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1. BASICS

Ü heated (philosophical) discussions
relation between QM and the understanding of nature
Ü mathematical structure: (mostly) accepted
Ü core issue: interpretation of QM

8 causality and chance
8 relation to classical physics

persona remarks
Ü classical picture: causality in space and time
Ü QM: (perhaps) theorie regarding information

8 information is intrinsically quantized
8 relevant for sufficiently small physical systems
8 QM was developed when atomic scales became accessible

Ü general observation
8 information given: classical behavior
8 information missing: chance

v in the following:
Try to get a better understanding from comparing theory and experiment

Ü some Nobelprize awarded results: : :
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Historical milestones (i)

Ü Max Planck
discovery of the quantization of action h 6= 0
Ü energy of light-waves is continuous
Ü interaction with matter is quantized

E = h �

(Nobelprize 1918)

v experiment: photo-effect

(explanation by Einstein, Nobelprize 1921)

Tests of Quantum Mechanics - Basics M. Schmelling / Tsinghua University, October 2013 page 3



Historical milestones (ii)

Ü Albert Einstein
mass and energy are equivalent

E = m c2

Ü De Broglie
matter has wave-like properties, too
particles cannot be perfectly localized

E = h � = m c2 = (mc) c = p c

� =
c
�

Resultat Ü � =
h
p

(Nobelprize 1929)

v experiment: Davisson-Germer experiment
diffraction in electron-scattering off crystals
same phenomenology as X-ray scattering

(Nobelprize 1937)
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Formal description

Physics () Mathematics

state of a system normalized wavefunction j  i

observable S hermitian operator S

Measurement Eigenvalue und Eigenfunction

Ü discussion:
j  i is element of a linear vector space: wavefunctions can be linearly superposed
and it exsist an inner product. The normalization is h j  i=1.

On the linear space of the wavefunctions S is a matrix with real eigenvalues �k

and an ortho-normalsystem of eigenvectors j �k i, i.e. h�k j �l i = �kl .

A measurement always yields an eigenvalue �k of the respective operator.
After the measurement the wavefunction is the eigenvector j �k i
(“collapse of the wavefunction”, or “decoherence”).
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Relative frequencies

Ü the statistical interpretation of Quantum Mechanics
wanted: distribution of the measured values for a given state

j  i =
X

k

ak j �k i

with (in general) complex-valued coefficients ak .

A priori a measurement can return any eigenvalue �k , i.e. the question is what are the
relative frequencies pk (probabilities). Exploit that the wavefunction the pk are normalized:

1 =
X

k

pk = h j  i =
X
k ;l

aka�l h�k j �l i =
X
k ;l

aka�l �kl =
X

k

jak j2

and thus pk = jak j2 (Nobelprize 1954)

in general the result of a measurement cannot be predicted, however : : :
relative frequencies are fixed by the wavefunction
only a system in the eigenstate �k deterministically yields the eigenvalue �k

general predictability would contradict with relativity
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Linear algebra: : :

Ü determination of the expansion coefficients ak

h�k j  i = h�k j
 X

i

ai j �i i
!

=
X

i

ai h�k j �i i =
X

i

ai�ki = ak

Ü expectation values

hSi �
X

k

pk�k = h jS j  i

v proof:
h jS j  i =

X
kl

aka�l h�l jS j �k i =
X

kl

aka�l �k h�l j �k i

=
X

kl

aka�l �k�kl =
X

k

jak j2�k =
X

k

pk�k

in the following: 2-state systems with �1;2 = �1 Ü
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Spin-1/2 particles (i)

Ü operators for spin-components in x ; y ; z

�x =

�
0 1
1 0

�
�y =

�
0 i
�i 0

�
�z =

�
1 0
0 �1

�

Ü Eigenstates for �z and �x

j " iz =
�

1
0

�
; � = +1 und j # iz =

�
0
1

�
; � = �1

j " ix =
1p
2

�
1
1

�
; � = +1 und j # ix =

1p
2

�
1
�1

�
; � = �1

Ü transformation between the two bases

j " ix =
1p
2

�
j " iz + j # iz

�
und j # ix =

1p
2

�
j " iz � j # iz

�
j " iz =

1p
2

�
j " ix � j # ix

�
und j # iz =

1p
2

�
j " ix + j # ix

�
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Spin-1/2 particles (ii)

Ü example: consequence for Stern-Gerlach type experiments
initial stat: j " iz
start with measurement of the z -component of the spins
then measure the x -component
then measure the z -component

z

σx

σz

σz

25%

25%

25%

25%

50%

50%

100%

Spin(z) Up

σz

Spin(z) Up

Spin(z) Down

Spin−Analysator

σ

After a measurement all information about earlier states has been erased!
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Two-particle systems

Ü construction of “classical” product states

z.B. j  i = j " i1 
 j " i2 � j "" i oder j  i = j " i1 
 j # i2 � j "# i

direct product of single particle states
use a basis (here and below) == eigenstates of �z

Ü new: “entagled states”

z.B. j  i = 1p
2
( j "# i � j #" i) (spin-singlet)

possible because of the superposition principle in QM
no classical interpretation - both particles are simultaneously “up” and “down”
interesting phenomenology when measuring both spins : : :

Tests of Quantum Mechanics - Basics M. Schmelling / Tsinghua University, October 2013 page 10



Quantum mechanical prediction (i)

Ü spin-correlation for the spin-singlet state

D2 A2
Source

S

A1 D1

Particle 1Particle 2

α

z

x

xz -direction of spin measurement: particle-1: �, particle-2: �

operators for those observables (e.g. �)

�� = cos� � �z � sin� � �x

effects of base-operators
�z j " i = j " i und �z j # i = �j # i
�x j " i = j # i und �x j # i = j " i

effects of the operators for the actual observables

�� j " i = cos� j " i � sin� j # i � c� j " i � s� j # i
�� j # i = � cos� j # i � sin� j " i � �c� j # i � s� j " i

then calculate: : :
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Quantum mechanical prediction (ii)

v expectation values of individual measurements

h��i = 1
2
[h "# j � h #" j ] (��) [ j "# i � j #" i]

=
1
2
[h "# j � h #" j ] [�� j "# i � �� j #" i]

=
1
2
[h "# j � h #" j ] [(c� j "# i � s� j ## i)� (�c� j #" i � s� j "" i)]

=
1
2
[h "# j � h #" j ] [c�( j "# i+ j #" i)� s�( j ## i � j "" i)]

=
1
2
c� [h "# j "# i � h #" j #" i] = 0

v note:

�� only acts on the first particle
�� would only act on the other particle
formally everything can be expressed by 4� 4 matrices
inner products of orthogonal states are zero
single measurements are random with equal probability for "� und #�
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Quantum mechanical prediction (iii)

v expectation value of the product (correlation)

h����i = 1
2
[h "# j � h #" j ] (����) [ j "# i � j #" i]

=
1
2
[h "# j � h #" j ] [ j (c� " �s� #)(�c� # �s� ") i � j (�c� # �s� ")(c� " �s� #) i]

=
1
2
[h "# j � h #" j ] [ j "# i(�c�c� � s�s�) + j #" i(s�s� + c�c�)

+ j "" i(�c�s� � s�c�) + j ## i(s�c� � c�s�)]

=
1
2
(�c�c� � s�s�)h "# j "# i � 1

2
(s�s� + c�c�)h #" j #" i

= �(c�c� + c�c�) = � cos(�� �) � � cos(�)

Ü the correlation is only a function of the opening angle � = �� �

spin-1/2 particles h����i = � cos�
photons (spin-1) h����i = � cos 2�

(180deg between orthogonal spin-1/2 states, 90deg between orthogonal photon polarisations)

Ü Interpretation
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Discussion

Ü h����i is only a function of �
single measurements are perfectly random
equal probability to measure “Spin-up” or “Spin-down”
perfect anti-correlation of both measurements refer to the same direction
independent of space and time, i.e.
Ü independent of the time ordering of the measurement
Ü independent of the spatial separation

Ü obvious(?) questions:
Is there “spooky action at a distance” which causes perfect synchronisation?
can one use this to transmit information with v =1?
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Communication with v =1?

Bob: � j  i = 1p
2
( j "# i � j #" i) Alice �

D2 A2
Source

S

A1 D1

Particle 1Particle 2

analyzer setting � k �: perfect anti-correlation
analyser setting � ? �: uncorrelated measurements

Ü Alice knows � and sends one bit to Bob by causing an excess of �1
case 1: Alice can influence her result
Ü set � k � and cause an excess of +1 at her side
Ü Bob observes the same excess of �1
case 2: Alice kann predict her result
Ü prediction +1: set � k � and Bob always sees �1
Ü prediction �1: set � ? � and Bob measures equal numbers of �1

v insight:
If a quantum mechanical measurement is truly random, i.e. neither predictable,
nor controllable then communication with v > c is impossible.
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Illustration

Ü measurement of spin correlations for spin-1/2 particles

z
Wavefunction: |Up Down> measure spin

spin analyzers

for ideal detektors and different wavefunctions consider : : :
Ü measurements of spin correlations
Ü coincidence measurements
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2. BELL’S INEQUALITIES

Ü The EPR-paradox (Einstein, Podolski, Rosen, 1935)
v quantum mechanics versus physical reality

definition: Element of reality
There exists a certain prediction (p = 1) for an observable,
which can be obtained without perturbing the system.
definition: Complete theorie
Each element of reality is represented in the theory.
discussion:
Ü plausible concepts
Ü inconsistent with quantum mechanics

Ü EPR: consider the wavefunction of a two-body decay M ! m1m2, which is an
eigenstate of both (x1 � x2) and (p1 + p2)

(x1 � x2) j  i = a j  i
(p1 + p2) j  i = P j  i

Ü allowed by quantum mechanics, since:
[x1 � x2; p1 + p2] = [x1; p1]� [x2; p1] + [x1; p2]� [x2; p2] = i~� 0 + 0� i~ = 0
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Analysis of an EPR-state

Ü measurement and interpretation
measure x1

Ü predict x2 = a + x1

Ü always found when measured
measure p2

Ü predict p1 = P � p2

Ü always found when measured
result: A measurement of x1 and p2 not only determines those, but also x2 and p1.
For each of the 4 variables one has a sure prediction.
Ü x1 AND p1 as well as x2 AND p2 are elements of reality.
quantum mechanics:
Ü x1 exclusive OR p1 and x2 /exclusive OR p2 are elements of reality.
solution to the contradiction
Ü Option 1:

Quantum mechanics is incomplete. There are additional hidden parameters
which also explain the statistical properties and action at a distance.

Ü Option 2:
Einstein’s concept of reality is not realized by nature.
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Bell’s inequalities (i)

Ü consider two-particle systems and 2� 2 analyser settings
J.S. Bell: Physics 1 (1964) 195, On the Einstein Podolski Rosen paradox

Teilchen 2

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
���������

���
���

���
���
���

A

B

b’

b
a’a

Teilchen 1

������
������
������
������
������

������
������
������
������
������

possible measurements a: �1 b: �1
a’: �1 b’: �1

v local-deterministic assumption:

During the decay some hidden variables determine which measurements the two particles
produce for given analyser settings. Each possible outcome has a fixed probability to be
realized. For example:

�(a = +1; a 0 = �1; b = �1; b0 = +1) :

probability that particle-1 for analyzer setting a ; (a 0) yields the measurement +1; (�1),
and particle-2 for analyzer setting b; (b0) the measurement Messwert �1; (+1).
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Bell’s inequalities (ii)

Ü configuration space and possible measurements

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a - - - - - - - - + + + + + + + +
b - - - - + + + + - - - - + + + +
a’ - - + + - - + + - - + + - - + +
b’ - + - + - + - + - + - + - + - +

For the configurations k one has:
�k � 0 8 k and

X
k

�k = 1

v measurements:
E(x ; y) = hx � yi expectation value of the product of the measurements x und y

F (x ; y) probability for x = +1 ^ y = +1

The expectation values E(x ; y) are theoretically nice, the F (x ; y) are experimentally
easier to determine coincidence probabilities, where +1 means that a particles passes the
analyzer and is recorded in a detector.
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The test-variable T

Ü linear combination of expectation values
T = E(a ; b)� E(a ; b0) + E(a 0; b) + E(a 0; b0) � E1 � E2 + E3 + E4

v straightforward calculation:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a - - - - - - - - + + + + + + + +
b - - - - + + + + - - - - + + + +
a’ - - + + - - + + - - + + - - + +
b’ - + - + - + - + - + - + - + - +

E1 :�0 + �1 + �2 + �3 � �4 � �5 � �6 � �7 � �8 � �9 � �10 � �11 + �12 + �13 + �14 + �15

E2 :�0 � �1 + �2 � �3 + �4 � �5 + �6 � �7 � �8 + �9 � �10 + �11 � �12 + �13 � �14 + �15

E3 :�0 + �1 � �2 � �3 � �4 � �5 + �6 + �7 + �8 + �9 � �10 � �11 � �12 � �13 + �14 + �15

E4 :�0 � �1 � �2 + �3 + �4 � �5 � �6 + �7 + �8 � �9 � �10 + �11 + �12 � �13 � �14 + �15
collecting all terms:

T = 2 � (�0 + �1 + �3 + �7 + �8 + �12 + �14 + �15)

� 2 � (�2 + �4 + �5 + �6 + �9 + �10 + �11 + �13)

and using
P
�k � 1 one finds:

�2 � T � 2
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The test variable S

Ü linear combination of coincidence probabilities
S = F (a ; b)� F (a ; b0) + F (a 0; b) + F (a 0; b0)� F (a 0)� F (b)

v straightforward calculation:
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a - - - - - - - - + + + + + + + +
b - - - - + + + + - - - - + + + +
a’ - - + + - - + + - - + + - - + +
b’ - + - + - + - + - + - + - + - +

F (a ; b) = �12 + �13 + �14 + �15

F (a ; b0) = �9 + �11 + �13 + �15

F (a 0; b) = �6 + �7 + �14 + �15

F (a 0; b0) = �3 + �7 + �11 + �15

F (a 0) = �2 + �3 + �6 + �7 + �10 + �11 + �14 + �15

F (b) = �4 + �5 + �6 + �7 + �12 + �13 + �14 + �15

collecting all terms:
S = ��2 � �3 � �4 � �5 � �6 � �9 � �11 � �13 and thus S � 0
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Predictions of quantum mechanics (i)

Ü consider symmetric configurations

b’

φ
φ

φ

a
b

a’
v predictions

Spin-1/2 particles: E(x ; y) = � cos�xy

Photons: E(x ; y) = � cos 2�xy

experimental: E(x ; y)! V � E(x ; y)

attenuation of the correlation by Visibility V < 1

Ü predictions for T
T (Spin 1/2) = E(a ; b)� E(a ; b0) + E(a 0; b) + E(a 0; b0)

= V � (� cos(�) + cos(3�)� cos(�)� cos(�))

= V � (cos(3�)� 3 cos(�))

T (Spin 1) = V � (cos(6�)� 3 cos(2�))

Ü result: QM: jT j � V � 2p2 vs Bell: jT j < 2

Tests of Quantum Mechanics - Bell’s Inequalities M. Schmelling / Tsinghua University, October 2013 page 23



Predictions of quantum mechanics (ii)

Ü predictions for S

relation between coincidence probability F (x ; y) and E(x ; y):

E(x ; y) = F++(x ; y) + F��(x ; y)� F+�(x ; y)� F�+(x ; y)

with F ab the probability to observe simultaneously a at analyzer setting x for particle 1, and

b at analyzer setting y for particle 2. Using

F = F++ = F�� ; F+� = F�+ ; F++ + F+� =
1
2

one finds

E(x ; y) = 2 � F (x ; y)� 2 �
�1

2
� F (x ; y)

�
or F (x ; y) =

1
4
(1� E(x ; y))

and with F (a 0) = F (b) = 1=2 finally

S = F (a ; b)� F (a ; b0) + F (a 0; b) + F (a 0; b0)� F (a 0)� F (b)

= �1
2
+

1
4

�
E(a ; b)� E(a ; b0) + E(a 0; b) + E(a 0; b0)

�
= �1

2
+

T
4

Ü result: QM: S < (
p

2� 1)=2 � 0:207 vs Bell: S < 0
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Discussion

Ü the test variables S and T are equivalent:

φ
0 50 100 150 200 250 300 350

T

-3

-2

-1

0

1

2

3
Testvariable T

Ü blue: QM-prediction for photons
Ü red: QM-prediction for Spin-1/2 particles

v most sensitive settings
Photons � = 22:5�; 67:5�

spin 1/2 � = 45�; 135�
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Loopholes

Ü quantum mechanics permits violations of Bell’s inequalities
v consequences of experimental confirmation

local-realistic theories are falsified
Ü there are no hidden variables
Ü nature is non-local
the experiments did not really test quantum mechanics

v Loopholes

static experimental setup affects hidden parameters
Ü decide on analyser setting only after emission of the particles
analyser are not spacial separated (i.e. within light cone)
Ü use large distanced
Ü measure in moving reference frames (each observer sees his particle first)
das “Detection Loophole”
Ü only a small fraction of all particles is recorded
Ü this fraction is not a fair sampling of the total

Ü (increasingly better) experiments: : :
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3. EARLY EXPERIMENTS

Ü early particle physics experiments
v proton-proton scattering
M. Lamehi-Rachti and W. Mittig: Phys. Rev. D14 (1976) 2543
Quantum mechanics and hidden variables: A test of Bell’s inequality by the measurement
of the spin correlation in low-energy proton-proton scattering

v Positronium-decay e+e� ! 



M. Bruno, M d’Agostino and C. Maroni: Il Nuovo Cimento (1977) 143
Measurement of linear polarization of positronium annihilation photons

Ü experiments with atomic transitions
A. Aspect, J. Dalibard and G. Roger: Phys. Rev. Lett. 47 (1981) 460
Experimental test of realistic local theories via Bell’s theorem

A. Aspect, J. Dalibard and G. Roger: Phys. Rev. Lett. 49 (1982) 91
Experimental realization of Einstein-Podolski-Rosen Gedankenexperiment:
a new violation of Bell’s inequalities

A. Aspect, J. Dalibard and G. Roger: Phys. Rev. Lett. 49 (1982) 1804
Experimental test of Bell’s inequalities using time-varying analyzers

Ü some detail: : :
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Experiments with atomic transitions

Ü Calcium 0 ! 1 ! 0-cascade
2-photon absorption with 2 pump-lasers
2-photon decay into spin-Singlet state

1p
2
( j HV i � j VH i)

lifetime of the intermediate state: � = 5 ns
measure polarisation-dependent coincidence rates Ü test-variable S
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Experimental setup
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Experimental details

large aperture of the optical system
efficient polarizers
Ü PolI : "k = 0:971 "? = 0:029
Ü PolII: "k = 0:968 "? = 0:028
narrow-band optical filter to suppress stray (laser) light
measurement of chance-coincidences at 100 ns delay
check that signal follows lifetime of the intermediate state
time window for coincidences 19 ns
rates
Ü P.M.1: 40 kHz, P.M.2: 120 kHz, dark rate ca. 200 Hz
Ü coincidence rate 240 Hz, random coincidences 90 Hz
Ü 100 s per measurement
measure coincidence probabilities F (�) = R(�)=R0

Ü R0: coincidence rate without filters
Ü R(�): coinciden rate as a function of the angle between the filters
Check: maximize the distance between the filters to D = 6:5 m
Ü ca. 4 coherence lengths of the wavepacket associated with the lifetime of the

intermediate state
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Results

v Visiblity V limits Modulation

R(�)=R0 =
1
4
(1 +V cos(2�))

Ü V � 0:88
consequence:

Smax = �1
2
+

1
4
Tmax

=
1
2
(V �

p
2� 1)

Ü coincidence rate as a funktion of the angle between the filters

quantum mechanical expectation: S = 0:118� 0:005
measurement: S = 0:126� 0:014 violation of Bell’s inequality with 9�
better sensitivity when assuming rotational invariance
Ü Bell’s inequality: � = jF (22:5�)� F (67:5�j � 1=4 � 0
Ü measurement: � = (5:72� 0:43) � 10�2 larger than zero with 13�
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Discussion

measurements favor quantum mechanics

Ü statistically very significant results

point of criticism:

Ü only a tiny fraction of all photon pairs is recorded

Ü only sensitive to one polarisation direction per measurement

Ü setting of the filters is static

improved measurements

Ü simultaneous measurement of all combinations of polarisations

Ü determination of analyser settings only after photon emission

Ü
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Simultaneous measurement of all polarisations

Ü direct determination of the expectation values E(�)

experimental setup results

V = 0:954� 0:005

simultaneous measurement of coincidence rates F++;F��;F+�;F�+

expectation values: E(�) = F++(�) + F��(�)� F+�(�)� F�+(�)
result: T = 2:697� 0:015
46� violation of Bell’s inequality jT j � 2
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Dynamic selektion of polarisation

Ü fast switching between different optical paths

periodic switching of optical paths by standing
waves
measurements of coincidence rates
Ü L=c = 40 ns
Ü definition of observable after 2
-emission

Tests of Quantum Mechanics - Early Experiments M. Schmelling / Tsinghua University, October 2013 page 34



Results and Discussion

v 5� violation of S � 0

S = 0:101� 0:0020
consistent with quantum mechanics

Ü study the test-variable S

Ü remarks:
extremely difficult experiment
periodische switching of optical path in principle predictable
Loopholes existed in all tests using atomic transitions
progress through new techniques : : :
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4. PARAMETRIC DOWN-CONVERSION

Ü generate photon pairs by “Parametric Down Conversion”

nonlinear crystal

χ (2)

γ2

γ 1

γ0

initial state: UV-Laser
Ü large coherence length
Ü polarisation ? drawing plane
final state: visible light
Ü polarisation in drawing plane
Ü short coherence length

E E

E

0 1

2

virtual level

virtual level

p
1

p
2

p
0

energy- and momentum
conservation

!0 = !1 + !2

~p0 = ~p1 + ~p2

KDP crystal

deep red

red

orange

Kalium-Di-Hydrogen-Phosphate

lÜ QM-Tests:
P.G. Kwiat, A.E. Steinberg and
R.Y. Chiao: Phys. Rev. A 45 (1992) 7729.
Observation of a “quantum eraser”: a
revival of coherence in a two-photon
interference experiment
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A quantum eraser (i)

Ü consider coincidences at a beam splitter:

amplitude = i
2

⋅ i
2

= – 1
2

amplitude = 1
2

⋅ 1
2

= + 1
2

Transmission-transmissionReflection-reflection

superposition of two configurations leading to coincidences
for simultaneous arrival (within coherence length) of the two photons:

Pcoinc = jARR +ATT j2 = j � 1=2 + 1=2j2 = 0

Ü no coincidences
exploit for experiments to destroy and recover QM coherence
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A quantum eraser (ii)

Ü demonstration of quantum-mechanical interference

D1 coinc. 
counter

D2

KDPArgon
ion laser

trombone 
prism F1

F2

cylindrical
lens

beam splitter

Trombone prism position (microns)

C
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nc
id

en
ce

 r
at

e 
(H

z)

0

50

100

150

200

250

-1110 -1090 -1070 -1050 -1030 -1010 -990

narrow bandwidth filters to select
photons that can interfere
destructive interference at the
beam splitter
Ü length of photons ca. 40�m
Ü time resolution O(fs)
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A quantum eraser (iii)

Ü labeling by polarisation

D1 coinc. 
counter

D2

KDPArgon
ion laser

trombone 
prism F1

F2

cylindrical
lens

beam splitter

HWP
"labeler"

P1

P2

"erasers"

—————–

—————–

Trombone prism position (microns)
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-1110 -1090 -1070 -1050 -1030 -1010 -990

HWP at 0˚

HWP at 22.5˚

HWP at 45˚

destructive interference disappears for

orthogonal polarisation states

interference destroyed even though the

path is not observed. It’s sufficient that it

is in principle observable.
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A quantum eraser (iv)

Ü a posteriori erasure of polarisations labeling

D1 coinc. 
counter

D2

KDPArgon
ion laser

trombone 
prism F1

F2

cylindrical
lens

beam splitter

HWP
"labeler"

P1

P2

"erasers"

Trombone prism position (microns)
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)
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45˚, 45˚

Theory

45˚, 22˚

Theory

45˚, -45˚

Theory

restauration of interference

after the beam splitter

“delayed choice”

a posteriori phase-shift even permits

interference-minimum Ü -maximum
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The Franson-Experiment (i)

Ü correlations between interferometers
J.D. Franson: Phys. Rev. Lett. 62 (1989) 2205, Bell inequality for position and time

v principle:

no direct 2-photon interference

Ü consider coincidence measurements

two final states on each side

Ü coincidence measurements a la Bell

“long-long” and “short-short” indistinguishable

Ü QM-interference

Ü rates by �1;2 adjustable
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The Franson-Experiment (ii)

Ü experimental setup
P.R. Tapster, J.G. Rarity and P.C.M Owens: Phys. Rev. Lett. 73 (1994) 1923

Violation of Bell’s inequality over 4 km optical fiber

photon pairs from
Parametric-Down-Conversion

coupling into optical fibres

phase shift by air gap in one of
the fibre interferometers

measure coincidence rates of
“signal” and “idler”

Ü determine correlation function
C (�) = F (0; 0) + F (1; 1)� F (1; 0)� F (0; 1) = V � cos�

Ü modulation with V > 1=
p

2 violates Bell’s inequality

Tests of Quantum Mechanics - Parametric Down-Conversion M. Schmelling / Tsinghua University, October 2013 page 42



The Franson-Experiment (iii)

Ü results

central peaks of the 4 triplets:

	 � j LL i+ j SS i
study QM-entanglement

modulation with V = 0:864� 0:012

Bell’s inequality violated with 13�
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Down-Conversion with entanglement (i)

Ü new intense source of entangles photons

P.G. Kwiat et al.: Phys. Rev. Lett. 75 (1995) 4337

New High-Intensity Source of Polarization-Entangled Photon Pairs

v so far:

Down-Conversion creates product states, i.e. pairs of independent photons

entanglement by external means, e.g. beam splitter, interferometers etc.

v new approach:

Down-Conversion in birefringent crystal

Ü BBO = Beta-Barium-Borat

direct generation of polarisation-entangles states

Ü similar to states from atomic transitions

Ü “down-conversion with type-II phase matching”
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Down-Conversion with entanglement (ii)

Ü characteristics of the generation of photon pairs

H-polarisation

V-polarisation

polarisation defined by direction
in the birefringent crystal
entanglement in the overlap of the
Parametric-Down-Conversion cones
wavefunvtion: ( j HV i+ e i� j VH i)=p2
Ü phase � from birefringence
Ü adjustable to 0 or � by external birefringent

phase shifter
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Down-Conversion with entanglement (iii)

Ü HWP: �=2-plate: H $ V

Ü QWP: �=4-plate: H ! �H

Ü C: birefringent crystal

Ü P: polarisation filter

Ü experimental setup

HWP0, C1, und C2:
Ü compensation of time delays by polarisation dependence of c
P1 und P2:
Ü polarisers for correlation measurements at all Bell-states
HWP1 and QWP1: acting on the 2nd photon
Ü QWP1: j HV i+ j VH i ! j HV i � j VH i
Ü HWP1: j HV i+ j VH i ! j HH i+ j VV i
Ü HWP1 und QWP1: j HV i+ j VH i ! j HH i � j VV i
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Down-Conversion with entanglement (iv)

Ü tests of Bell’s inequalities at all 4 Bell-states

maximal entangled base for two-particle states

j 	�
�
= ( j HV i � j VH i)=

p
2 and j ��

�
= ( j HH i � j VV i)=

p
2

measure coincidence rates as a function of the angle between polarisers

extract the test-variable S ; Bell’s inequality: jS j � 2
Ü modulation V = 97:8� 1:0%
Ü 100�-violation in 5 min

v results:
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Quantum teleportation (i)
C.H. Bennet et al.: Phys. Rev. Lett. 70 (1993) 1895

Teleporting an unknown quantum state via dual classical and

Einstein-Podolski-Rosen channels

D. Bouwmeester et al.: Nature 390 (1997) 575

Experimental quantum teleportation

D. Boschi, et al.: Phys. Rev. Lett. 80 (1998) 1121

Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual

Classical and Einstein-Podolsky-Rosen Channels

Ü quantum teleportation

restauration of a quantum state “without” transport of matter

must satisfy the Quanten No-Cloning-Theorem

Ü no knowledge of the initial state required

Ü is destroyed and the reconstructed at a remote place without explicit knowledge

cannot be done with speed v > c
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Quantum teleportation (ii)

Ü principle
problem: wavefunction in general cannot be determined

Ü only possible for an ensemble of identically prepared states

Ü basis of the “No-Cloning Theorems”

solution: exploit entanglement

Ü entangle the unknown state �1 with partner of an EPR-pair

Ü project this state onto a known entangled state

Ü this fixes the wavefunction of the second partner

8 it is not known, but

8 can be transformed to j �1 i
note:

Ü �1 is never explicitly determined

Ü can itself be a part of an EPR pair

8 “entanglement swapping”

8 relevant for quantum computers
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Quantum teleportation (iii)

Ü formal description: Bell-basis for entangles states

j 	�
�
=

1p
2
( j "# i � j #" i) and j ��

�
=

1p
2
( j "" i � j ## i)

or

j "# i = 1p
2

�
j 	+

�
+ j 	�

��
j #" i = 1p

2

�
j 	+

�
� j 	�

��
j "" i = 1p

2

�
j �+

�
+ j ��

��
j ## i = 1p

2

�
j �+

�
� j ��

��
With

j �1 i = a j " i+ b j # i where ja j2 + jbj2 = 1

and the wavefunction �23 of an entangled EPR-pair

j �23 i = 1p
2
( j "# i � j #" i)

the total wavefunction becomes

j �123 i = ap
2
( j "1"2#3 i � j "1#2"3 i) + bp

2
( j #1"2#3 i � j #1#2"3 i)

and re-writing in the Bell-Basis for particles 1 and 2 yields: Ü

Tests of Quantum Mechanics - Parametric Down-Conversion M. Schmelling / Tsinghua University, October 2013 page 50



Quantum teleportation (iv)

j �123 i = a
2

�
j (�+12 +��

12) #3
�
� j (	+12 +	�

12) "3
��

+
b
2

�
j (	+12 �	�

12) #3
�
� j (�+12 � ��

12) "3
��

=
1
2
j �+12

�
(�b j "3 i+ a j #3 i) + 1

2
j ��

12

�
(b j "3 i+ a j #3 i)

+
1
2
j 	+12

�
(�a j "3 i+ b j #3 i) + 1

2
j 	�

12

�
(�a j "3 i � b j #3 i)

v Fazit:

projection of j �12 i on a Bell state yields one of 4 possible results
all results are equally probable, independent of j �1 i
Ü 2 bits classical information
Ü no knowledge of coefficients a and b
Ü initial state j �1 i is destroyed
by entanglement j �3 i is fixed
Bell-state of j �12 i contains information about transformation j �3 iÜ j �1 i
classical channel with v � c needed to use the information
2 bit classical information als “left-over” (?!)

Tests of Quantum Mechanics - Parametric Down-Conversion M. Schmelling / Tsinghua University, October 2013 page 51



Quantum teleportation (v)

Ü experimental realisation
2 EPR-Paare from TypeII-Down-Conversion
Ü photon 1 for teleportation
Ü photonen 2 und 3 for entanglement
Ü photon 4 as trigger (optional)
preparation of photon 1 by polarizers
entanglement of photon 1 and Photon 2
by beam splitter
Ü coincidence selects the only

antisymmetric Bell-state j 	�
�

Ü photons 1 and 3 in the same state
(modula a global phase �1)

Ü scan the entanglement by variation
of the optical path of photon 2

signature for teleportation:
Ü suppression of coincidences

with wrong polarisation for photon 3
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5. ADVANCED TOPICS

Ü other interesting aspects of quantum physics : : :

interaction-free measurements

test of Einstein’s locality

quantum cryptography

decoherence

: : :

Tests of Quantum Mechanics - Advanced Topics M. Schmelling / Tsinghua University, October 2013 page 53



Interaction-free measurements (i)

Ü registration of an object without direct interaction

motivation: object will be destroyed by any interaction

quantum mechanics: in principle possible

consider photon in an interferometer

v probability of a signal in C&D

equal length in both arms

case 1: no object “B” in the path

8 p(C ) / ji3 + i j2 = 0
8 p(D) / ji2 + i2j2 = 4

Ü only detector D gets a signal

case 2: object “B” blocks the lower branch

Ü in 50% of the cases B will be destroyed

Ü in 25% of the D sees a photon Ü no information

Ü in 25% of the cases C sees a photon Ü object B registered without interaction
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