C
I	M ₁ < M ₂ < µ	M ₂ < M ₁ < µ	$\mu < M_1 < M_2$
II	M ₁ < µ < M ₂	M ₂ < µ < M ₁	μ < M ₂ < M ₁

- Sominant neutralino/chargino pair production and decay
- Wh and WZ final states are complementary:
 - current WZ limit weakened
 - Wh: new discovery potential

LHC reach of neutralinos/charginos with final states including h: Wh, Zh...

Conclusions

- LHC has great reach for colored particles, but more studies needed to explore LHC potential for EW particles.
- SSM EW-ino sector: neutralinos, charginos, M1, M2, μ, tanβ
- $rac{1}{9}$ Six cases with different ordering of M1, M2, μ

	Case A	Case B	Case C
I	M ₁ < M ₂ < μ	M ₂ < M ₁ < µ	μ < M ₁ < M ₂
II	<mark>Μ₁ < μ < Μ₂</mark>	M₂ < µ < M₁	μ < M ₂ < M ₁

- Sominant neutralino/chargino pair production and decay
- Wh and WZ final states are complementary:
 - current WZ limit weakened
 - Wh: new discovery potential

LHC reach of neutralinos/charginos with final states including h: Wh, Zh...