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1. BASICS

Ü statistics everywhere: : :

(sugar served with espresso)
front side back side

“statistics sweetens your life” “during our lives we cover
22150 km on foot”
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An introductory example : : :

Ü the story of the cheating baker
Once upon a time, in a holiday resort the landlord L. ran a profitable B&B, and
every morning bought 30 rolls for breakfast. By law the mass of a single roll was
required to be 75 g. One fine day the owner of the bakery changed, and L.
suspected that the new baker B. might be cheating. So he decided to check the
mass of what he bought, using a kitchen scales with a resolution of 1g.

After one month he had collected a fair amount of data: : :

73 79 72 62 67 60 60 67 78 68 66 75 76 73 75 64 70 69 73 59 70 73 64 72 64 69
69 71 69 71 77 69 72 71 67 72 63 66 68 76 71 76 68 71 63 65 65 66 73 73 73 67
70 65 71 69 78 67 65 69 71 71 72 73 72 69 66 66 70 60 72 62 53 65 74 65 68 69
67 75 64 76 72 76 78 67 67 67 69 79 71 67 71 68 71 65 66 65 78 76 71 70 67 65
67 64 73 67 74 79 74 71 73 67 66 76 68 74 76 65 77 67 71 67 71 77 63 66 70 62
68 74 67 67 67 77 65 68 79 72 71 77 68 70 73 67 81 70 74 71 79 62 67 63 68 76
73 81 76 73 68 72 76 61 69 73 71 80 68 70 62 76 58 68 68 64 68 78 69 65 70 70
64 75 73 72 60 86 68 68 64 60 68 71 70 75 70 67 69 67 73 65 66 71 70 70 73 66
72 71 71 64 76 75 72 72 71 72 72 71 75 68 73 70 64 76 72 75 79 70 64 70 67 70
75 70 83 69 61 70 66 69 71 72 70 76 73 62 71 60 73 74 70 68 68 70 78 71 69 71
73 73 75 65 71 67 60 70 77 71 74 64 74 73 60 77 73 70 69 66 70 78 69 75 66 71
75 75 74 69 74 70 75 77 75 66 72 68 72 61 75 65 69 68 65 73 82 67 75 67 80 71
79 72 71 68 73 70 67 75 74 69 63 63 72 70 73 63 70 70 59 78 76 66 72 79 65 71
76 72 69 69 73 70 77 73 83 66 68 67 69 73 76 65 71 70 71 65 78 71 67 70 72 75
67 79 72 64 62 79 68 70 61 65 68 71 73 60 60 68 71 74 75 69 73 70 68 ...
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Data reduction

the raw list of number is not very useful Ü need some kind of data reduction
assume that all measurements are equivalent
Ü the sequence of the individual data does not matter (in this example)
Ü all relevant information is contained in the number of counts per reading

count[50]= 0
count[51]= 0
count[52]= 0
count[53]= 0
count[54]= 0
count[55]= 0
count[56]= 2
count[57]= 1
count[58]= 3
count[59]= 6

count[60]= 20
count[61]= 11
count[62]= 20
count[63]= 21
count[64]= 31
count[65]= 48
count[66]= 42
count[67]= 70
count[68]= 68
count[69]= 74

count[70]= 85
count[71]= 81
count[72]= 61
count[73]= 65
count[74]= 54
count[75]= 43
count[76]= 33
count[77]= 23
count[78]= 21
count[79]= 20

count[80]= 9
count[81]= 7
count[82]= 3
count[83]= 5
count[84]= 0
count[85]= 0
count[86]= 1
count[87]= 0
count[88]= 0
count[89]= 1

Ü much improved presentation of the collected information
Ü the above numbers cover the entire data set
Ü most of the measurements are lower than the legally required value...
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Visualization

an even better presentation of the available information: bar-chart
example for the concept of a histogram
Ü define bins for the possible values of a variable
Ü plot the number of entries in each bin
Ü get an immediate grasp of center and width of the distribution
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The rolls produced by baker
B. definitely are too light. So
L. was right in his suspcion,
that B. tried to make some
extra profit by cheating...

Data Analysis - Basics M. Schmelling / Tsinghua University, October 2013 page 6



: : : and the conclusion

As a consequence of his findings, L. complained. B. apologized and claimed that
the low mass of the rolls was an accident which will be corrected in the future. L.,
however, continues to monitor the quality delivered by the baker. One month later,
B. asked whether now everything was all right. L., for his part, acknowledged that
the weight of the rolls now matched his expectations, but also voiced the opinion
that B. was still cheating: : :
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ÜB. simply selected the heaviest rolls for L.!
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Before moving on : : :

Ü always keep in mind:
the name of the game: extract meaning from a stream of numbers
the tools: “statistical and numerical methods”
Ü need know the relevant methods
Ü need to understand their properties
basic assumptions
Ü measurements deviate from the respective true values
Ü the deviation is a random variable
Ü statistics builds on probability theory

A statistical method is neither “right” nor “wrong”.
It has properties, which have to be known for the interpretation
of the result. Possible properties could be, that the output is the most
precise estimator, or that the result is robust. The property could also
be that the result is wrong, in which case use of this particular method
should be discouraged...
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Notations

p(A) probability for A
p(AjB) conditional probability for A if B is given
x ; y ; z ; t ; : : : continuous random variable
i ; j ; k ; l ;m ;n : : : discrete random variable (or index)
~x vector of random variables fx1; : : : ; xng
pi ; qi discrete probabilities
f (x ); g(x ) probability densities functions (PDFs) of x
F (x );G(x ) cumulative distributions of f ; g
f (x ; y) 2-dim probability density in x und y
f (x jy) conditional PDF for x given y
a ; b; : : : ; �; �; : : : parameters
E [x ] = hx i = �x expectation value von x
V [x ] = �2

x variance von xba estimate for a
x arithmetic average of xP

(i) sum over all indices (i)R
dx integrate over all x
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Linear algebra (i)

A matrix A[m ;n ] is an array of numbers with m rows und n columns. Usually the
dimensions are not given explicitly. Individual matrix elements are addressed by
two indices, Aij , where the first index specifies the row and the second one the
column. The following is a summary of the rules for matrix manipulations:

Sum of two matrices:

C [m ;n ] = A[m ;n ] +B [m ;n ] or Cij = Aij +Bij

Product of two matrices:

C [m ;n ] = A[m ; l ] �B [l ;n ] or Cij =

lX
k=1

AikBkj

Product of three matrices:

D [m ;n ] = A[m ; l ] �B [l ; k ] �C [k ;n ] or Dij =

lX
r=1

kX
s=1

AirBrsCsn

associative law of matrix multiplication:

A � (B �C ) = (A �B) �C
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Linear algebra (ii)

The neutral element with respect to matrix multiplication is the unit matrix

1[n ;n ] =

0BBB@
1 0 � � � 0
0 1 � � � 0
...

...
. . .

...
0 0 � � � 1

1CCCA using indices 1ij = �ij

giving A[n ;m ] � 1[m ;m ] = 1[n ;n ] �A[n ;m ] = A[n ;m ]

Square matrices A[n ;n ] (of rank n ) have a unique inverse matrix A�1:

A�1 �A = A �A�1 = 1
For the inverse of a product of square matrices on has:

(A1 �A2 � � �An)
�1 = A�1

n � � �A�1
2 �A�1

1

Another matrix operation is transposition:

A[m ;n ]T = B [n ;m ] or Bij = Aji :

For die transpose of a product of matrices one has:

(A1 �A2 � � �An)
T = AT

n � � �AT
2 �AT

1
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Linear algebra (iii)

For n � n matrices there exist n scalar quantities which are invariant under
orthogonal transformations of the matrix. The two most important ones are
determinant and trace, the product and the sum of the eigenvalues �i of the
matrix:

det(A[n ;n ]) =
nY

i=1

�i and TrA[n ;n ] =
nX

i=1

�i =

nX
i=1

Aii

The trace is given by the sum of the diagonal elements. Expressed as a function
of the matrix elements, the determinant of a 2� 2 matrix is

det(A[2; 2]) = A11A22 �A12A21

For the determinant of a product of matrices one finds:

det(A1 �A2 � � �An) = det(A1) � det(A2) � � �det(An)

The trace of a product of matrices is invariant under cyclic permutations:

Tr(A1 �A2 � � �An) = Tr(A2 � � �An �A1)
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Linear algebra (iv)

A special class of matrices are vectors. In the following a letter with an arrow
denotes a column vector. Row vectors are obtained by transposition (T ) of a
column vector.

~b = b[n ; 1] column vector

~aT = a [1;n ] row vector

For two vectors ~a and ~b of dimensions n , ~aT � ~b is a scalar and ~a � ~bT is a matrix:

~a � ~bT =

0B@a1b1 a1b2 : : :
a2b1 a2b2 : : :

...
...

. . .

1CA
It follows:

~aT � ~b = Tr(~aT � ~b) = Tr(~b � ~aT )

Expectation values of matrices are defined by element:

hAiij = hAij i
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Manipulations of Sums

The product of two sums can be written as a sum over two indices X
i

xi

!0@X
j

yj

1A =
X
ij

xiyj

i.e. interpreting xi or yi as elements of a vector ~x or ~y , respectively, every element
of ~x is multiplied with every element of ~y and the individual terms summed up.

Special case: ~y = ~x X
i

xi

!0@X
j

xj

1A =

 X
i

xi

!2

=
X
ij

xixj =
X
i=j

x 2
i +

X
i 6=j

xixj

Since the expectation value (formally defined later) is a linear operator sums and
expectation values commute: *X

i

xi

+
=
X

i

hxi i
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Lagrange multipliers (i)

Ü general problem: minimization subject to constraints
Consider the general constrained minimization problem in 2 dimensions:

C (x ; y) !
= min with g(x ; y) = 0

Ü default approach:
Use g(x ; y) = 0 to solve for y = G(x ), substitute

@

@x
C (x ;G(x )) = 0 with g(x ;G(x )) = 0

and determine xmin and ymin = G(xmin).

Ü conceptually straightforward ansatz
Ü minimization problem with reduced number of dimensions
Ü breaks the symmetry between the variables
Ü often impossible to do in practice

try to come up with something better...
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Lagrange multipliers (ii)

x

y

river
M

C

P

Ü the Lagrange multiplier approach

Example: The Milkmaid’s Problem
A milkmaid is sent to a field close to the river in order to milk a cow. Entering the
field at point M, the milkmaid spots the cow at C. Normally she would go directly
to the cow, – but then realizes that her bucket first needs cleaning in the river. The
problem is to find the shortest path connecting M and C via the bank of the river.

v mathematical formulation:

cost function:

C (Px ;Py) = j ~M � ~P j+ j~P � ~C j
description of the distance to the river:

g(x ; y) = c
constraint:

g(Px ;Py) = 0
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Lagrange multipliers (iii)

x

y

river
M

C

P

The points where the sum of the distances to two “focal” points is constant are
located on an ellipse. Contours of equal cost thus are given by ellipses around C
and M . The best solution is the smallest ellipse touching the river. At this point
the contour lines C =const and g =const have to be parallel.

Ü contour lines are orthogonal to function gradients
Ü parallel contour lines implies parallel gradients

v condition for the best point P :

rC (x ; y) / rg(x ; y)

Exploit this to find an elegant way
for solving constrained optimization
problems: : :
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Lagrange multipliers (iv)

Ü insight by Lagrange

The stationary point of a linear combination of cost function C and constraint
function g is the solution of a constrained minimization. Introducing

F (x ; y) = C (x ; y) + � � g(x ; y)
one finds

rF (x ; y) = 0 = rC (x ;u) + � � rg(x ; y) i.e. rC (x ;u) / rg(x ; y) :

Ü discussion

minimization of F is usually much easier than the “default approach”
fully symmetric in all variables
the result is a function of �, i.e x (�),y(�)
� can be determined from the condition g(x (�); y(�)) = 0
in many cases the explicit value of � is not needed

Data Analysis - Basics M. Schmelling / Tsinghua University, October 2013 page 18



Lagrange multipliers (v)

Ü additional remarks
Introduction of � increases the dimension of the minimization problem and a
stationary point is determined in a higher dimensional space. Since the extended
cost function F (x ; y) is linear in � the stationary point will be saddle point.

Example: C (x ) = (x � 4)2 and g(x ) = x � 2

F (x ; �) = (x � 4)2 + � � (x � 2)
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(x-2)λ+2) = (x-4)λF(x,

x

λlocal minimum in x for every �
no global minimum
the saddle-point has minimum
cost for constraint g(x ) = 0
Ü xmin = 2
Ü �min = 4
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Combinatorics

An important aspect of many statistical analyses is to count the number of
possible results. For discrete states the solution is found by combinatorics.
Some of the most important results are collected below:

Ü words with m -characters from an alphabet with n letters:

N = nm

Ü Permutations of n objects:

N = n � (n � 1)� (n � 2)� : : : 2� 1 = n !

Ü Possibilities to select k objects from a total of n (without putting back)

n(n � 1):::(n � 2)(n � k + 1)
k !

=
n !

k !(n � k)!
=

�
n
k

�
the “lottery-problem”
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Mathematical foundations

Ü Kolmogorov’s axioms on probability
Starting from set theory, probability theory can be built on a mapping from sets E
to real numbers p(E) 2 [0; 1]. Define


 : the entire set

E : partial set of 


p(E) : probability of E

and postulate the following axioms:

1. 0 � p(E) � 1
2. p(
) = 1
3. p(E1 [ E2) = p(E1) + p(E2) if E1 \ E2 = 0

Based on these axioms, calculations involving probabilities are unambiguously
defined. Interpretation is left completely open : : :
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Conditional probability & independent events

Ω

A

B

 B∩A 

Rules for calculus of probabilities derived
from Kolmogorov’s axioms can easily be
visualized using diagrams from set theory.
For example:

p(A [B) = P(A) + P(B)� P(A \B)

Consider P(B jA), the probability for B if A is given
Ü the diagram suggests P(B jA) / P(A \B)
Ü for A 2 B one must have P(B jA) = 1
Ü A 2 B implies P(A \B) = P(A) and thus

P(B jA) =
P(A \B)

P(A)
“conditional probability”

For “independepent events”, which implies P(B jA) = P(B), one obtains:

P(A \B) = P(A) � P(B)
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Bayes’ theorem

Consider a set of disjoint events Ai ; i = 1; : : : ;n . It follows

p(Ai \B) = p(B jAi ) p(Ai ) = p(Ai jB) p(B)

=) p(Ai jB) =
p(B jAi ) p(Ai )

p(B) Bayes’ theorem

The prior p(Ai ) for Ai is updated by the occurrence of B to become p(Ai jB).

Bayes’ theorem is at the heart of statistical inference based on empirical input. If
the Ai are exhaustive, i.e. if one of them is realized with unit probability
independently of B , then one has

p(B) =
X

i

p(B jAi )p(Ai )

and thus

p(Ak jB) =
p(B jAk )p(Ak )P
i p(B jAi )p(Ai )

Ü applications : : :

Data Analysis - Basics M. Schmelling / Tsinghua University, October 2013 page 23



Bayes’ theorem - example 1

A new test for the common cold hits the market, designed to detect an infection in
the early stages where an efficient cure is available. The probability to test positive
in case of an infection is p(+jI ) = 0:98, the probability for a negative result on a
healthy subject is p(�jH ) = 0:97. Series tests are performed in summer, where
the a priori probability for infection is p(I ) = 0:001.

What’s the probability that a person tested positive has actually contracted a cold?

the probabilities are: p(I ) = 0:001 p(H ) = 0:999
p(+jI ) = 0:980 p(�jI ) = 0:020
p(+jH ) = 0:030 p(�jH ) = 0:970

where the rows sum up to unity. Application of Bayes’ theorem then yields

p(I j+) = p(+jI )p(I )
p(+jI )p(I ) + p(+jH )p(H )

� 0:032

Simply administering sweets to all patients that diagnosed “infected” already will
yield a “healing rate” around 97%.
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Bayes’ theorem - example 2

Three boxes contain each two rings made of either gold (G) or silver (S). The
boxes contain (GG), (SS) and (GS). The content of a specific box is unknown.
A person is allowed two draws of a single ring from any of the boxes. The first
draw yields gold.

Which box for the second draw maximizes the number of gold rings?

Calculate the probability that the box of the first draw contains (GG). A priori the
probabilities are p(GG) = p(GS) = p(SS) = 1=3. The probabilities to get (G)
in the first draw become

p(GjGG) = 1 ; p(GjGS) =
1
2

and p(G jSS) = 0 :

Bayes’ theorem then yields the probability that the selected box is (GG):

p(GG jG) =
p(G jGG)p(GG)

p(G jGG)p(GG) + p(GjGS)p(GS) + p(G jSS)p(SS)
=

2
3

The second draw should be taken from the same box.
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Bayes’ theorem - example 3

Two old friends A and B who have gotten out of touch accidentally meet in a pub
and decide to celebrate the occasion. A suggests to flip a coin in order to
determines who will pay the next round. B agrees and then pays all the drinks.

What is the probability that A is cheating each time he throws the coin?

Consider the hypotheses h and c that A is an honest guy or that he is a cheater.
The probability for A to win n times in a row is

p(n jh) = 2�n and p(n jc) = 1
With the prior probabilities p(h) and p(c) = 1� p(h), Bayes’ theorem allows to
determine the probability that A, after having won n times, is a cheater:

p(cjn) = p(n jc)p(c)
p(n jc)p(c) + p(n jh)p(h) =

p(c)
p(c) + 2�np(h)

the result depends on p(b): p(c) = 0:00 =) p(cjn) = 0
p(c) = 0:05 =) p(cj1) � 0:095

p(cj6) � 0:771
p(cj1) = 1

“bayesian” update of knowledge
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Probability density functions and probabilities

Ü definition of a probability density function (PDF)
A function f (x ) can be interpreted as a PDF if

f (x ) � 0 8 x and

+1Z
�1

dx f (x ) = 1 :

Ü interpretation:
The probability to observe an event in the infinitesimal interval [x ; x + dx ] is:

p(x ; x + dx ) = f (x )dx :

Ü relation to discrete probabilities:
discrete probabilities pi , i.e. finite probabilities for discrete values, can be written
as a PDF using Dirac’s delta-function:

f (x ) =
nX

i=1

pi �(x � i) where
Z

dx f (x ) =
X

i

pi = 1
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Visualisation of 1-dim PDFs

graphical representation of the density
problem in practical applications
Ü density function not known
Ü only a random sample of size N
obvious solution: mark the values
better solution: histogram
Ü divide the range into bins
Ü count entries inside each bin
Ü regarding bin limits:

4 too many bins: large fluctuations
4 too few bins: loss of information
4 use “reasonable” binning

Ü to illustrate the point: : :

for a range �1 � x � 1 avoid histograms
with 25 bins on the interval [�1:1;+1:1]. Use
20 bins between �1 and 1.
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30000
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Visualization of a 1dim PDF
Entries   1.03e+06

(demo 01)

variations:
Ü density plots for small N
Ü variable bin widths
Ü logarithmic axes
Ü : : :
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Relation: histogram() PDF

Ü given

N : total number of entries in the histogram

h : bin width

nk : number of entries in bin k [xk � h=2; xk + h=2]

Ü it follows

nk = N � p(x � h=2; x + h=2)

= N
Z xk+h=2

xk�h=2
dx f (x )

� N f (xk ) h

result: f (xk ) � nk

h �N
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Visualization of a 1dim PDF
Entries   7.9e+05

(demo )
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Moments of a distribution

Ü goal:
Summarize the properties of a PDF by (a few) numbers, so-called moments:

Ü moments are “expectation values”, defined byZ 1
�1

dx f (x ) wk (x ) = hwk i

i.e. as a mapping f (x ) 7! C of a PDF f (x ) onto a (complex) number via integral
transform with a (family of) weight function(s) wk (x ).

Example: cumulative distribution

wX (x ) = �(X � x )

hwX i =
Z 1
�1

dx f (x ) �(X � x ) =
Z X

�1

dx f (x ) = F (X )

F (x ) is the primitive of f (x ): F (�1) = 0, F (1) = 1
Üfurther examples : : :
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Mean value, variance and standard deviation

A possible measure for the scatter s of x with PDF f (x ) around a point a is

s2 =

Z
dx (x � a)2 f (x )

To use s for characterizing f (x ), the point a should be chosen such that s
becomes minimal. Minimization of s2 yields:

@s2

@a
= �2

Z
dx (x � a)f (x ) !

= 0 i.e.. amin =

Z
dx x f (x ) = hx i

It follows that the mean value (or “expectation value”) hx i is a way to characterize
the center of a PDF. For symmetric PDFs it is also the symmetry point:

hx i =
Z

dx x f (x ) =
Z

dx (x � a) f (x ) + a
Z

dx f (x ) = 0 + a � 1 = a

The scatter � around the mean value hx i is also referred to as “standard deviation”
oder “rms”-scatter, its square as “variance”. The following relation holds:

�2 =

Z
dx (x � hx i)2 f (x ) =

Z
dx (x 2 � 2x hx i+ hx i2) f (x ) = 
x 2�� hx i2
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Quantiles of a distribution

Ü median
The center of a distribution can also be taken as the median m , defined byZ m

�1

dx f (x ) =
Z 1

m
dx f (x )

i.e. same probability on both sides. For symmetric distributions one has hx i = m .

Ü quantiles
Quantiles are locations x� on a PDF up to which with the probability content is
�%. A possible measure for the width of a PDF is x84 � x16.

Ü discussion:
mean value and standard deviation
+ linear functions of the PDF, i.e. easy to use in theoretical calculations
� sensitive to outliers and tails in the PDF
median and quantiles
+ insensitive against outliers and tails
� non-linear functions of the PDF, difficult to handle analytically
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Illustrations

0 1 2 3 4 5 6 7 8 9 10
0
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0.1

0.15

0.2
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0.3

0.35

x*exp(-x/s)
Mean       1.995
RMS          1.4

probability content of [av-sd,av+sd] =  0.732

(demo 02)

Ü for different PDFs

mean value hx i
standard deviation �
probability content of the
interval [hx i � �; hx i+ �]
median

Ü conclusion:
there are many possibilities to characterize a PDF
other options, not discussed in detail are:
Ü take as center the maximum
Ü take as width the minimum interval with a given probability
still most important: algebraic moments and derived quantities
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Algebraic and central moments

Ü algebraic moments:

Mk �
Z

dx f (x ) x k

M0 = 1: normalization of f (x )
M1 = �: mean value f (x )

Ü central moments:

Zk �
Z

dx f (x ) (x � �)k

Z0 = 1: normalization of f (x )
Z1 = 0
Z2 = �2: variance of f (x )

Ü other commonly used moments:

S =
Z3

�3 “skewness” and K =
Z4

�4 � 3 “kurtosis”

Normalization by � makes S and K to quantities which depend only on the
shape. For symmetric distributions one has S = 0. K measures how quickly the
PDF drops to zero. For gaussian distributions one has K = 0.
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The Bienaymé-Chebycheff-inequality

Ü probability content in the tails
Given any PDF f (x ) und eine Funktion w(x ) � 0, there is a relation between hwi
and the probability p(w(x ) � C ), to observe x in a region with w(x ) � C :

hwi=
Z

dx f (x )w(x ) �
Z

w(x)�C

dx f (x )w(x ) � C
Z

w(x)�C

dx f (x ) = C p(w(x ) � C )

and thus p(w(x ) � C ) � hwi
C

The special choice w(x ) = (x � �)2 and C = k2�2 then yields the result:

pk � p
�
(x � �)2 > k2�2� � 1

k2

The probability content beyond �k � around the mean value � is at most 1=k2.

upper limit for probability in the tails of a PDF
actual probability contents for most PDFs are much lower
Ü e.g. gaussian: fp1; p2; p3; p4g � f0:317; 0:0555; 0:0027; 0:000063g
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Convolutions

Ü convolution of two distributions
Given two PDFs f1(x1) und f2(x2), determine the PDF g(y) of y = h(x1; x2),
when x1 and x1 are distributed according to f1(x1) and f2(x2), respectively.
For the cumulative distribution G(Y ) one has:

G(Y ) =

Z Y

�1

dy g(y) =
Z

dx1dx2f1(x1)f2(x2) �(Y � h(x1; x2))

Here the products of all probabilities dp1 = dx1f1(x1) and dp2 = dx2f2(x2) are
summed which satisfy the constraint h(x1; x2) < Y . Differentiation with respect
to the upper limit Y then yields the solution:

g(y) =
d

dY
G(Y )

����
Y=y

=

Z
dx1dx2f1(x1)f2(x2)�(y � h(x1; x2))

“general convolution integral”

For the special case h(x1; x2) = x1 + x2 follows the known result

g(y) =
Z

dx1f1(x1)f2(y � x1)

Ü consider moments: : :
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Algebraic moments of convolutions

Mk (y) =
Z

dy ykg(y) =
Z

dy yk
Z

dx1dx2f1(x1)f2(x2)�(y � x1 � x2)

=

Z
dx1dx2f1(x1)f2(x2)

Z
dy yk�(y � (x1 + x2))

=

Z
dx1dx2f1(x1)f2(x2)(x1 + x2)

k

Leading order moments:

y0� = Z dx1dx2f1(x1)f2(x2) = 1

y1� = Z dx1dx2f1(x1)f2(x2)(x1 + x2) = hx1i+ hx2i

y2� = Z dx1dx2f1(x1)f2(x2)(x1 + x2)

2 =


x 2
1
�
+ 2 hx1i hx2i+



x 2
2
�

and thus


y2�� hyi2 =

h

x 2
1
�� hx1i2

i
+
h


x 2
2
�� hx2i2

i
Ü convolutions are normalized, mean value and variance add up for any PDFs!
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The central limit theorem

Ü conditions:
n PDFs fi (xi ) with mean values �i and variances �2(xi )
all algebraic moments are finite, i.e. the PDFs fi (xi )
Ü drop for jxi j ! 1 faster than any power of xi

Ü or only within a finite interval one has fi (xi ) 6= 0
consider the derived variable y :

y =

nX
y=1

yi =

nX
i=1

xi � �i

�
= h(x1; : : : xn) with �2 =

nX
i=1

�2(xi )

Ü y is a convolution of n PDFs with mean value � = 0
Ü y is dimensionless
Ü y is constructed such that the variances is �2(y) = 1

Ü central limit theorem:
For n !1 the PDF of y converges towards a normal distribution N (0; 1):

g(y) = lim
n!1

Z nY
i=1

dxi fi (xi )� (y � h(x1; : : : xn)) =
1p
2�

e�y2=2
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Illustration of the central limit theorem

Ü convergence toward a normal (gaussian) distribution
generate n random numbers xi according to two PDF
Ü uniform distribution with � = 1=

p
12

Ü exponential distribution with � = 1
calculate the function y = h(x1; : : : ; xn)

Ü h =
p

12=n
P

i xi foruniform random numbers

Ü h =
p

1=n
P

i xi for exponential random numbers
histogram y
study convergence
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test of the central limit theorem

A simple example how to do
convolutions numerically

(demo 03)
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