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Lagrange multipliers

Given are a set of n values x1; x2; : : : ; xn with errors �i ; i = 1; : : : ;n .
Determine the weights wi ; i = 1; : : : ;n of the linear combination S =

P
i wixi

which minimizes V =
P

i w
2
i �

2
i under the constraint

P
i wi = 1.

a) For n = 2 determine the optimum by substituting w2 = 1� w1.

b) For n = 2 determine the optimum using the Langrange multiplier method.

c) Generalize b) to arbitrary values of n .
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Bayes’ theorem

An accelerator produces a beam consisting to 90% of pions and 10% of muons.
A muon-nucleon scattering experiment uses a trigger which can discriminate
between the two particle types, with a probability to trigger on a muon
p(T j�) = 0:95 and a probability to trigger on background p(T j�) = 0:02.
How large is the fraction of true muons in the trigger.
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Bayes’ theorem

The host of a game show tell a candidate that there is a treasure behind one
of three doors, while the room is empty behind the others. The door with the
treasure is of course not known. Now the candidate is allowed to select one
door - but not yet to open it. The candidate selects one of the doors. Then
the host opens one of the other two doors, behind which there is nothing.
The candidate now has the choice to either change his selection or to stick
to the original choice. What should he do in order to maximize the chance
to obtain the treasure?

Label without loss of generality the door selected by the candidate by “1”, the
door opened by the host by “3” and the alternative door for the candidate by “2”.
The prior probabilities for the treasure behind door “i” are p(Ti ) = 1=3.
The probability that the host opens door 3 if the treasure is behind door 1 is
p(O3jT1) = 1=2, that he opens door 3 if the treasure is behind door 2 is
p(O3jT2) = 1, and the he opens door 3 if the treasure is behind door 3 is
p(O3jT3) = 0.
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For the probability to find the treasure behind door 1 Bayes’ theorem yields:

p(T1jO3) =
p(O3jT1)p(T1)

p(O3jT1)p(T1) + p(O3jT2)p(T2) + p(O3jT3)p(T3)

=
p(O3jT1)

p(O3jT1) + p(O3jT2) + p(O3jT3)
=

1
3

For the probability to find the treasure behind door 2 Bayes’ theorem yields:

p(T2jO3) =
p(O3jT2)p(T2)

p(O3jT1)p(T1) + p(O3jT2)p(T2) + p(O3jT3)p(T3)

=
p(O3jT2)

p(O3jT1) + p(O3jT2) + p(O3jT3)
=

2
3
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Central limit theorem

Histogram the sum of n random numbers xi ; i = 1; : : : ;n , with xi
distributed uniformly over the range �ai < xi < ai . Consider the following cases:

a) n = 2 and ai = 1

b) n = 10 and ai = 1

c) n = 10 and ai =
p

i

For case a) also calculate and compare to the analytical expectation.
For cases b) and c) also overlay the expectation derived from the
central limit theorem.
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Central limit theorem

Test the central limit theorem for random numbers y generated by
y = tan(x�=2), where x is uniformly distributed in [�1; 1].

a) plot the distribution of y

b) plot the convolution of n random numbers yi ; i = 1; : : : ;n , for n = 2; 4; 8; : : :
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Convolutions

Generate pairs (x ; y) of gaussian distributed random variables, both with
a mean value � = 0 and � = 1, and for each pair calculate z =

p
x 2 + y2.

a) Histogram the distribution of z .

b) Write down the analytical expression for the integral solved by the algorithm.

c) solve the integral analytically and compare to the simulation
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Ü solution to b) and c)Z
dx
Z

dy
1p
2�

e�x2=2e�y2=2 �(z �
p

x 2 + y2)

=
1
2�

Z
dx
Z

dye�(x
2+y2)=2 �(z �

p
x 2 + y2)

=
1
2�

Z 2�

0
d�
Z
1

0
dr r e�r2=2 �(z � r)

= z e�z2=2
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Random numbers

Use the Hit-or-Miss method to generate gaussian random
numbers in the range �5 < x < 5.

double f = 0.;
double y = 1;
double x = 0.;
while(y>f) {
x = rndm(-5.,5.);
f = exp(-x*x/2.);
y = rndm(0.,1);

}
return x;
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Random numbers

Determine a function y = h(x ) which maps uniformly distributed random
numbers from 0 < x < 1 to random numbers y with the singular PDF
�(y) = 1=2

p
y in the range 0 < y < 1. Write a ROOT macro

which fills a histogram with 106 random numbers generated according
to �(y).

h�1(y) =
Z y

0
dx

1
2
p

x
=
p

y Ü h(y) = y2

TH1D *h1 = new TH1D("h1","h1",100.,0.,1.);
for(int i=0; i<100000; ++i) {
h1->Fill(pow(rndm(0.,1.),2));}

}
h1->Draw()
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Random numbers

Write a function int poisson(double mu) which for a given
mean value � generates poissonian distributed random numbers.
The probability to observe the integer n � 0 is given by:

pn = e��
�n

n !

double x = rndm(0.,1.);
double pn = exp(-mu);
double S = pn;
int n = 0;
while(S<x) {
pn *= mu/n;
S += pn;

}
return n;
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Importance sampling

Do a Monte Carlo integration of a gaussian PDF over the range �3 < x < +3.

a) using 106 uniform random numbers over the range �3 < x < +3

b) using 106 gaussian random numbers over the range �1 < x < +1

c) how many random numbers would one need in case a) to obtain the same
precision as in case b)
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Importance sampling

Calculate the integral
Z 1

0
dx

e�x
p

x
.

a) Try to do use uniform random numbers.

b) Use importance sampling.
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Ü solution for a)
int N = 100000;
double S1 = 0.;
double S2 = 0.;
for(int i=0; i<N; ++i) {

x = rndm(0.,1.);

f = exp(-x)/sqrt(x);
S1 += f;
S2 += f*f;

}
double I = S1/N;
double dI = sqrt((S2/N)-I*I)/N);
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Ü solution for b)
int N = 100000;
double S1 = 0.;
double S2 = 0.;
for(int i=0; i<N; ++i) {

x = rndm(0.,1.);
x *= x
f = 2.*exp(-x);
S1 += f;
S2 += f*f;

}
double I = S1/N;
double dI = sqrt((S2/N)-I*I)/N);
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