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1. BASICS

Ü heated (philosophical) discussions
relation between QM and the understanding of nature
Ü mathematical structure: (mostly) accepted
Ü core issue: interpretation of QM

8 causality and chance
8 relation to classical physics

persona remarks
Ü classical picture: causality in space and time
Ü QM: (perhaps) theorie regarding information

8 information is intrinsically quantized
8 relevant for sufficiently small physical systems
8 QM was developed when atomic scales became accessible

Ü general observation
8 information given: classical behavior
8 information missing: chance

v in the following:
Try to get a better understanding from comparing theory and experiment

Ü some Nobelprize awarded results: : :
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Historical milestones (i)

Ü Max Planck
discovery of the quantization of action h 6= 0
Ü energy of light-waves is continuous
Ü interaction with matter is quantized

E = h �

(Nobelprize 1918)

v experiment: photo-effect

(explanation by Einstein, Nobelprize 1921)
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Historical milestones (ii)

Ü Albert Einstein
mass and energy are equivalent

E = m c2

Ü De Broglie
matter has wave-like properties, too
particles cannot be perfectly localized

E = h � = m c2 = (mc) c = p c

� =
c
�

Resultat Ü � =
h
p

(Nobelprize 1929)

v experiment: Davisson-Germer experiment
diffraction in electron-scattering off crystals
same phenomenology as X-ray scattering

(Nobelprize 1937)
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Formal description

Physics () Mathematics

state of a system normalized wavefunction j  i

observable S hermitian operator S

Measurement Eigenvalue und Eigenfunction

Ü discussion:
j  i is element of a linear vector space: wavefunctions can be linearly superposed
and it exsist an inner product. The normalization is h j  i=1.

On the linear space of the wavefunctions S is a matrix with real eigenvalues �k

and an ortho-normalsystem of eigenvectors j �k i, i.e. h�k j �l i = �kl .

A measurement always yields an eigenvalue �k of the respective operator.
After the measurement the wavefunction is the eigenvector j �k i
(“collapse of the wavefunction”, or “decoherence”).
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Relative frequencies

Ü the statistical interpretation of Quantum Mechanics
wanted: distribution of the measured values for a given state

j  i =
X

k

ak j �k i

with (in general) complex-valued coefficients ak .

A priori a measurement can return any eigenvalue �k , i.e. the question is what are the
relative frequencies pk (probabilities). Exploit that the wavefunction the pk are normalized:

1 =
X

k

pk = h j  i =
X
k ;l

aka�

l h�k j �l i =
X
k ;l

aka�

l �kl =
X

k

jak j2

and thus pk = jak j2 (Nobelprize 1954)

in general the result of a measurement cannot be predicted, however : : :
relative frequencies are fixed by the wavefunction
only a system in the eigenstate �k deterministically yields the eigenvalue �k

general predictability would contradict with relativity
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Linear algebra: : :

Ü determination of the expansion coefficients ak

h�k j  i = h�k j
 X

i

ai j �i i
!

=
X

i

ai h�k j �i i =
X

i

ai�ki = ak

Ü expectation values

hSi �
X

k

pk�k = h jS j  i

v proof:
h jS j  i =

X
kl

aka�

l h�l jS j �k i =
X

kl

aka�

l �k h�l j �k i

=
X

kl

aka�

l �k�kl =
X

k

jak j2�k =
X

k

pk�k

in the following: 2-state systems with �1;2 = �1 Ü
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Spin-1/2 particles (i)

Ü operators for spin-components in x ; y ; z

�x =

�
0 1
1 0

�
�y =

�
0 i
�i 0

�
�z =

�
1 0
0 �1

�

Ü Eigenstates for �z and �x

j " iz =

�
1
0

�
; � = +1 und j # iz =

�
0
1

�
; � = �1

j " ix =
1p
2

�
1
1

�
; � = +1 und j # ix =

1p
2

�
1
�1

�
; � = �1

Ü transformation between the two bases

j " ix =
1p
2

�
j " iz + j # iz

�
und j # ix =

1p
2

�
j " iz � j # iz

�
j " iz =

1p
2

�
j " ix � j # ix

�
und j # iz =

1p
2

�
j " ix + j # ix

�
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Spin-1/2 particles (ii)

Ü example: consequence for Stern-Gerlach type experiments
initial stat: j " iz
start with measurement of the z -component of the spins
then measure the x -component
then measure the z -component

z

σx

σz

σz

25%

25%

25%

25%

50%

50%

100%

Spin(z) Up

σz

Spin(z) Up

Spin(z) Down

Spin−Analysator

σ

After a measurement all information about earlier states has been erased!
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Two-particle systems

Ü construction of “classical” product states

z.B. j  i = j " i1 
 j " i2 � j "" i oder j  i = j " i1 
 j # i2 � j "# i

direct product of single particle states
use a basis (here and below) == eigenstates of �z

Ü new: “entagled states”

z.B. j  i = 1p
2
( j "# i � j #" i) (spin-singlet)

possible because of the superposition principle in QM
no classical interpretation - both particles are simultaneously “up” and “down”
interesting phenomenology when measuring both spins : : :
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Quantum mechanical prediction (i)

Ü spin-correlation for the spin-singlet state

D2 A2
Source

S

A1 D1

Particle 1Particle 2

α

z

x

xz -direction of spin measurement: particle-1: �, particle-2: �

operators for those observables (e.g. �)

�� = cos� � �z � sin� � �x

effects of base-operators
�z j " i = j " i und �z j # i = �j # i
�x j " i = j # i und �x j # i = j " i

effects of the operators for the actual observables

�� j " i = cos� j " i � sin� j # i � c� j " i � s� j # i
�� j # i = � cos� j # i � sin� j " i � �c� j # i � s� j " i

then calculate: : :
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Quantum mechanical prediction (ii)

v expectation values of individual measurements

h��i = 1
2
[h "# j � h #" j ] (��) [ j "# i � j #" i]

=
1
2
[h "# j � h #" j ] [�� j "# i � �� j #" i]

=
1
2
[h "# j � h #" j ] [(c� j "# i � s� j ## i)� (�c� j #" i � s� j "" i)]

=
1
2
[h "# j � h #" j ] [c�( j "# i+ j #" i)� s�( j ## i � j "" i)]

=
1
2
c� [h "# j "# i � h #" j #" i] = 0

v note:

�� only acts on the first particle
�� would only act on the other particle
formally everything can be expressed by 4� 4 matrices
inner products of orthogonal states are zero
single measurements are random with equal probability for "� und #�
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Quantum mechanical prediction (iii)

v expectation value of the product (correlation)

h����i = 1
2
[h "# j � h #" j ] (����) [ j "# i � j #" i]

=
1
2
[h "# j � h #" j ] [ j (c� " �s� #)(�c� # �s� ") i � j (�c� # �s� ")(c� " �s� #) i]

=
1
2
[h "# j � h #" j ] [ j "# i(�c�c� � s�s�) + j #" i(s�s� + c�c�)

+ j "" i(�c�s� � s�c�) + j ## i(s�c� � c�s�)]

=
1
2
(�c�c� � s�s�)h "# j "# i � 1

2
(s�s� + c�c�)h #" j #" i

= �(c�c� + c�c�) = � cos(�� �) � � cos(�)

Ü the correlation is only a function of the opening angle � = �� �

spin-1/2 particles h����i = � cos�
photons (spin-1) h����i = � cos 2�

(180deg between orthogonal spin-1/2 states, 90deg between orthogonal photon polarisations)

Ü Interpretation
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Discussion

Ü h����i is only a function of �
single measurements are perfectly random
equal probability to measure “Spin-up” or “Spin-down”
perfect anti-correlation of both measurements refer to the same direction
independent of space and time, i.e.
Ü independent of the time ordering of the measurement
Ü independent of the spatial separation

Ü obvious(?) questions:
Is there “spooky action at a distance” which causes perfect synchronisation?
can one use this to transmit information with v =1?
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Communication with v =1?

Bob: � j  i = 1p
2
( j "# i � j #" i) Alice �

D2 A2
Source

S

A1 D1

Particle 1Particle 2

analyzer setting � k �: perfect anti-correlation
analyser setting � ? �: uncorrelated measurements

Ü Alice knows � and sends one bit to Bob by causing an excess of �1
case 1: Alice can influence her result
Ü set � k � and cause an excess of +1 at her side
Ü Bob observes the same excess of �1
case 2: Alice kann predict her result
Ü prediction +1: set � k � and Bob always sees �1
Ü prediction �1: set � ? � and Bob measures equal numbers of �1

v insight:
If a quantum mechanical measurement is truly random, i.e. neither predictable,
nor controllable then communication with v > c is impossible.
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Illustration

Ü measurement of spin correlations for spin-1/2 particles

z
Wavefunction: |Up Down> measure spin

spin analyzers

for ideal detektors and different wavefunctions consider : : :
Ü measurements of spin correlations
Ü coincidence measurements
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