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1. BASICS

Ü statistics everywhere: : :

(sugar served with espresso)
front side back side

“statistics sweetens your life” “during our lives we cover
22150 km on foot”
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An introductory example : : :

Ü the story of the cheating baker
Once upon a time, in a holiday resort the landlord L. ran a profitable B&B, and
every morning bought 30 rolls for breakfast. By law the mass of a single roll was
required to be 75 g. One fine day the owner of the bakery changed, and L.
suspected that the new baker B. might be cheating. So he decided to check the
mass of what he bought, using a kitchen scales with a resolution of 1g.

After one month he had collected a fair amount of data: : :

73 79 72 62 67 60 60 67 78 68 66 75 76 73 75 64 70 69 73 59 70 73 64 72 64 69
69 71 69 71 77 69 72 71 67 72 63 66 68 76 71 76 68 71 63 65 65 66 73 73 73 67
70 65 71 69 78 67 65 69 71 71 72 73 72 69 66 66 70 60 72 62 53 65 74 65 68 69
67 75 64 76 72 76 78 67 67 67 69 79 71 67 71 68 71 65 66 65 78 76 71 70 67 65
67 64 73 67 74 79 74 71 73 67 66 76 68 74 76 65 77 67 71 67 71 77 63 66 70 62
68 74 67 67 67 77 65 68 79 72 71 77 68 70 73 67 81 70 74 71 79 62 67 63 68 76
73 81 76 73 68 72 76 61 69 73 71 80 68 70 62 76 58 68 68 64 68 78 69 65 70 70
64 75 73 72 60 86 68 68 64 60 68 71 70 75 70 67 69 67 73 65 66 71 70 70 73 66
72 71 71 64 76 75 72 72 71 72 72 71 75 68 73 70 64 76 72 75 79 70 64 70 67 70
75 70 83 69 61 70 66 69 71 72 70 76 73 62 71 60 73 74 70 68 68 70 78 71 69 71
73 73 75 65 71 67 60 70 77 71 74 64 74 73 60 77 73 70 69 66 70 78 69 75 66 71
75 75 74 69 74 70 75 77 75 66 72 68 72 61 75 65 69 68 65 73 82 67 75 67 80 71
79 72 71 68 73 70 67 75 74 69 63 63 72 70 73 63 70 70 59 78 76 66 72 79 65 71
76 72 69 69 73 70 77 73 83 66 68 67 69 73 76 65 71 70 71 65 78 71 67 70 72 75
67 79 72 64 62 79 68 70 61 65 68 71 73 60 60 68 71 74 75 69 73 70 68 ...
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Data reduction

the raw list of number is not very useful Ü need some kind of data reduction
assume that all measurements are equivalent
Ü the sequence of the individual data does not matter (in this example)
Ü all relevant information is contained in the number of counts per reading

count[50]= 0
count[51]= 0
count[52]= 0
count[53]= 0
count[54]= 0
count[55]= 0
count[56]= 2
count[57]= 1
count[58]= 3
count[59]= 6

count[60]= 20
count[61]= 11
count[62]= 20
count[63]= 21
count[64]= 31
count[65]= 48
count[66]= 42
count[67]= 70
count[68]= 68
count[69]= 74

count[70]= 85
count[71]= 81
count[72]= 61
count[73]= 65
count[74]= 54
count[75]= 43
count[76]= 33
count[77]= 23
count[78]= 21
count[79]= 20

count[80]= 9
count[81]= 7
count[82]= 3
count[83]= 5
count[84]= 0
count[85]= 0
count[86]= 1
count[87]= 0
count[88]= 0
count[89]= 1

Ü much improved presentation of the collected information
Ü the above numbers cover the entire data set
Ü most of the measurements are lower than the legally required value...
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Visualization

an even better presentation of the available information: bar-chart
example for the concept of a histogram
Ü define bins for the possible values of a variable
Ü plot the number of entries in each bin
Ü get an immediate grasp of center and width of the distribution
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The rolls produced by baker
B. definitely are too light. So
L. was right in his suspcion,
that B. tried to make some
extra profit by cheating...
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: : : and the conclusion

As a consequence of his findings, L. complained. B. apologized and claimed that
the low mass of the rolls was an accident which will be corrected in the future. L.,
however, continues to monitor the quality delivered by the baker. One month later,
B. asked whether now everything was all right. L., for his part, acknowledged that
the weight of the rolls now matched his expectations, but also voiced the opinion
that B. was still cheating: : :
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ÜB. simply selected the heaviest rolls for L.!
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Before moving on : : :

Ü always keep in mind:
the name of the game: extract meaning from a stream of numbers
the tools: “statistical and numerical methods”
Ü need know the relevant methods
Ü need to understand their properties
basic assumptions
Ü measurements deviate from the respective true values
Ü the deviation is a random variable
Ü statistics builds on probability theory

A statistical method is neither “right” nor “wrong”.
It has properties, which have to be known for the interpretation
of the result. Possible properties could be, that the output is the most
precise estimator, or that the result is robust. The property could also
be that the result is wrong, in which case use of this particular method
should be discouraged...
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Notations

p(A) probability for A
p(AjB) conditional probability for A if B is given
x ; y ; z ; t ; : : : continuous random variable
i ; j ; k ; l ;m ;n : : : discrete random variable (or index)
~x vector of random variables fx1; : : : ; xng
pi ; qi discrete probabilities
f (x ); g(x ) probability densities functions (PDFs) of x
F (x );G(x ) cumulative distributions of f ; g
f (x ; y) 2-dim probability density in x und y
f (x jy) conditional PDF for x given y
a ; b; : : : ; �; �; : : : parameters
E [x ] = hx i = �x expectation value von x
V [x ] = �2

x variance von xba estimate for a
x arithmetic average of xP

(i) sum over all indices (i)R
dx integrate over all x
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Linear algebra (i)

A matrix A[m ;n ] is an array of numbers with m rows und n columns. Usually the
dimensions are not given explicitly. Individual matrix elements are addressed by
two indices, Aij , where the first index specifies the row and the second one the
column. The following is a summary of the rules for matrix manipulations:

Sum of two matrices:

C [m ;n ] = A[m ;n ] +B [m ;n ] or Cij = Aij +Bij

Product of two matrices:

C [m ;n ] = A[m ; l ] �B [l ;n ] or Cij =

lX
k=1

AikBkj

Product of three matrices:

D [m ;n ] = A[m ; l ] �B [l ; k ] �C [k ;n ] or Dij =

lX
r=1

kX
s=1

AirBrsCsn

associative law of matrix multiplication:

A � (B �C ) = (A �B) �C
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Linear algebra (ii)

The neutral element with respect to matrix multiplication is the unit matrix

1[n ;n ] =

0BBB@
1 0 � � � 0
0 1 � � � 0
...

...
. . .

...
0 0 � � � 1

1CCCA using indices 1ij = �ij

giving A[n ;m ] � 1[m ;m ] = 1[n ;n ] �A[n ;m ] = A[n ;m ]

Square matrices A[n ;n ] (of rank n ) have a unique inverse matrix A�1:

A�1 �A = A �A�1 = 1
For the inverse of a product of square matrices on has:

(A1 �A2 � � �An)
�1 = A�1

n � � �A�1
2 �A�1

1

Another matrix operation is transposition:

A[m ;n ]T = B [n ;m ] or Bij = Aji :

For die transpose of a product of matrices one has:

(A1 �A2 � � �An)
T = AT

n � � �AT
2 �AT

1
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Linear algebra (iii)

For n � n matrices there exist n scalar quantities which are invariant under
orthogonal transformations of the matrix. The two most important ones are
determinant and trace, the product and the sum of the eigenvalues �i of the
matrix:

det(A[n ;n ]) =
nY

i=1

�i and TrA[n ;n ] =
nX

i=1

�i =

nX
i=1

Aii

The trace is given by the sum of the diagonal elements. Expressed as a function
of the matrix elements, the determinant of a 2� 2 matrix is

det(A[2; 2]) = A11A22 �A12A21

For the determinant of a product of matrices one finds:

det(A1 �A2 � � �An) = det(A1) � det(A2) � � �det(An)

The trace of a product of matrices is invariant under cyclic permutations:

Tr(A1 �A2 � � �An) = Tr(A2 � � �An �A1)
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Linear algebra (iv)

A special class of matrices are vectors. In the following a letter with an arrow
denotes a column vector. Row vectors are obtained by transposition (T ) of a
column vector.

~b = b[n ; 1] column vector

~aT = a [1;n ] row vector

For two vectors ~a and ~b of dimensions n , ~aT � ~b is a scalar and ~a � ~bT is a matrix:

~a � ~bT =

0B@a1b1 a1b2 : : :
a2b1 a2b2 : : :

...
...

. . .

1CA
It follows:

~aT � ~b = Tr(~aT � ~b) = Tr(~b � ~aT )

Expectation values of matrices are defined by element:

hAiij = hAij i
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Manipulations of Sums

The product of two sums can be written as a sum over two indices X
i

xi

!0@X
j

yj

1A =
X
ij

xiyj

i.e. interpreting xi or yi as elements of a vector ~x or ~y , respectively, every element
of ~x is multiplied with every element of ~y and the individual terms summed up.

Special case: ~y = ~x X
i

xi

!0@X
j

xj

1A =

 X
i

xi

!2

=
X
ij

xixj =
X
i=j

x 2
i +

X
i 6=j

xixj

Since the expectation value (formally defined later) is a linear operator sums and
expectation values commute: *X

i

xi

+
=
X

i

hxi i
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Lagrange multipliers (i)

Ü general problem: minimization subject to constraints
Consider the general constrained minimization problem in 2 dimensions:

C (x ; y) !
= min with g(x ; y) = 0

Ü default approach:
Use g(x ; y) = 0 to solve for y = G(x ), substitute

@

@x
C (x ;G(x )) = 0 with g(x ;G(x )) = 0

and determine xmin and ymin = G(xmin).

Ü conceptually straightforward ansatz
Ü minimization problem with reduced number of dimensions
Ü breaks the symmetry between the variables
Ü often impossible to do in practice

try to come up with something better...
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Lagrange multipliers (ii)

x

y

river
M

C

P

Ü the Lagrange multiplier approach

Example: The Milkmaid’s Problem
A milkmaid is sent to a field close to the river in order to milk a cow. Entering the
field at point M, the milkmaid spots the cow at C. Normally she would go directly
to the cow, – but then realizes that her bucket first needs cleaning in the river. The
problem is to find the shortest path connecting M and C via the bank of the river.

v mathematical formulation:

cost function:

C (Px ;Py) = j ~M � ~P j+ j~P � ~C j
description of the distance to the river:

g(x ; y) = c
constraint:

g(Px ;Py) = 0
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Lagrange multipliers (iii)

x

y

river
M

C

P

The points where the sum of the distances to two “focal” points is constant are
located on an ellipse. Contours of equal cost thus are given by ellipses around C
and M . The best solution is the smallest ellipse touching the river. At this point
the contour lines C =const and g =const have to be parallel.

Ü contour lines are orthogonal to function gradients
Ü parallel contour lines implies parallel gradients

v condition for the best point P :

rC (x ; y) / rg(x ; y)

Exploit this to find an elegant way
for solving constrained optimization
problems: : :
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Lagrange multipliers (iv)

Ü insight by Lagrange

The stationary point of a linear combination of cost function C and constraint
function g is the solution of a constrained minimization. Introducing

F (x ; y) = C (x ; y) + � � g(x ; y)
one finds

rF (x ; y) = 0 = rC (x ;u) + � � rg(x ; y) i.e. rC (x ;u) / rg(x ; y) :

Ü discussion

minimization of F is usually much easier than the “default approach”
fully symmetric in all variables
the result is a function of �, i.e x (�),y(�)
� can be determined from the condition g(x (�); y(�)) = 0
in many cases the explicit value of � is not needed
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Lagrange multipliers (v)

Ü additional remarks
Introduction of � increases the dimension of the minimization problem and a
stationary point is determined in a higher dimensional space. Since the extended
cost function F (x ; y) is linear in � the stationary point will be saddle point.

Example: C (x ) = (x � 4)2 and g(x ) = x � 2

F (x ; �) = (x � 4)2 + � � (x � 2)
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(x-2)λ+2) = (x-4)λF(x,

x

λlocal minimum in x for every �
no global minimum
the saddle-point has minimum
cost for constraint g(x ) = 0
Ü xmin = 2
Ü �min = 4
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Combinatorics

An important aspect of many statistical analyses is to count the number of
possible results. For discrete states the solution is found by combinatorics.
Some of the most important results are collected below:

Ü words with m -characters from an alphabet with n letters:

N = nm

Ü Permutations of n objects:

N = n � (n � 1)� (n � 2)� : : : 2� 1 = n !

Ü Possibilities to select k objects from a total of n (without putting back)

n(n � 1):::(n � 2)(n � k + 1)
k !

=
n !

k !(n � k)!
=

�
n
k

�
the “lottery-problem”
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Mathematical foundations

Ü Kolmogorov’s axioms on probability
Starting from set theory, probability theory can be built on a mapping from sets E
to real numbers p(E) 2 [0; 1]. Define


 : the entire set

E : partial set of 


p(E) : probability of E

and postulate the following axioms:

1. 0 � p(E) � 1
2. p(
) = 1
3. p(E1 [ E2) = p(E1) + p(E2) if E1 \ E2 = 0

Based on these axioms, calculations involving probabilities are unambiguously
defined. Interpretation is left completely open : : :
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Conditional probability & independent events

Ω

A

B

 B∩A 

Rules for calculus of probabilities derived
from Kolmogorov’s axioms can easily be
visualized using diagrams from set theory.
For example:

p(A [B) = P(A) + P(B)� P(A \B)

Consider P(B jA), the probability for B if A is given
Ü the diagram suggests P(B jA) / P(A \B)
Ü for A 2 B one must have P(B jA) = 1
Ü A 2 B implies P(A \B) = P(A) and thus

P(B jA) =
P(A \B)

P(A)
“conditional probability”

For “independepent events”, which implies P(B jA) = P(B), one obtains:

P(A \B) = P(A) � P(B)
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Bayes’ theorem

Consider a set of disjoint events Ai ; i = 1; : : : ;n . It follows

p(Ai \B) = p(B jAi ) p(Ai ) = p(Ai jB) p(B)

=) p(Ai jB) =
p(B jAi ) p(Ai )

p(B) Bayes’ theorem

The prior p(Ai ) for Ai is updated by the occurrence of B to become p(Ai jB).

Bayes’ theorem is at the heart of statistical inference based on empirical input. If
the Ai are exhaustive, i.e. if one of them is realized with unit probability
independently of B , then one has

p(B) =
X

i

p(B jAi )p(Ai )

and thus

p(Ak jB) =
p(B jAk )p(Ak )P
i p(B jAi )p(Ai )

Ü applications : : :
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Bayes’ theorem - example 1

A new test for the common cold hits the market, designed to detect an infection in
the early stages where an efficient cure is available. The probability to test positive
in case of an infection is p(+jI ) = 0:98, the probability for a negative result on a
healthy subject is p(�jH ) = 0:97. Series tests are performed in summer, where
the a priori probability for infection is p(I ) = 0:001.

What’s the probability that a person tested positive has actually contracted a cold?

the probabilities are: p(I ) = 0:001 p(H ) = 0:999
p(+jI ) = 0:980 p(�jI ) = 0:020
p(+jH ) = 0:030 p(�jH ) = 0:970

where the rows sum up to unity. Application of Bayes’ theorem then yields

p(I j+) = p(+jI )p(I )
p(+jI )p(I ) + p(+jH )p(H )

� 0:032

Simply administering sweets to all patients that diagnosed “infected” already will
yield a “healing rate” around 97%.
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Bayes’ theorem - example 2

Three boxes contain each two rings made of either gold (G) or silver (S). The
boxes contain (GG), (SS) and (GS). The content of a specific box is unknown.
A person is allowed two draws of a single ring from any of the boxes. The first
draw yields gold.

Which box for the second draw maximizes the number of gold rings?

Calculate the probability that the box of the first draw contains (GG). A priori the
probabilities are p(GG) = p(GS) = p(SS) = 1=3. The probabilities to get (G)
in the first draw become

p(GjGG) = 1 ; p(GjGS) =
1
2

and p(G jSS) = 0 :

Bayes’ theorem then yields the probability that the selected box is (GG):

p(GG jG) =
p(G jGG)p(GG)

p(G jGG)p(GG) + p(GjGS)p(GS) + p(G jSS)p(SS)
=

2
3

The second draw should be taken from the same box.
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Bayes’ theorem - example 3

Two old friends A and B who have gotten out of touch accidentally meet in a pub
and decide to celebrate the occasion. A suggests to flip a coin in order to
determines who will pay the next round. B agrees and then pays all the drinks.

What is the probability that A is cheating each time he throws the coin?

Consider the hypotheses h and c that A is an honest guy or that he is a cheater.
The probability for A to win n times in a row is

p(n jh) = 2�n and p(n jc) = 1
With the prior probabilities p(h) and p(c) = 1� p(h), Bayes’ theorem allows to
determine the probability that A, after having won n times, is a cheater:

p(cjn) = p(n jc)p(c)
p(n jc)p(c) + p(n jh)p(h) =

p(c)
p(c) + 2�np(h)

the result depends on p(b): p(c) = 0:00 =) p(cjn) = 0
p(c) = 0:05 =) p(cj1) � 0:095

p(cj6) � 0:771
p(cj1) = 1

“bayesian” update of knowledge
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Probability density functions and probabilities

Ü definition of a probability density function (PDF)
A function f (x ) can be interpreted as a PDF if

f (x ) � 0 8 x and

+1Z
�1

dx f (x ) = 1 :

Ü interpretation:
The probability to observe an event in the infinitesimal interval [x ; x + dx ] is:

p(x ; x + dx ) = f (x )dx :

Ü relation to discrete probabilities:
discrete probabilities pi , i.e. finite probabilities for discrete values, can be written
as a PDF using Dirac’s delta-function:

f (x ) =
nX

i=1

pi �(x � i) where
Z

dx f (x ) =
X

i

pi = 1
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Visualisation of 1-dim PDFs

graphical representation of the density
problem in practical applications
Ü density function not known
Ü only a random sample of size N
obvious solution: mark the values
better solution: histogram
Ü divide the range into bins
Ü count entries inside each bin
Ü regarding bin limits:

4 too many bins: large fluctuations
4 too few bins: loss of information
4 use “reasonable” binning

Ü to illustrate the point: : :

for a range �1 � x � 1 avoid histograms
with 25 bins on the interval [�1:1;+1:1]. Use
20 bins between �1 and 1.
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Visualization of a 1dim PDF
Entries   1.03e+06

(demo 01)

variations:
Ü density plots for small N
Ü variable bin widths
Ü logarithmic axes
Ü : : :
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Relation: histogram () PDF

Ü given

N : total number of entries in the histogram

h : bin width

nk : number of entries in bin k [xk � h=2; xk + h=2]

Ü it follows

nk = N � p(x � h=2; x + h=2)

= N
Z xk+h=2

xk�h=2
dx f (x )

� N f (xk ) h

result: f (xk ) � nk

h �N
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Visualization of a 1dim PDF
Entries   7.9e+05

(demo )
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Moments of a distribution

Ü goal:
Summarize the properties of a PDF by (a few) numbers, so-called moments:

Ü moments are “expectation values”, defined byZ 1

�1

dx f (x ) wk (x ) = hwk i

i.e. as a mapping f (x ) 7! C of a PDF f (x ) onto a (complex) number via integral
transform with a (family of) weight function(s) wk (x ).

Example: cumulative distribution

wX (x ) = �(X � x )

hwX i =
Z 1

�1

dx f (x ) �(X � x ) =
Z X

�1

dx f (x ) = F (X )

F (x ) is the primitive of f (x ): F (�1) = 0, F (1) = 1
Üfurther examples : : :
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Mean value, variance and standard deviation

A possible measure for the scatter s of x with PDF f (x ) around a point a is

s2 =

Z
dx (x � a)2 f (x )

To use s for characterizing f (x ), the point a should be chosen such that s
becomes minimal. Minimization of s2 yields:

@s2

@a
= �2

Z
dx (x � a)f (x ) !

= 0 i.e.. amin =

Z
dx x f (x ) = hx i

It follows that the mean value (or “expectation value”) hx i is a way to characterize
the center of a PDF. For symmetric PDFs it is also the symmetry point:

hx i =
Z

dx x f (x ) =
Z

dx (x � a) f (x ) + a
Z

dx f (x ) = 0 + a � 1 = a

The scatter � around the mean value hx i is also referred to as “standard deviation”
oder “rms”-scatter, its square as “variance”. The following relation holds:

�2 =

Z
dx (x � hx i)2 f (x ) =

Z
dx (x 2 � 2x hx i+ hx i2) f (x ) = 
x 2�� hx i2

Data Analysis - Basics M. Schmelling / Tsinghua University, October 2013 page 31



Quantiles of a distribution

Ü median
The center of a distribution can also be taken as the median m , defined byZ m

�1

dx f (x ) =
Z 1

m
dx f (x )

i.e. same probability on both sides. For symmetric distributions one has hx i = m .

Ü quantiles
Quantiles are locations x� on a PDF up to which with the probability content is
�%. A possible measure for the width of a PDF is x84 � x16.

Ü discussion:
mean value and standard deviation
+ linear functions of the PDF, i.e. easy to use in theoretical calculations
� sensitive to outliers and tails in the PDF
median and quantiles
+ insensitive against outliers and tails
� non-linear functions of the PDF, difficult to handle analytically
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Illustrations

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x*exp(-x/s)
Mean       1.995
RMS          1.4

probability content of [av-sd,av+sd] =  0.732

(demo 02)

Ü for different PDFs

mean value hx i
standard deviation �
probability content of the
interval [hx i � �; hx i+ �]
median

Ü conclusion:
there are many possibilities to characterize a PDF
other options, not discussed in detail are:
Ü take as center the maximum
Ü take as width the minimum interval with a given probability
still most important: algebraic moments and derived quantities
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Algebraic and central moments

Ü algebraic moments:

Mk �
Z

dx f (x ) x k

M0 = 1: normalization of f (x )
M1 = �: mean value f (x )

Ü central moments:

Zk �
Z

dx f (x ) (x � �)k

Z0 = 1: normalization of f (x )
Z1 = 0
Z2 = �2: variance of f (x )

Ü other commonly used moments:

S =
Z3

�3 “skewness” and K =
Z4

�4 � 3 “kurtosis”

Normalization by � makes S and K to quantities which depend only on the
shape. For symmetric distributions one has S = 0. K measures how quickly the
PDF drops to zero. For gaussian distributions one has K = 0.
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The Bienaymé-Chebycheff-inequality

Ü probability content in the tails
Given any PDF f (x ) und eine Funktion w(x ) � 0, there is a relation between hwi
and the probability p(w(x ) � C ), to observe x in a region with w(x ) � C :

hwi=
Z

dx f (x )w(x ) �
Z

w(x)�C

dx f (x )w(x ) � C
Z

w(x)�C

dx f (x ) = C p(w(x ) � C )

and thus p(w(x ) � C ) � hwi
C

The special choice w(x ) = (x � �)2 and C = k2�2 then yields the result:

pk � p
�
(x � �)2 > k2�2� � 1

k2

The probability content beyond �k � around the mean value � is at most 1=k2.

upper limit for probability in the tails of a PDF
actual probability contents for most PDFs are much lower
Ü e.g. gaussian: fp1; p2; p3; p4g � f0:317; 0:0555; 0:0027; 0:000063g
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Convolutions

Ü convolution of two distributions
Given two PDFs f1(x1) und f2(x2), determine the PDF g(y) of y = h(x1; x2),
when x1 and x1 are distributed according to f1(x1) and f2(x2), respectively.
For the cumulative distribution G(Y ) one has:

G(Y ) =

Z Y

�1

dy g(y) =
Z

dx1dx2f1(x1)f2(x2) �(Y � h(x1; x2))

Here the products of all probabilities dp1 = dx1f1(x1) and dp2 = dx2f2(x2) are
summed which satisfy the constraint h(x1; x2) < Y . Differentiation with respect
to the upper limit Y then yields the solution:

g(y) =
d

dY
G(Y )

����
Y=y

=

Z
dx1dx2f1(x1)f2(x2)�(y � h(x1; x2))

“general convolution integral”

For the special case h(x1; x2) = x1 + x2 follows the known result

g(y) =
Z

dx1f1(x1)f2(y � x1)

Ü consider moments: : :
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Algebraic moments of convolutions

Mk (y) =
Z

dy ykg(y) =
Z

dy yk
Z

dx1dx2f1(x1)f2(x2)�(y � x1 � x2)

=

Z
dx1dx2f1(x1)f2(x2)

Z
dy yk�(y � (x1 + x2))

=

Z
dx1dx2f1(x1)f2(x2)(x1 + x2)

k

Leading order moments:

y0� = Z dx1dx2f1(x1)f2(x2) = 1

y1� = Z dx1dx2f1(x1)f2(x2)(x1 + x2) = hx1i+ hx2i

y2� = Z dx1dx2f1(x1)f2(x2)(x1 + x2)

2 =


x 2
1
�
+ 2 hx1i hx2i+



x 2
2
�

and thus


y2�� hyi2 =

h

x 2
1
�� hx1i2

i
+
h


x 2
2
�� hx2i2

i
Ü convolutions are normalized, mean value and variance add up for any PDFs!
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The central limit theorem

Ü conditions:
n PDFs fi (xi ) with mean values �i and variances �2(xi )
all algebraic moments are finite, i.e. the PDFs fi (xi )
Ü drop for jxi j ! 1 faster than any power of xi

Ü or only within a finite interval one has fi (xi ) 6= 0
consider the derived variable y :

y =

nX
y=1

yi =

nX
i=1

xi � �i

�
= h(x1; : : : xn) with �2 =

nX
i=1

�2(xi )

Ü y is a convolution of n PDFs with mean value � = 0
Ü y is dimensionless
Ü y is constructed such that the variances is �2(y) = 1

Ü central limit theorem:
For n !1 the PDF of y converges towards a normal distribution N (0; 1):

g(y) = lim
n!1

Z nY
i=1

dxi fi (xi )� (y � h(x1; : : : xn)) =
1p
2�

e�y2=2
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Illustration of the central limit theorem

Ü convergence toward a normal (gaussian) distribution
generate n random numbers xi according to two PDF
Ü uniform distribution with � = 1=

p
12

Ü exponential distribution with � = 1
calculate the function y = h(x1; : : : ; xn)

Ü h =
p

12=n
P

i xi foruniform random numbers

Ü h =
p

1=n
P

i xi for exponential random numbers
histogram y
study convergence

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

test of the central limit theorem

A simple example how to do
convolutions numerically

(demo 03)
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Multidimensional PDFs

Ü generalization of 1-dim PDFs

non-negative, normalizable functions in n dimensions
discuss the most important concepts with 2-dim PDFs

v 2-dim PDF:

f (x ; y) � 0 and
Z 1

�1

dx
Z 1

�1

dy f (x ; y) = 1

v interpretation:
Probability for (x ; y) in the (infinitesimal) rectangle [x ; x + dx ]� [y ; y + dy ]

p(x ; x + dx ; y ; y + dy) = f (x ; y) dx dy

v independence of variables:
Two variables x and y are independent if the PDF factorizes

f (x ; y) = fy(x ) � fx (y) =
�Z

dy f (x ; y)
�
�
�Z

dx f (x ; y)
�
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The covariance between two variables

Ü look for a moment sensitive two dependencies between two variables

normalisation h1i
first moments hx i ; hyi

second moments


x 2� ; hxyi ; 
y2�

third moments


x 3� ;



x 2y

�
;


xy2� ;



y3� etc.

The lowest order term sensitive to possible dependencies between x and y is
hxyi. For independent variables with f (x ; y) = g1(x ) g2(y) one finds

hxyi =
Z

dx
Z

dy x � y � g1(x ) � g2(y) =
�Z

dx x � g1(x )
��Z

dy y � g2(y)
�

and thus hxyi = hx i hyi

v obvious candidat for a measure of correlation:

Cxy = hxyi � hx i hyi “covariance” of x and y
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The correlation coefficient

v consider the special case y = ax + b

hyi = hax + bi = a hx i+ b
hxyi =



ax 2 + bx

�
= a



x 2
�
+ b hx i

and thus Cxy = hxyi � hx i hyi = a(


x 2
�� hx i2) = aCxx

Here the covariance is proportional to the slope between x and y , i.e. it measures
linear correlation. The dimensionless correlation coefficient � derived from Cxy is
a normalized measure for the correlation strength.

Ü (linear) correlation coefficient: � =
Cxy

�x�y
=

Cxyp
CxxCyy

For y = ax + b one has Cxy = aCxx and Cyy = a2Cxx and thus:

y = ax + b Ü � = sign(a) = �1

The correlation is 100%. If the linear relation only holds between x and hyi, i.e.
hyi = a x + b, then one has j�j < 1.
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The covariance matrix

Ü matrix of covariances between all pairs of variables in an n -dim PDF:

Cij = hxixj i � hxii hxj i

Expressed through standard deviations and correlation coefficients it is

Cij = �ij � �i�j with �ii = 1 :

Ü note:
the diagonal terms Cii are the variances of the individual variables
off-diagonal terms are covariances
the covariance matrix is symmetric and positive definite
it can be diagonalized by rotation in the space of the variables
C also is referred to as “error matrix”

The covariance matrix Cij is the matrix of all 2nd order moments of an
n -dimensional PDF f (x1; x2; : : : ; xn). Mean values hxi i and Cij describe the
location, extension and orientation of the PDF.
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Linear transformation of covariance matrices

Ü manipulations of sums: : :

Consider a transformation yk =
P

i Akixi . Given the covariance matrix Cij (x ),
the covariance matrix Ckl (y) of the transformed quantities shall be determined:

Ckl (y) = hykyl i � hyk i hyl i

=

*X
i

(Akixi )
X

j

(Alj xj )

+
�
*X

i

Akixi

+*X
j

Alj xj

+
=
X
ij

AkiAlj (hxixj i � hxi i hxj i) =
X
ij

AkiAljCij (x )

Matrix notation yields the compact expressions

~y = A � ~x and C (y) = A �C (x ) �AT :

Ü if C (x ) is positive definite, so is C (y)
Ü A need not be a square matrix - the number of rows is arbitrary
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The n-dimensional gaussian

Ü functional form:

f (~x ; ~�;C ) =
1p

(2�)n detC
exp

�
�1

2
(~x � ~�)

T C�1 (~x � ~�)

�
exponential of a general n -dimensional parabola
pre-factor guarantees proper normalization
vector of expectation values ~�
covariance matrix C
orientation and extension of the PDF described by C
(hyper)plannes of constant probability density are ellipsoids
complete description in n dimensionens:
Ü n expectation values
Ü n variances (diagonal elements of C )
Ü n(n � 1)=2 covariances
Ü in total n(n + 3)=2 Parameter

Ü 2-dim case
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Covariance-ellipse of a 2-dim gaussian

Ü line of constant probability density:

(~x � ~�)
T C�1 (~x � ~�) = 1

Data Analysis - Basics M. Schmelling / Tsinghua University, October 2013 page 46



2. MONTE CARLO METHODS

Ü basic idea:

Study inherent statistical processes by direct simulation or map deterministic

problems to statistical ones, which then are solved by simulation. The latter

exploits that expectation values are defined via integrals.

Ü needed:

Random numbers which are distributed according to well defined PDFs.

start with random numbers with uniform distribution in the intervall [0; 1].
the derive other distributions from those

Ü technical realization: “pseudo random numbers”

generation via numerical algorithms

not random, but hopefully indistinguishable from true random numbers

reproducible sequence – important for debugging
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Pseudo random number generators (i)

Ü D.E. Knuths’s 10-decimal-digits X "Super-random" number generator

1:Y = X =109 iterate the next steps Y times
2:Z = X =108 mod 10 jump to step Z + 3
3:if (X < 5 � 109) fX+= 5 � 109g
4:X = midsquare(X )

5:X = (X � 1001001001) mod 1010

6:if(X < 100000000) fX+= 9814055677g else fX = 1010 �X g
7:swap upper and lower 5-digit blocks
8:X = (X � 1001001001) mod 1010

9:reduce every digit > 0 by 1
10:if (X < 105) fX = X 2 + 99999g else fX�= 99999g
11:while (X < 109) fX �= 10g
12:replace X by the central 10 digits ofX (X � 1)
Ü extremely complex - sequence of steps is randomized internally
Ü properties of the generator are not discernible
Ü the generator is useless: 6065038420 is a fixed point of the algorithm

lesson learned: use only generators with known properties!
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Pseudo random number generators (ii)

Ü linear congruential generators

xn+1 = (a � xn + b) mod m
Ü multiplication with a scrambles the digits of xn

Ü the constant term b prevents trivial fixed points
Ü mod m takes care the x stays in the range [0;m � 1] (x=m in [0; 1])
Ü properties/quality is determined by the parameters a , b and m

v study the properties of the generator for a = 1601, b = 3456 und m = 10000

seed=1601 - x=0.1601
seed=6657 - x=0.6657
seed=1313 - x=0.1313
seed=5569 - x=0.5569
seed=9425 - x=0.9425
seed=2881 - x=0.2881
seed=5937 - x=0.5937
seed=8593 - x=0.8593
seed=0849 - x=0.0849
seed=2705 - x=0.2705
etc.

Ü distribution of function values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

(demo 04)
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Pseudo random number generators (iii)

Ü result:
linear congruential random numbers are located on (hyper)planes
the number of hyperplanes is a function of the plot-dimension d
wanted: number of hyperplanes as large and period as long as possible
both characteristics grow with the number of bits per integer
the choice of parameters a , b, m is important, too

v maximum number of hyperplanes with t -bit integers: p = (d ! 2t )1=d

bits d = 3 d = 4 d = 6 d = 10
t=16 73 35 19 13
t=32 2953 566 120 41
t=36 7442 1133 191 54
t=48 119086 9065 766 126
t=60 1905376 72520 3064 290

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.1

0.2
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0.4
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0.7

0.8

0.9

1

Ü need to increase the number of bits being used : : :
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Pseudo random number generators (iv)

Ü example for an state-of-the-art generator: RANLUX
based on the Marsaglia-Zaman algorithm
Ü mathematically equivalent to a linear-congruential generator
Ü completely different implementation
Ü for details consult Martin Lüscher, hep-lat/9309020

implementation:
zn = (a � zn�1) mod m

with

m = 2576 � 2240 + 1 (prime) and a = 2576 � 2552 � 2240 + 2216 + 1

v Discussion:
Effectively RANLUX uses 576-bit integer variables. The period is � 5:2 � 10171,
and the number of hyperplanes in d = 100 dimensiones ist h � 2000. However,
since the multiplier a has only very few bits set, subsequent 576-bit states are still
correlated. As in deterministic chaos, the correlation decays exponentially with the
distance of two numbers, and RANLUX/luxury-level 4, discards 8760 bits, before
the next 576 bits are accepted.
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Non-uniform random numbers (i)

Ü generate non-uniform random numbers from uniform ones
v Hit-or-Miss method

Ü algorithm to generate �(x ) < M in the intervall [a ; b]:
(1) generate x1 uniform in [0; 1]
(2) scale x = a + (b � a)x1
(3) generate y1 uniform in [0; 1]
(4) scale y = My1
(5) accept x if y < �(x )
(6) goto (1)
properties
Ü simple concept
Ü normalization of � not necessary
Ü small efficiency if M � h�i
Ü recycling of y1 as next x1 is possible

example: �(x ) � cos2
�
x

�

180

�
for �90 � x � 90; generation with M = 2
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Non-uniform random numbers (ii)

Ü The transformation method
If x is uniformly distributed in [0; 1], then y = h(x ) is a random variable with a
different distribution g(y). With proper choice of h(x ) it should be possible to
realize any distribution g(y). From the section about convolutions we know:

g(y) =
Z

dx f (x )�(y � h(x )) =
Z 1

0
dx �(y � h(x )) =

1
h 0(x )

����
x=h�1(y)

On the other hand we have

h(h�1(y)) = y and, differentiating w.r.t. y h 0(h�1(y)) � (h�1(y))0 = 1

giving

g(y) =
1

h 0(h�1(y))
= (h�1(y))0 and finally h�1(Y ) =

Z Y

ymin

dy g(y)

i.e. the transformation h is the inverse of the integral of the target distribution g .
Note also that the transformation method outlined above can be generalized to the
case that h is a function of several variables.
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Non-uniform random numbers (iii)

Ü some transformation laws for uniformly-distributed inputs x1; x2; : : :

y = h(x1; : : : ; xn) Ü g(y)
p

x1 Ü 2y

�a ln(x1) Ü 1
a e�y=ap

�a ln(x1) Ü 2
a ye�y2=a

�a ln(x1x2) Ü 1
a2 ye�y=a

� ln(x1x2 : : : xn) Ü yn�1e�yp
�2 ln(x1)

�
cos(2�x2)
sin(2�x2)

Ü 1p
2�

e�y2=2

Verification of these relations:

g(y) =
Z

dx1 � dx2 � � � xn �(y � h(x1; x2; : : : ; xn))
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Non-uniform random numbers (iv)

Ü Generation of Discrete Probability Distributions
Starting from the fact that the sum of discrete probabilities pi is normalized,X

i

pi = 1 ;

the individual probabilities can be arranged along 0 � x � 1. Drawing then a
uniform random number from [0; 1], the interval containing the generated value x
determines the discrete state to be returned, i.e. n if the interval taken by pn is hit.

0 0.5 1.0 

x

p1 p2 p3 p4 p5 p6 p7 p8

Iterative algorithm to find the hit interval:

start with S0 = 0 and iterate Sn = Sn�1 + pn until Sn > x :

Note that this algorithm is most efficient if the pn are ordered in decreasing size.
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Monte Carlo integration - example (i)

A thin beam of monoenergetic KS -mesons (mass M = 0:498 GeV) with energy
EK = M 2=(2m) � 0:886 GeV, with m = 0:13957 GeV the pion mass enters an
experiment. The KS mesons decay with an average proper lifetime
h� i = 8:934 � 10�10 s, into �+�� pairs. In the rest system of the Ks the decays
are isotropic. Located at a distance of 14 cm behind the entry point is a silicon
detector to register the decay pions. The detector is a circular disk with radius
R = 7 cm, centered on the Ks -beam. Determine the probability that both decay
pions hit the detector.

z=0

pion 1

pion 2

Ks

z=D=14 cm

R=7 cm
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Monte Carlo integration - example (ii)

Ü analytical calculation
Due to the azimuthal symmetry of the problem, the monoenergetic Ks - energy
spectrum and the special choice of the energy the problem can almost be solved
anayltically. Only three PDFs are required:

f (�) = 1=2�: azimuth of the �+ direction in the Ks -rest system
g(C ) = 1: cosine of the �+ polar angle in the Ks -rest system
�(z ) = (1= hz i) exp(z= hz i): flight distance in the lab with hz i � 4:07 cm

With the integration limits that result from the fact that as function of C only
decays in a certain z -range are registered on the detector

zmin = D �R 

r
1�C
1 +C

� z � D
one finally obtains:

A =

Z 2�

0
d�
Z 1

0
dC

Z D

zmin

dz f (�)g(C )�(z ) =
Z 1

0
dC

Z zmax

zmin

dz �(z )

= e�D= hz i
"
�1 +

Z 1

0
dC exp

 
R

hz i

r
1�C
1 +C

!#
� 0:207016

Data Analysis - Monte Carlo Methods M. Schmelling / Tsinghua University, October 2013 page 57



Monte Carlo integration - example (iii)

Ü direct simulation
generate decay positions according to �(z )
generate isotropic decays in the Ks - rest frame
perform Lorentz transform to the lab-system
analyze the events, i.e. check whether the pions hit the detector
Ü count as “success” cases where both pions hit the detector
Ü count as “failure” if at least one particle misses

v result of a simulation:
For N trials, the number of accepted events follows binomial statistics with
approximately p = n=N . The number of successes n will fluctuate with a
standard deviation �(n) =

p
Np(1� p) around its expectation value, and one

finds:

A =
n
N
� �(n)

N
=

n
N
�
r

p(1� p)
N

:

Given N = 1 000 000 generated events and n = 207 311 successes, one has:

A = 0:207 311(405) versus the analytical result A = 0:207 016 : : :
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Formal considerations (i)

Ü basic idea
Exploit the definition of an expectation value as a weighted integral over a PDF
and map an integration problem on to the determination of a statistical average.
The idea can be applied to integrals over an arbitrary number of dimensions.Z

dnx �(~x ) f (~x ) = hf i

Ü determination of the expectation value
If vectors ~xi , i = 1; : : : ;N are distributed according to �(~x ), then the arithmetic
mean provides an estimate for the required expectation value:

hf i = lim
N!1

1
N

NX
i=1

f (~xi )

Ü note:
The factor 1=N is independent of the number of dimensions in ~x , i.e. Monte Carlo
integration will converge with the same rate in any number of dimensions!
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Formal considerations (ii)

Ü properties and limiting behavior of the arithmetic average

lim
N!1

1
N

X
i

f (~xi )

Split the space of ~x into h n -dimensional (infinitesimal) volumes �n
h around

locations ~xh , such that �(~x ) � �(~xh) and f (~x ) � f (~xh ). When generating N
vectors ~xi ; i = 1; : : : ;N according to �(~x ), the number of events in �n

h will be
nh . The sum over i then can be rewritten as a sum over h :

NX
i=1

f (~xi ) =
X
h

nh f (~xh)

In the limit N !1 one then has nh = N ph = N �(~xh)�
n
h , and thus

lim
N!1

1
N

X
i

f (~xi ) = lim
N!1

1
N

X
h

N �n
h �(~xh) f (~xh) =

X
h

�n
h �(~xh) f (~xh)

=

Z
dnx �(~x ) f (~x )
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Formal considerations (iii)

Ü properties of Monte Carlo estimates at finite statistics N
The arithmetic mean �f provides an estimate for hf i. Since all points ~xi are
equivalent one has



f k (xi )

�
=


f k
�

and with f (xi ) � fi one finds:



�f
�
=

*
1
N

NX
i=1

fi

+
=

1
N

NX
i=1

hfi i =
1
N

NX
i=1

hf i = hf i

The estimate �f is unbiased. The variance of �f is

�2(�f ) =

* 
1
N

NX
i=1

fi

!0@ 1
N

NX
j=1

fj

1A+�* 1
N

NX
i=1

fi

+2

=
1

N 2

NX
i=j

hfi fj i+ 1
N 2

NX
i 6=j

hfi fj i � hf i2

=
N
N 2



f 2�+ N (N � 1)

N 2 hf i2 � hf i2 =
1
N

(


f 2�� hf i2) = 1

N
�2(f )
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Formal considerations (iv)

Ü summary

Monte Carlo integration converges with an uncertainty �(f )=
p

N
independently of the dimension of the integration problem

�2(f ) =


f 2
�� hf i2 a priori usually is not known

can be estimated with uncertainty O(1=pN ) during the calculation
for random vectors ~xi distributed according �(~x ) one hasZ
dnx �(~x ) f (~x ) =

lim
N!1

1
N

NX
i=1

f (~xi )� 1p
N

vuut 1
N

NX
i=1

f 2(~xi )

!
�
 

1
N

NX
i=1

f (~xi )

!2

Ü important:
All f (~xi ) are random variables. According to the central limit theorem the Monte
Carlo estimate thus will be gaussian distributed around the true value, which is
contained in ca. 68% of the cases in the �1� interval.
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Importance sampling (i)

Ü consider the 1-dim case

convergence is universal with �(f )=
p

N
only reduction of �(f ) can improve convergence
possible, since Monte Carlo integration integrates a product of two functions
Ü weight function f (~x ) and PDF �(~x ) of the sampling point distribution
Ü exploit the freedom to redistribute the factors in order to minimize �(f )

I =

Z b

a
dx f (x )

Evaluation of I via Monte Carlo means re-writing it as

I =

Z b

a
dx �(x ) f�(x ) with �(x ) � f�(x ) = f (x ) and normalized PDF �(x )

Two (out of many) possibilities to distribute sampling points x over [a ; b]:
uniform distribution: �(x ) = 1=(b � a) and f�(x ) = (b � a)f (x )
distribution proportional to f (x ): �(x ) = f (x )=I and f�(x ) = I
Ü convergence at the first event - possible if f (x ) > 0
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Importance sampling (ii)

Ü discussion
convergence improves if the density of sampling points matches f (x )
“important” parts of f (x ) are visited more often Ü “importance sampling”
a common realization of importance sampling is direct simulation
improvement already if �(x ) � f (x )
general approach: Z

dx f (x ))
Z

dx �(x )
f (x )
�(x )

Ü make sure that �(x ) > 0 over the integration interval
Ü �(x ) can have integrable singularities, i.e. while MC does not converge if

f (x ) has (integrable) singularities, when the singularity is moved to �(x )
importance sampling allows MC-integration also of singular functions

Ü numerical example: integrate a gaussian density

I =

Z 3

�3
dx

1p
2�

e�x2=2 )
Z 3

�3
dx �(x ) f�(x )
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Importance sampling (iii)

v uniform distribution
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v importance sampling
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Concluding remarks

universal convergence � 1=
p

N in Monte Carlo integration
grid based methods in 1-dim can have much better convergence
Ü e.g. 1=N 4 using Simpson’s rule
grid based methods degrade dramatically for higher dimensions

00.1
0.2

0.30.4
0.50.6

0.70.8
0.91

00.10.20.30.40.50.60.70.80.91

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9

1

cartesian grids are coarse and “irregular”
Ü spacing along axes N 1=d

Ü spacing along 2-d diagonals
p

2N 1=d

Ü spacing along 3-d diagonals
p

3N 1=d

much more uniform sampling through MC
1=
p

N convergence because of clustering
1=N convergence for truly uniform sampling
attempted by “Quasi Monte Carlo” approach

Ü note:
Monte Carlo techniques are well understood and provide reliable error estimates.
Quasi Monte Carlo has not yet reached that level.
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3. ERROR PROPAGATION

Ü what are errors?
“errors” are uncertainties - not to be confused with “mistakes”
meant to quantify how well one knows e.g. a constant of nature - but how?
engineer - one preferred quantity: “tolerance”
Ü maximum possible deviation
physicist - many different conventions: : :
Ü standard deviation (symmetric)

4 most common
Ü 3-sigma errors (symmetric)

4 if you want to be conservative
Ü frequentist confidence level intervals (asymmetric)

4 region containing the true value in a certain fraction of experiments
Ü bayesian confidence level intervals (asymmetric)

4 region in which the true value is located with a certain probability
most likely more options on the market

Ü ask the professionals: : :
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BIPM and collaborators

Ü Recommendation INC-1 (1980): Expression of experimental uncertainties

Joint Committee for Guides in Metrology/WG 1 (JCGM 100:2008)

1 The uncertainty in the result of a measurement generally consists of several
components which may be grouped into two categories according to the
way in which their numerical value is estimated:

A those which are evaluated by statistical methods,
B those which are evaluated by other means.

There is not always a simple correspondence between the classification into
categories A or B and the previously used classification into“random” and
“systematic” uncertainties. The term “systematic uncertainty” can be
misleading and should be avoided. Any detailed report of the uncertainty
should consist of a complete list of the components, specifying for each the
method used to obtain its numerical value.
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2 The components in category A are characterized by the estimated variances
s2
i (or the estimated “standard deviations” si ) and the number of degrees of

freedom �i . Where appropriate, the covariances should be given.

3 The components in category B should be characterized by quantities u2
j ,

which may be considered as approximations to the corresponding
variances, the existence of which is assumed. The quantities u2

j may be
treated like variances and the quantities uj like standard deviations. Where
appropriate, the covariances should be treated in a similar way.

4 The combined uncertainty should be characterized by the numerical value
obtained by applying the usual method for the combination of variances.
The combined uncertainty and its components should be expressed in the
form of “standard deviations”.

5 If, for particular applications, it is necessary to multiply the combined
uncertainty by a factor to obtain an overall uncertainty, the multiplying factor
used must always be stated.

(end of quote)
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Discussion

Ü why define uncertainties by variances and standard deviations
well defined procedures how to handle them
Ü when propagating uncertainties into derived variables
Ü for the combination of independent measurements
asymptotically gaussian behavior
no (little) danger of mis-interpretation
asymmetric errors
Ü not obvious how to propagate those
Ü not obvious how to combine them

v the following will deal with variances/standard deviations!

Ü remark regarding error bars:
drawn around measured values
reflect the scatter of the true values
Ü should (but cannot) be drawn around the true values
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Linear error propagation

Ü also called “gaussian error propagation”
the exact expression for linear transformations has been derived before:

~y = A � ~x and C (y) = A �C (x ) �AT :

Ü analyze the 1-dim case of non-linear transformations

y = q(x ) = q(~x ) + q 0(hx i)(x � hx i) + q 00(hx i)
2

(x � hx i)2 + : : :

= q0 + q1(x � hx i) + q2

2!
(x � hx i)2 + : : :

with qk = q(k)(hx i) the k -th derivative of q(x ) at the expectation value of x . For
the expectation value hyi one finds

hyi = q0 +
q2

2!
Z2 +

q3

3!
Z3 + : : :

The expectation value of a non-linear function q(x ) of a random variable
x is different from the function of the expectation value q0 = q(hx i). If x is
unbiased, then q(x ) will be biased, hyi = q0 + �, with � = q2Z2=2.
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Discussion

the bias is proportional to variance of x and second derivative of q(x )
size and sign of the bias can be estimated from estimates of q2 and Z2
in principle a leading order bias correction can be performed
usually the bias is small compared to the uncertainty �(y) of y and ignored
if ignored, one may still want to add it in quadrature to the error �(y)
Ü slightly lengthy but straightforward calculation yields for �2(y)

�2(y) =


y2�� hyi2 = q2

1Z2 + q1q3Z3 +
8q1q3 + 6q2

2

4!
Z4 � 1

4
q2
2Z

2
2 : : :

Ü adding the bias (q2Z2=2) in quadrature will cancel the last term

Ü note:
The series expansions tend to diverge. For numerical applications one therefore
only considers the leading term. The bias term then is of the same (or higher)
order as the terms which anyhow are not under control, and can in principle be
ignored. The variance of y thus is estimated by �̂2(y) = q2

1Z2.
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Conclusion

Ü final steps
Since hx i is not known, the derivative q1 = q 0(hx i) to calculate q2

1Z2 is only
approximately known. To leading order has

q 0(x ) = q 0(hx i) + q 00(hx i)(x � hx i) + : : : = q1 + q2(x � hx i) + : : :

and thus

(q 0(x ))2

�
= q1

2 + 2q1q2 h(x � hx i)i+ q2
2


(x � hx i)2�+ : : : = q2

1 + q2
2Z2

Taking the derivative at the point of the measurement introduces a bias O(q2
2Z

2
2 )

on the variance estimate which is of the same order as the higher order terms
which are anyhow neglected.

Ü lessons learned
non-linear transformation of unbiased variables are biased
an estimate of the bias is � = q 00(x )�2(x )=2
leading order error propagation is done by �̂2(y) = (q 0(x ))2�2(x )
the uncertainty due to missing higher order terms is of the same size as
�2 or the variance of q 0(x ) caused by the fact that x is a random variable
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Multivariate error propagation

Ü leading order treatment in n dimensions
input: xi ; i = 1; : : : ;n with covariance matrix C (~x )
output: yk = gk (~x ); k = 1; : : : ;m
wanted: covariance matrix C (~y) of the transformed variables
step 1: linearization of the transformation:

yk � gk (h~x i) +
nX

i=1

@gk (h~x i)
@xi

(xi � hxi i) � gk (h~x i) +
nX

i=1

@gk (~x )
@xi

(xi � hxi i)

Ü first expression: leading order Taylor expansion around h~x i
Ü second expression: derivatives taken at ~x
Ü difference is of higher order
step2: calculate the covariance matrix

Ckl (~y) = h(yk � gk (h~x i))(yl � gk (h~x i))i

=

nX
i ;j=1

@gk

@xi

@gl

@xj
h(xi � hxi i)(xj � hxj i)i =

nX
i ;j=1

@gk

@xi

@gl

@xj
Cij (~x )
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Remarks

derivatives at ~x are taken as substitute for derivatives at h~x i
Ü justification to treat them as constant in the calculation of C (~y)
the covariance matrix C (~y) is determined not with respect to h~yi
but with respect to the true transformed values ~g(h~x i)
Ü C (~y) accounts for the bias from the non-linear transformation
Ü no additional “adding in quadrature” needed

with

hyk i = gk (h~x i) + �k and thus gk (h~x i) = hyk i � �k

one finds

Ckl (~y)
= h(yk � (hyk i � �k ))(yl � (hyl i � �l ))i
= hykyl i � hyk i (hyl i � �l )� hyl i (hyk i � �k ) + h(hyk i � �k )(hyl i � �l )i
= hykyl i � hyk i hyl i+ �k�l = C true

kl (~y) + �k�l

or in matrix notation:

C (~y) = C true(~y) + ~�~�T
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Transformation properties

Ü matrix notation for linear error propagation
Consider a transformation

~y = ~g(~x ) and its jacobian M with matrix elements Mij =
@gi

@xj
:

Then error propagation transforms C (~x ) to C (~y) according to

C (~y) = M (~x ) �C (~x ) �MT (~x )

where the argument to M indicates that the derivatives are taken at ~x . If the
functions ~g are independent and ~y has the same dimension as ~x , then the
transformation can be inverted. No information is lost. When chaining
transformations one has:

~y = ~h(~g(~x )) and Mij =

nX
k=1

@hi

@gk

@gk

@xj
or M = M (~g) �M (~x )

i.e. the final covariance matrix is the same if a transformation is done at once or
broken down into several steps.
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Summary

Ü linear error propagation : : :

is approximate in case of nonlinear functions

becomes exact in the limit of small variances

accounts for biases from a non-linear transformation

must be applied to the full covariance matrix

is always consistent

Ü no information is lost for invertible transformations

Ü same results when breaking down a transformation into steps

Ü reminder: special case for a single function of independent variables

�2(y) =
nX

i=1

�
@y
@xi

�2

�2
i

alternative approach Ü
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Toy simulations

Ü “exact” error propagation
Linear error propagation does an (approximate) transformation of the covariance
matrix. Only the first and second moments are required. If one knows or assumes
the exact PDF of the input variables, one can determine the full PDF of the output.

an assumed PDF must reproduce known mean values and covariances
Ü e.g. a multivariate gaussian
error propagation becomes transformation of variables
the approach also works when the derivatives are not known, e.g.
Ü if the transformation is very complex
Ü if the transformation is only defined numerically
Ü if the transformation has discontinuities
useful cross-check for linear error propagation
Ü check for biases or pathologies
Ü taking mean values and covariance matrix from the transformed

variables avoids some of the biases of linear error propagation
Ü however, the transformation in general will not be invertible

(Ü tutorials)
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