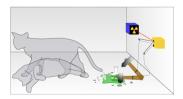


Experimental Tests of Quantum Mechanics

Michael Schmelling - MPI for Nuclear Physics e-Mail: Michael.Schmelling@mpi-hd.mpg.de

Outline

- Basics
- 📃 Bell's Inequalities
- Early Experiments
- Parametric Down-Conversion
- Advanced Topics
- Summary



Φ 1. Basics

→ heated (philosophical) discussions

- relation between QM and the understanding of nature
 - ➔ mathematical structure: (mostly) accepted
 - → core issue: interpretation of QM
 - X causality and chance
 - × relation to classical physics

📃 persona remarks

- → classical picture: causality in space and time
- → QM: (perhaps) theorie regarding information
 - × information is intrinsically quantized
 - relevant for sufficiently small physical systems
 - X QM was developed when atomic scales became accessible
- ➔ general observation
 - X information given: classical behavior
 - × information missing: chance

in the following:

Try to get a better understanding from comparing theory and experiment

→ some Nobelprize awarded results...

experiment: photo-effect

kurzwelliges Licht

(explanation by Einstein, Nobelprize 1921)

Φ Historical milestones (i)

Max Planck

- discovery of the quantization of action $h \neq 0$
 - ➔ energy of light-waves is continuous
 - ➔ interaction with matter is guantized

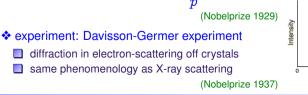
 $F_{i} = h \nu$

F/ (eV)

(Nobelprize 1918)

(10¹⁴Hz

 $E = \frac{\Delta E}{\Delta f} \cdot f + W_{A}$



Φ Historical milestones (ii)

→ Albert Einstein

mass and energy are equivalent

 $E = m c^2$

→ De Broglie

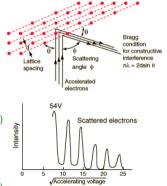
matter has wave-like properties, too

particles cannot be perfectly localized

 $E = h \nu = m c^2 = (mc) c = p c$

 $\nu = \frac{c}{r}$

Resultat $\rightarrow \lambda = \frac{h}{-}$



Physics	↔ Mathematics
state of a system	normalized wavefunction $\mid \psi angle$
observable S	hermitian operator S
Measurement	Eigenvalue und Eigenfunction

→ discussion:

- □ $|\psi\rangle$ is element of a linear vector space: wavefunctions can be linearly superposed and it exsist an inner product. The normalization is $\langle \psi | \psi \rangle$ =1.
- On the linear space of the wavefunctions *S* is a matrix with real eigenvalues λ_k and an ortho-normal system of eigenvectors $|\phi_k\rangle$, i.e. $\langle \phi_k | \phi_l \rangle = \delta_{kl}$.
- A measurement always yields an eigenvalue λ_k of the respective operator. After the measurement the wavefunction is the eigenvector $|\phi_k\rangle$ ("collapse of the wavefunction", or "decoherence").

Tests of Quantum Mechanics - Basics

→ the statistical interpretation of Quantum Mechanics

wanted: distribution of the measured values for a given state

$$|\psi
angle = \sum_k a_k \,|\, \phi_k\,
angle$$

with (in general) complex-valued coefficients a_k .

A priori a measurement can return any eigenvalue λ_k , i.e. the question is what are the relative frequencies p_k (probabilities). Exploit that the wavefunction the p_k are normalized:

$$1 = \sum_{k} p_{k} = \langle \psi | \psi \rangle = \sum_{k,l} a_{k} a_{l}^{*} \langle \phi_{k} | \phi_{l} \rangle = \sum_{k,l} a_{k} a_{l}^{*} \delta_{kl} = \sum_{k} |a_{k}|^{2}$$
and thus $p_{k} = |a_{k}|^{2}$ (Nobelprize 1954)

- in general the result of a measurement cannot be predicted, however ...
- relative frequencies are fixed by the wavefunction
-] only a system in the eigenstate ϕ_k deterministically yields the eigenvalue λ_k
- general predictability would contradict with relativity

Tests of Quantum Mechanics - Basics

Φ Linear algebra...

 \rightarrow determination of the expansion coefficients a_k

$$\langle \, \phi_k \mid \psi \,
angle = \langle \, \phi_k \mid \left(\sum_i a_i \mid \phi_i \,
angle
ight) \, = \sum_i a_i \langle \, \phi_k \mid \phi_i \,
angle = \sum_i a_i \delta_{ki} = a_k$$

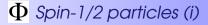
→ expectation values

$$\langle S
angle \equiv \sum_k p_k \lambda_k = \langle \, \psi \mid S \mid \psi \,
angle$$

proof:

$$egin{aligned} \psi \mid S \mid \psi \mid & = \sum_{kl} a_k a_l^* \langle \left. \phi_l \mid S \mid \phi_k
ight.
ight
angle = \sum_{kl} a_k a_l^* \lambda_k \langle \left. \phi_l \mid \phi_k
ight.
ight
angle \ & = \sum_{kl} a_k a_l^* \lambda_k \delta_{kl} = \sum_k |a_k|^2 \lambda_k = \sum_k p_k \lambda_k \end{aligned}$$

in the following: 2-state systems with $\lambda_{1,2} = \pm 1$ \Rightarrow



 \rightarrow operators for spin-components in x, y, z

$$\sigma_x=\left(egin{array}{cc} 0&1\ 1&0\end{array}
ight) \qquad \sigma_y=\left(egin{array}{cc} 0&i\ -i&0\end{array}
ight) \qquad \sigma_z=\left(egin{array}{cc} 1&0\ 0&-1\end{array}
ight)$$

 \rightarrow Eigenstates for σ_z and σ_x

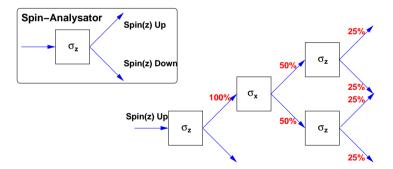
$$\begin{split} |\uparrow\rangle_z &= \left(\begin{array}{c}1\\0\end{array}\right) \ , \ \lambda = +1 \qquad \text{und} \qquad |\downarrow\rangle_z = \left(\begin{array}{c}0\\1\end{array}\right) \ , \ \lambda = -1 \\ \uparrow\rangle_x &= \frac{1}{\sqrt{2}} \left(\begin{array}{c}1\\1\end{array}\right) \ , \ \lambda = +1 \qquad \text{und} \qquad |\downarrow\rangle_x = \frac{1}{\sqrt{2}} \left(\begin{array}{c}1\\-1\end{array}\right) \ , \ \lambda = -1 \end{split}$$

→ transformation between the two bases

$$\begin{split} |\uparrow\rangle_{x} &= \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_{z} + |\downarrow\rangle_{z} \right) \quad \text{und} \quad |\downarrow\rangle_{x} = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_{z} - |\downarrow\rangle_{z} \right) \\ |\uparrow\rangle_{z} &= \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_{x} - |\downarrow\rangle_{x} \right) \quad \text{und} \quad |\downarrow\rangle_{z} = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_{x} + |\downarrow\rangle_{x} \right) \end{split}$$

Φ Spin-1/2 particles (ii)

- → example: consequence for Stern-Gerlach type experiments
 - initial stat: $|\uparrow\rangle_z$
 - start with measurement of the *z*-component of the spins
 - then measure the x-component
 - then measure the z-component



After a measurement all information about earlier states has been erased!

Φ Two-particle systems

→ construction of "classical" product states

z.B. $|\psi\rangle = |\uparrow\rangle_1 \otimes |\uparrow\rangle_2 \equiv |\uparrow\uparrow\rangle$ oder $|\psi\rangle = |\uparrow\rangle_1 \otimes |\downarrow\rangle_2 \equiv |\uparrow\downarrow\rangle$

direct product of single particle states

use a basis (here and below) == eigenstates of σ_z

new: "entagled states"

z.B.
$$|\psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$
 (spin-singlet)

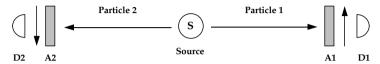
possible because of the superposition principle in QM

no classical interpretation - both particles are simultaneously "up" and "down"

interesting phenomenology when measuring both spins

Φ Quantum mechanical prediction (i)

→ spin-correlation for the spin-singlet state



 $\begin{array}{c|c} xz \text{-direction of spin measurement: particle-1: } \alpha, \text{ particle-2: } \beta \\ \hline \text{operators for those observables (e.g. } \alpha) \\ & \sigma_{\alpha} = \cos \alpha \cdot \sigma_{z} - \sin \alpha \cdot \sigma_{x} \\ \hline \text{effects of base-operators} \\ & \sigma_{z} \mid \uparrow \rangle = \mid \uparrow \rangle \quad \text{und} \quad \sigma_{z} \mid \downarrow \rangle = - \mid \downarrow \rangle \\ & \sigma_{x} \mid \uparrow \rangle = \mid \downarrow \rangle \quad \text{und} \quad \sigma_{x} \mid \downarrow \rangle = \mid \uparrow \rangle \\ \hline \text{effects of the operators for the actual observables} \\ & \sigma_{\alpha} \mid \uparrow \rangle = \quad \cos \alpha \mid \uparrow \rangle - \sin \alpha \mid \downarrow \rangle \equiv \quad c_{\alpha} \mid \uparrow \rangle - s_{\alpha} \mid \downarrow \rangle \\ & \sigma_{\alpha} \mid \downarrow \rangle = -\cos \alpha \mid \downarrow \rangle - \sin \alpha \mid \uparrow \rangle \equiv -c_{\alpha} \mid \downarrow \rangle - s_{\alpha} \mid \uparrow \rangle \end{array}$

then calculate...

Φ Quantum mechanical prediction (ii)

expectation values of individual measurements

$$\begin{split} \langle \sigma_{\alpha} \rangle &= \frac{1}{2} \left[\langle \uparrow \downarrow | - \langle \downarrow \uparrow | \right] (\sigma_{\alpha}) \left[| \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \right] \\ &= \frac{1}{2} \left[\langle \uparrow \downarrow | - \langle \downarrow \uparrow | \right] \left[\sigma_{\alpha} | \uparrow \downarrow \rangle - \sigma_{\alpha} | \downarrow \uparrow \rangle \right] \\ &= \frac{1}{2} \left[\langle \uparrow \downarrow | - \langle \downarrow \uparrow | \right] \left[(c_{\alpha} | \uparrow \downarrow \rangle - s_{\alpha} | \downarrow \downarrow \rangle) - (-c_{\alpha} | \downarrow \uparrow \rangle - s_{\alpha} | \uparrow \uparrow \rangle) \right] \\ &= \frac{1}{2} \left[\langle \uparrow \downarrow | - \langle \downarrow \uparrow | \right] \left[(c_{\alpha} (| \uparrow \downarrow \rangle + | \downarrow \uparrow \rangle) - s_{\alpha} (| \downarrow \downarrow \rangle - | \uparrow \uparrow \rangle) \right] \\ &= \frac{1}{2} c_{\alpha} \left[\langle \uparrow \downarrow | \uparrow \downarrow \rangle - \langle \downarrow \uparrow | \downarrow \uparrow \rangle \right] = 0 \end{split}$$

note:

- $\Box \sigma_{\alpha}$ only acts on the first particle
- $\Box \sigma_{\beta}$ would only act on the other particle
- formally everything can be expressed by 4×4 matrices
- inner products of orthogonal states are zero
- lacksquare single measurements are random with equal probability for \uparrow_lpha und \downarrow_lpha

Φ Quantum mechanical prediction (iii)

$$\begin{aligned} & \bullet \text{ expectation value of the product (correlation)} \\ & \langle \sigma_{\alpha} \sigma_{\beta} \rangle = \frac{1}{2} \left[\langle \uparrow \downarrow | - \langle \downarrow \uparrow | \right] (\sigma_{\alpha} \sigma_{\beta}) \left[| \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \right] \\ & = \frac{1}{2} \left[\langle \uparrow \downarrow | - \langle \downarrow \uparrow | \right] \left[| (c_{\alpha} \uparrow -s_{\alpha} \downarrow) (-c_{\beta} \downarrow -s_{\beta} \uparrow) \rangle - | (-c_{\alpha} \downarrow -s_{\alpha} \uparrow) (c_{\beta} \uparrow -s_{\beta} \downarrow) \rangle \right] \\ & = \frac{1}{2} \left[\langle \uparrow \downarrow | - \langle \downarrow \uparrow | \right] \left[| \uparrow \downarrow \rangle (-c_{\alpha} c_{\beta} - s_{\alpha} s_{\beta}) + | \downarrow \uparrow \rangle (s_{\alpha} s_{\beta} + c_{\alpha} c_{\beta}) \\ & + | \uparrow \uparrow \rangle (-c_{\alpha} s_{\beta} - s_{\alpha} c_{\beta}) + | \downarrow \downarrow \rangle (s_{\alpha} c_{\beta} - c_{\alpha} s_{\beta}) \right] \\ & = \frac{1}{2} \left[(-c_{\alpha} c_{\beta} - s_{\alpha} s_{\beta}) \langle \uparrow \downarrow | \uparrow \downarrow \rangle - \frac{1}{2} (s_{\alpha} s_{\beta} + c_{\alpha} c_{\beta}) \langle \downarrow \uparrow | \downarrow \uparrow \rangle \\ & = -(c_{\alpha} c_{\beta} + c_{\alpha} c_{\beta}) = -\cos(\alpha - \beta) \equiv -\cos(\phi) \end{aligned}$$

→ the correlation is only a function of the opening angle $\phi = \alpha - \beta$ spin-1/2 particles $\langle \sigma_{\alpha}\sigma_{\beta} \rangle = -\cos \phi$ photons (spin-1) $\langle \sigma_{\alpha}\sigma_{\beta} \rangle = -\cos 2\phi$

(180deg between orthogonal spin-1/2 states, 90deg between orthogonal photon polarisations)

➔ Interpretation

Φ Discussion

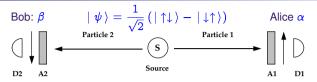
$ightarrow \langle \sigma_{lpha} \sigma_{eta} \rangle$ is only a function of ϕ

- single measurements are perfectly random
- equal probability to measure "Spin-up" or "Spin-down"
- perfect anti-correlation of both measurements refer to the same direction
- independent of space and time, i.e.
 - ➔ independent of the time ordering of the measurement
 - ➔ independent of the spatial separation

→ obvious(?) questions:

- Is there "spooky action at a distance" which causes perfect synchronisation?
- **D** can one use this to transmit information with $v = \infty$?

Φ Communication with $v = \infty$?



- analyzer setting $\alpha \parallel \beta$: perfect anti-correlation
- analyser setting $\alpha \perp \beta$: uncorrelated measurements

\Rightarrow Alice knows β and sends one bit to Bob by causing an excess of -1

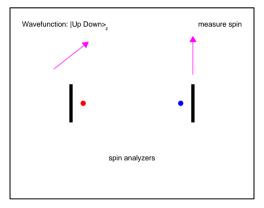
- case 1: Alice can influence her result
 - → set $\alpha \parallel \beta$ and cause an excess of +1 at her side
 - → Bob observes the same excess of -1
- case 2: Alice kann predict her result
 - → prediction +1: set $\alpha \parallel \beta$ and Bob always sees -1
 - → prediction -1: set $\alpha \perp \beta$ and Bob measures equal numbers of ± 1

insight:

If a quantum mechanical measurement is truly random, i.e. neither predictable, nor controllable then communication with v > c is impossible.

Tests of Quantum Mechanics - Basics

→ measurement of spin correlations for spin-1/2 particles



- for ideal detektors and different wavefunctions consider ...
 - ➔ measurements of spin correlations
 - → coincidence measurements