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A statistical model is proposed to describe secondary electron 
emission in photomultipliers, based on the Polya or “negative 
binomial” distribution, which contains the exponential and 
Poisson distributions as special cases. Computations of the 
single-electron spectra have been carried out for a variety of 

1. Introduction 

In discussing the statistics of multiplication in photo- 
multipliers, it has frequently been assumed that an 
appropriate statistical frequency function for de- 
scribing secondary electron emission at individual 
dynodes is the Poisson distribution. In particular, most 
of the theoretical discussions’-7) of the problem have 
made this assumption. 

In one of the more recent of these, Lombard and 
Martin’) computed the statistical distributions at the 
anode of the pulses arising when a single electron enters 
the dynode chain, for four different values of stage gain, 
assumed equal for each dynode. They remarked that 
the calculated distributions were not consistent with 
their experimentally observed single-electron distri- 
butions. In brief, the calculated curves are definitely 
peaked, whereas observed distributions were usually 
exponential or at least monotonically decreasing. 
Lombard and Martin concluded that the Poisson 
distribution is not an adequate model to apply to 
secondary emission statistics. This type of quasi- 
exponential experimental distribution has beenreported 
by a number of other observersa-14). 

On the other hand there is a substantial body of 
published data in which the single-electron spectrum 
is clearly peaked’0*‘2~‘5-2s). 

It is clear from these latter references, firstly: that 
care should be taken to distinguish single-electron 
pulses produced by light incident on the cathode from 
pulses arising from tube background. While, for select- 
ed tubes, the single-electron spectra from these two 
sources may be almost identical12), in others, the two 
spectra are quite different’5*‘7, lg). 

Secondly: The work of Delaney and Walton”) and 
of Koechlin”) has shown that light penetrating the 
photocathode and ejecting electrons from the first and 
subsequent dynodes may produce sufficient small pulses 
that the single-electron spectrum is very much distorted. 
The former also show that the spectrum may depend 

stagegains. Limited comparisons with available experimental 
data confirm that the effective statistical distribution of secondary 
emission in photomultipliers is broader than Poissonian and an 
interpretation in terms of non-uniformity of the dynodes is 
discussed. 

on where the photocathode is illuminated, see also2*). 
With some exceptions, then, spectra from single 

electrons, released from the photocathode by light, 
show a well defined peak, and it appears that the quasi- 
exponential spectra that have been obtained are not 
necessarily typical single-electron spectra. 

This is not to say, however that the Poisson distri- 
bution is necessarily the correct statistical model to 
describe dynode statistics in photomultipliers. To begin 
with, the secondary emission process itself is not 
necessarily Poissonian, see e.g. Breitenberger2’) and in 
the second place, non-uniformity of the dynodes can 
easily render the efictive statistical distribution of 
secondary electrons non-Poissonian7). It is the purpose 
of the present paper to examine the possibilities of a 
non-Poissonian statistical model for photomultiplier 
dynode statistics. The model covers either of the two 
preceding possibilities. 

2. Theory 

We consider a single-electron striking the first dynode 
of a photomultiplier of Kidentical stages. Although it is 
relatively simple to write down explicitly the moments 
of the distribution at the output3’4) the corresponding 
frequency function cannot in general be written down 
in closed form. Let f(x) be the frequency function for 
secondary emission of exactly x secondaries for each 
stage; and let 

G(s) = XX C&4 

be the corresponding generating function, where s is an 
auxiliary variable. The generating function, G,(s), for 
the output of the K’h stage is then given by: 

G&) = G[G {. . . . G(i)}].... K stages 

= GCG,- &)I- 

Replacing Ins by is yields the characteristic function 
X,(s), which is the Fourier transform of the frequency 
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function of the output from the Kth stage. X,(s) is 
usually too complicated for the Fourier transform to be 
inverted. 

In at least one case however, which approximates 
more or less closely to the quasi-exponential frequency 
functions, the solution can be found explicitly without 
the use of transforms, viz. iff(x) is the Furry distri- 
bution: f(x) = a-‘(1 -~~-i)x, with mean = a- 1 and 
generating function {u -s(a - 1)) - ‘. Application of the 
foregoing theorem on generating functions in cascade 
shows that any number of Furry distributions in 
cascade generates another Furry distribution, with a 
mean after K stages of (u- 1)“. If (u - l)K% 1, which is 
the case in a photomultiplier, the distribution ap- 
proaches a simple exponential with mean A : 

F(x) = A-’ emxlA. 

Since at least in some cases, single-electron distributions 
are, in fact, similar to exponentials, it is evident that at 
least in these cases the Furry distribution is a plausible 
model for dynode secondary emission statistics. A 
similar suggestion has recently been made by Baldwin 
and Friedman14). However, a more generally valid 
model must still be sought for. 

To take account of the more general case, we suggest 
the use of the Polya distribution: 

P(X) = 5 (1 + b&“-‘/b “$ (1+ ib), (1) 
i=l 

with generating function: 

G(s) = { 1 + b,u(l -s) } -‘lb, (2) 

where b is a parameter and p the mean of the distri- 
bution, see e.g. Feller3’). Known also as the “negative 
binomial distribution” and also as a “compound 
Poisson” distribution, it contains both the Furry (b = 1) 
and Poisson (b = 0) distributions as special cases. It has 
been used in the interpretation of cosmic ray shower 
fluctuations3’* 3 ‘) and fluctuations in gas multiplication 
in proportional counters33). While these circumstances 
originally suggested its use in the analogous problem of 
cascades in a photomultiplier, it is not difficult to see 
that the model might also be of value in describing the 
fluctuations in the secondary emission process itself. 
Furthermore its so-called “compound Poisson” charac- 
ter lends itself to a simple physical interpretation in the 
context of photomultiplier statistics, permitting the 
inclusion of non-uniform dynodes in the theoretical 
treatment in a relatively simple way, as follows: Let 
us suppose, for the sake of argument, that the secondary 
emission process is truly Poissonian, but that the 
effective secondary emission ratio varies from place to 

place on each dynode, either because the average 
number of electrons actually ejected is variable, or the 
emitted electrons do not all have the same probability 
of reaching the following dynode.* 

Let each electron falling on a dynode produce 
secondaries, Poisson-distributed with mean m. Further, 
let the values of m be samples from a continuous 
distribution of mean values represented by the frequen- 
cy function g(m). Since the generating function for a 
Poisson distribution having a mean m is given by 
exp{m(s- I)} the generating function, G(s), for the 
compound Poisson distribution is given by: 

G(s)=/rg(m)exp {m(s-1))dm. 

Now, the moment generating function M,(s) for m is 
given by: 

s 

Cc 
M,(s) = g(m) exp (ms) dm. 

0 

Hence 
G(s) = M,(s- 1). (3) 

This neat result is unique with compound Poisson 
distributions. Eq. (3) leads to the result that the mean 
of the compound Poisson distribution is the same as 
the mean of the distribution, g(m) and that the relative 
variance V, [variance/(mean)‘] of the compound 
Poisson distribution is given by : 

v=p-l+vm 

where V,,, is the relative variance of the frequency 
function of the means, g(m). Since p-l is the relative 
variance of the simple Poisson distribution, this reveals 
the not unexpected result that the width of the final 
distribution, as measured by its relative variance, is 
increased by exactly the spread of the means them- 
selves. Applying eq. (3) to the particular case of the 
Polya distribution 

and 
G(s) = { 1 + bp(l -s) } -‘lb 

M,(s) = (1- bps)-l’b, 

which is the moment generating function of the Laplace 
distribution, viz. 

g(m)=sm ‘- ’ exp ( - ml@), 

where CI = b-‘. 

* It should be noted that loss of electrons between stages does 
not of itself result in non-Poissonian effective dynode statistics. 
If the loss is a constant fraction, then a Poisson distribution 
remains Poissonian though with a reduced mean. 



A STATISTICAL MODEL FOR PHOTOMULTIPLIER SINGLE-ELECTRON STATISTICS 175 

FROM ABOVE 

b- 0, 0.2. 0.4.0.6.0.6. 1.0 

PULSE HEIGHT 

Fig. 1. Computed singleelectron distributions at stage-gain 3.0, 
for a range of values of parameter b. 

The mean of this distribution is p, the variance b,u2 and 
the relative variance b. Except for b = 1, this is a peaked 
distribution which gets narrower as the parameter b 
gets smaller. In the limit of b = 0 it becomes a delta- 
function at m = p, which, in the present context, simply 
means that there is no variation in the secondary 
emission ratio across the surface of a dynode. In the 
other limit, b = 1, the distribution g(m) becomes ex- 
ponential and the secondary emission distribution is 
the Furry distribution. This is the special case discussed 
by Baldwin and Friedman14). 

In the present context, then, the Polya statistical 
model describes secondary emission from a dynode of 
finite area for which the average number of secondaries 
per incident electron for the dynode as a whole is p. 
For any one point on the dynode the probability 
distribution of the secondaries is Poissonian, but the 
local value of the mean number of secondaries varies 
from place to place in a manner described by the 
Laplace distribution. The relative variance of the 
distribution of all secondary electrons reaching the 
following dynode is then greater than it would be if the 
statistical spread were due only to the random (assumed 
Poisson) nature ofthe secondary emission. In particular, 
for the Polya distribution, the relative variance is given 
by: V=,u-1 + b. 

It should be noted that in all of the foregoing 
theoretical expressions, “blanks” are included, i.e. 
cascades that break for lack of any secondary electrons. 
In practice such blanks are inherently unobservable. 

This particular non-Poisson model and the following 
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Fig. 2. Computed single-electron distributions at stage-gain 3.5. 
Parameter b : 0, 0.1, 0.2, 0.3. 

calculations based on it, could equally well apply to the 
secondary emission process itself, observed under ideal 
conditions. In this case however its interpretation as a 
“compound Poisson” distribution is not obvious. 

3. Calculations 

Using the Polya distribution as a model for dynode 
statistics, the single-electron spectrum has been com- 
puted numerically by a generalization of the method 
used by Lombard and Martin’). Equal stage gains are 
assumed. 

Let P,(x) and G&T) represent the frequency and 
generating functions respectively for the distribution of 
the total number of electrons, x, after stage K. 
Then, 

G&) = G, 1 GK- l(s) 1 = $X P&s” (K 2 1). 

This expresses Go as a Maclaurin series in P,(s) since 

Px(x) = ; G!?(s) = ; [G, { G,- i(s) ) I’“‘, (4) 

evaluated at s = 0, where G,(“)(s) is the xth derivative of 
G&), ref. 32*30). Substituting (2) for G(s) in (4) and 
applying Leibniz’ rule for the differentiation of a 
product, viz. 

(fd’“’ = j. (:) PPi), 

and after rearrangement of terms within the sums, the 
following iteration formulae for P,(x) are obtained : 



176 J. R. PRESCOTT 

PULSE HEIGHT 
PULSE HEIGHT 

Fig. 3. Computed single-electron distributions at stage-gain 4.0. Fig. 4. Computed single-electron distributions at stage-gain 4.5. 
Parameter b: 0, 0.1, 0.2,0.3. Parameter b : 0, 0.1, 0.2, 0.3. 

xP&) t 1+ b/41- PK - ml > 
x-l 

= p 2 PK(i)PK-l(~-i) {x+i(b-1)) for Kgl; ~21 
i=O 

(5) 

PK(0) = (l+b~[l-PPK_l(0)]} -lib. (6) 

If b = 0, i.e., at the Poisson limit of the Polya distri- 
bution, expressions (5) and (6) reduce to expressions (7) 
and (8) of Lombard and Martir?). It is easily checked 
that if K= 1, the above expressions yield the Polya 
distribution itself. The initial condition, viz. one 
electron incident on the first dynode, is expressed by the 
relation : 

P,(x) = 1 for x = 1 and zero otherwise. 

For the same distribution, Mk, the C” moment about 
the origin after stage K, is given by: 

M:, = j. x%(x) 
l-l 

=/J&&_~+P C 
j=l 

Mk’M’,-,+ 

+ (‘;‘)M;-ilMi”). 

The relative variance, V, after stage K is: 

which, in the limit of large K, becomes 

I/ = (bp+ l)/(p- 1). 

Expressions (5) and (6) were evaluated on the 
IBM 7090 at the University of Toronto for a range of 
stage gain (parameter p in expression 1) and parameter 
b in the same expression. For each stage the iteration 
was terminated when 

X$o PK(x) > 0.999, (0.9999 for K = l), 

or when PK(x) < lo-“. 

As is well known, the first stage of multiplication has a 
dominant influence on the shape of the final output 
spectrum and subsequent stages have a rapidly de- 
creasing importance’,“). In the present calculations 
the iteration was usually terminated at the fifth stage, 

TABLE 1 
Fraction k of cascades that fail to propagate. 

3.0 

0 
9 i 0.1 
8 %i 0.2 

2 0.3 0.4 
z 0.5 
m 
x 0.6 
E 0.8 

1.00 

0.060 
- 

0.12 

0.18 
0.21 
0.24 
0.29 
0.33 

Mean stage gain, ,U 

3.5 

0.034 
0.058 
0.084 
0.11 

- 
- 
- 
- 
- 

_ 
1 4.0 I 

0.020 
0.039 
0.060’ 
0.084 
0.11 
0.13 

- 

- 

__- 

4.5 

0.012 
0.026 
0.045 
0.066 

- 
- 
- 
- 

Additional value, ,U = 2, b = 0.5; k = 0.38. 

* Interpolated value. 

0.007 0.003 
0.018 0.009 
0.034 0.020 
0.052 - 

- - 
- - 
- - 
- - 
- - 



A STATISTICAL MODEL FOR PHOTOMULTIPLIER SINGLE-ELECTRON STATISTICS 177 

0 I 2 3 4 

PULSE HEIGHT 

Fig. 5. Computed single-electron distributions at stage-gain 5.0. 
Parameter 6: 0, 0.1, 0.2,0.3. 

and for p 2 4.5, three stages of iteration were sufficient. 
Since the programme printed the spectrum after each 
iteration, the rapid stabilisation of the spectrum was 
readily confirmed. 

The results of the calculations are shown in fig. l-6 
and in table 1. In each case, to facilitate comparisons 
with one another and with experiment, the curves have 
been plotted with the mean at unity on the abcissa and 
with the same normalization. Neither this mean nor the 
normalization includes blanks, i.e. cascades that fail to 
propagate. Table 1 shows the fraction, k, of such 
cascades, i.e. the value of P,(O), for most of the curves 
computed, including some not shown in the figures. 
Such cascades are unobservable although the computer 
programme, of course, takes account of them. The 
mean ,u’ and relative variance V’ of the observable 
distribution are related to the computed mean p and 
relative variance V by the expressions : 

P’ = P/(1--q; 

V’=V(l-k)-k=[(bp++)(l-k)/(p-1)1-k. 

Note also that all curves have a non-zero intercept on 
the ordinate. This is, of course, not the probability of 
observing zero electrons at the output but, for all 
practical purposes, is very nearly the probability of 
observing just one electron. 

Fig. 1 shows a family of curves for p = 3 and a 

J complete range of values of b. Other curves, for a range 
of values of ,B, but restricted values of b, are shown in 
fig. 2-6. 

I 2 3 4 

PULSE HEIGHT 

Fig. 6. Computed singleelectron distributions at stage-gain 6.0. 
Parameter 6: 0, 0.1, 0.2. 

4. Discussion 
Examination of the data displayed in the figures 

shows that the Polya model, proposed here, is capable 
of representing a wide range of shapes for the single- 
electron distribution. It seems particul&y attractive in 
that it contains as special extreme cases both the 
Poisson and exponential (Furry) distributions, both of 
which have been invoked in the literature to describe 
the performance of photomultipliers. Fig. 1 clearly 
shows how the shape of the computed single-electron 
distribution changes continuously from a distinctively 
peaked distribution in the Poisson (b = 0) limit to an 
exponential in the b = 1 limit. It is clear that already for 
b 2 0.5 the distribution is approaching an exponential : 
the peak has moved to small pulse-heights and the 
distribution has a long quasi-exponential tail. (This is 
very evident on a semi-logarithmic plot). Rather 
careful experimental measurements would be required 
to demonstrate the existence of this peak for values 
of b in the upper half of its range. 

While the distributions are clearly more sensitive to 
changes in b when that parameter is small, it is in- 
structive to consider what this means in terms of the 
physical situation described by the present model. As 
shown in section 2, b may be interpreted as a measure 
of the non-uniformity of the effective secondary 
emission coefficient, m, across the surface of a dynode; 
specifically, b is the relative variance of the distribution 
of m. Thus, a value for b of 0.2 means a relative standard 
deviation in m of about 45%. Conversely a 10% relative 
standard deviation corresponds to a value for b of only 
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0.01, which would be barely distinguishable from a 
Poisson distribution. Thus, irregularities as big as, say 
10-l 5 % in the dynode emission are not likely to result 
in any significant difference in overall performance. 
The present work therefore confirms the conclusion of 
Wright7) obtained by a different argument. 

Of the differing varieties of photomultipliers made, 
the elaborately focussed types (e.g. 56AVP) are the ones 
least likely to be affected by dynode inhomogeneities, 
since the object of the electron optical system is to 
focus electrons as nearly as possible on the same (small) 
region of the dynodes, particularly the first’9*26-28). 
Bertolaccini and Cova17) and Evrard and Gazier27) 
give data for the 56AVP from which they conclude that, 
while the single-electron spectrum is close to that 
expected from Poisson statistics, it is nevertheless 
significantly broader. Data from17) and27) are shown 
in fig. 7 where they are compared with the present 
calculations. The two lines show the calculated ob- 
servable overall relative variance as a function of the 
stage-gain, for a multiplier with equal stage-gains, for 
b = 0 and b = 0.1. The circles have been taken from 
fig. 6 ofr7) and the squares from fig. 4 of27), [fig. 16 
of2*)]. In the latter case the stage-gain shown is that 
of the tirst stage. The remaining stages were operated at 
a standard gaip, and the plotted relative variance, V, 
has therefore been adjusted to the value to be expected 
if all stages had the same gain by means of the re- 
lation2*) : 

JLv,+A _-.!E- 

( 1 Pl P-1 

where V,, p1 are the relative variance and gain of the 
first stage and v and ,u the variance and gain common to 
all other stages. For the purposes of this correction, 
Poisson statistics were assumed for all stages except the 
first, i.e. v = p-i. While this assumption may appear to 
prejudge the issue, it should be realized that it applies 
only to the correction which is not sensitive to it. No 
assumption is made about the statistics of the first stage 
which mainly determines the outcome. The correction 
reduces the relative variance in all cases; the original 
(unadjusted) values are shown by triangles. 

Fig. 7 shows also that both sets of experimental data 
agree in suggesting a distribution broader than Pois- 
sonian, although still similar to the latter. From this 
figure, the value of b is estimated to be 0.05 f 0.02, 
averaged over the whole range of stage-gains. There is 
no way of telling, from the present data, whether this is 
due to non-uniformity of the dynodes or to non- 
Poissonian statistics for the secondary emission process 
itself. 

0.1 1 I I I Illll 
2 3 4 5 6 7 9 910' 

STAGE GAIN 

Fig. 7. Comparison of computed curves of relative variance vs 
stage-gain for b = 0 and b = 0.1 with experimental data of 
Bertolaccini and Covar7) (circles) and Evrard and Gazier27) 
(triangles) for 56AVP photomultipliers. Squares denote the data 

of Evrard and Gazier after adjustment. 

So far as a detailed check of the shape of the single- 
electron spectrum is concerned, it is unfortunate that 
there is almost no published experimental data with 
which the present theory may be checked: either 
because the stage-gain is not accurately known or 
because the multiplier was not operated with equal 
stage-gains.* 

In fig. 8, experimental data from Bertolaccini and 
Cova17) are compared with the theoretical model, using 
the stage-gains (2.6 and 6) given inr7) and evaluated 
for values of b of 0.0 and 0.05. It is seen that for both 
stage-gains, the experimental data are fitted be;ter, 
though not perfectly, by the curve for b = 0.05; which 
is in agreement with the previous deduction from the 
relative variances (fig. 7). 

In fig. 9 is shown the experimental data of Delaney 
and Walton”) for an EM1 9514A of Venetian-blind 
structure at a stage-gain of 3.2, together with theoretical 
curves for the same gain and two values of b, viz. 0.0 
and 0.2. Evidently the theoretical curve assuming 
Poisson statistics (b = 0) is a very poor fit. Indeed, a 
value for b closer to 0.2 appears to be required. The 
geometrical structure of this type of photomultiplier 
ensures that electrons from different parts of a dynode 
are collected with different efficiencies and also that 
electrons from the previous stage fall upon the whole 

* While corrections for the latter fact can be readily applied 
to relative variances, (as was done above) the single-electron 
spectrum itself cannot be so corrected. 
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Fig. 8. Comparisons of experimental single-electron spectra for a 
56AVP photomultiplier (dashed line) at two values of stage-gain, 
with computed curves for 6 = 0.05 (solid line) and b = 0 (dash-dot 

line). 

area of the dynode. Thus it may be expected that, if 
dynode inhomogeneities do, in fact, play a part, then 
they should be more in evidence with the Venetian- 
blind dynode structure than with a well-focussed type. 
The much larger value of b for the former tube suggests, 
that, in fact, there is a substantial degree of dynode 
inhomogeneity. 

There does not appear to be sufficient evidence to say 
whether dynode inhomogeneities alone are sufficient to 
account for the effectively non-Poisson dynode statistics 
in photomultipliers, or whether the secondary emission 
process itself differs from Poissonian. Experiments are 
currently being carried out to test the model over a wider 

I I I I 

PULSE HEIGHT 

Fig. 9. Comparison of an experimental single-electron spectrum 
for an EM1 9514A photomultiplier (dashed line) with computed 

single-electron spectra with b = 0 and 0.2 (solid lines). 

range of conditions, and will be reported subsequently. 
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