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Abstract

A complete probability model of vertex and energy of KamLAND

event is derived. It is used in simutaneous event reconstruction.

1 PMT charge

The charge of PMT depends on number of photo-electron (PE). The PMTs
(Hamatsu 20inch and 17inch) used in KamLAND have a good linear re-
sponse.

1.1 17 inch PMT

The charge of 1 PE can be modeled with a normal distribution. Assuming
di�erent PE's are of identical independent distribution (iid), the distribution
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of charge given number of PE (N) is,

q =

N∑
i=1

qi, qi ∼ N (µq, σq)

q ∼ N (Nµq,
√
Nσq)

. (1)

In KamLAND, µq is normalized to 1 on every PMT, and σq is �tted with
all the PMTs on average to be 0.39 1. Note that q>0, and the probability
of q<0 in Eqn(1) is ignored. After all, it is better treated in the following
Eqn(3).

N, in turn, is described by a Poissonian of intensity λ, also called the
occupancy factor. Noting when N=0, q=0, the probability being e-λ, the
cumulative distribution function(CDF) C(q|λ) and the probability distribu-
tion function(PDF) c(q|λ) of the resulting compound Poisson distribution of
q are,

C(q|λ) = e−λ

[
1 +

∞∑
N=1

λN

N !
Φ

(
q −Nµq√
Nσq

)]

c(q|λ) = e−λ

[
δ(q) +

∞∑
N=1

λN

N !

1√
2πNσq

e
− (q−N)2

2Nσ2
q

] (2)

where δ(q) is the Dirac delta function, and Φ(q) is the CDF of the standard
(µ=0, σ=1) normal distribution.

In KamLAND, the hit of a channel refers to the charge of the channel
crossing a certain threshold. A charge threshold of 0.3 for every single PE
is imposed on the front-end electronics(FEE), and a total charge of 0.3 for
all the PEs on o�ine data analysis. Formally, the hit in these two cases
are de�ned as ∃i, qi > 0.3 and

∑N
i=0 qi =: q > 0.3 respectively. The non-hit

probability of the latter is C(0.3|λ) =: Z(λ), while that of the former is

Z̃(λ) := e−λ
∞∑

N=0

λN

N !
ΦN

(
0.3− µq
σq

)
= e−0.9652λ(µq = 1, σq = 0.39)

, (3)

Note that Z̃(λ1 + λ2) = Z̃(λ1)Z̃(λ2).
The leading orders of Φ in the summations of Z and Z̃ are calculated

in Table 1. In KamLAND, λ = O(1), the common terms of N = 0, 1 dom-
inates. Therefore for simplicity, we use Z and Z̃ interchangeably from now
on. Evaluating Z and Z̃ numerically to 1 × 10−50 con�rms our speculation
even to λ ∼ 100, as in Figure 1.

1The number literally comes from the source code of KatEnergyA2.cc originally by M.

Batygov as 0.385861.

2



Table 1: leading orders of Φ in the summations of Z and Z̃

N ΦN
(
0.3−µq

σq

)
Φ
(
0.3−Nµq√

Nσq

)
1 0.036 0.036
2 0.0013 0.0010
3 4.8× 10−5 3.2× 10−5
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Figure 1: comparison between Z and Z̃

1.2 20 inch PMT

In contrast to its 17 inch counterparts, 20 inch PMTs do not have a clear 1
PE peak, and are not eligible to be modeled with a normal distribution. The
charges of 20 inch PMTs have been normalized to the surrounding 17 inch
PMTs. The expected charge of 1 PE is 1. Without a well de�ned peak, by
the maximum entropy principle, the charge distribution of 1 PE of 20 inch
PMT is model by an exponential of rate 1. Similar to Eqn(1),

q =
N∑
i=1

qi, qi ∼ E(µq), f(qi) =
e
− qi

µq

µq

q ∼ Erlang(N,µq), f(q) =
qN−1e

− q
µq

µNq (N − 1)!

, (4)

where µq = 1.
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In this case,

c20(q|λ) := e−λ
∞∑

N=1

λN

N !

qN−1e
− q

µq

µNq (N − 1)!
. (5)

Exponential distribution has a large concentration near 0,∫ 0.3

0
e−qdq = 0.259 (6)

Z20(λ) = e−0.741λ (7)

2 PMT timing

Each event has a light curve ψ(τ), where τ is the time o�set from an arbitrary
reference point (taken as ∼ 50 ns before rising edge in KamLAND) in the
light curve. ψ, however, get distorted by the occupancy e�ect depending on
λ, into ϕ̃(τ |λ), the normalized distorted light curve (Eqn(10) of [1]),

ϕ̃(τ |λ) = λψ̃(τ)

1− e−λ
e−λΨ̃(τ).

3 Variables

Two measurables are given by a hit PMT, tp, the time (more precisely, rising
edge of the �rst PE), and qp, the charge.

(τ, λ), intermediate variables, depends on the event space-time si := (t, r)
and visible energy E (reconstruction target variables) together with PMT
output (tp, qp, measured variables) and location (rp, detector constants),

τ = tp − t−Rp

λ =
λ0
R2

p

E

Rp = r− rp

, (8)

where λ0 is the component of λ that does not depend on Rp or E, Rp = |Rp|
is the norm of vector Rp. The light speed is normalized to 1 for simplicity.

In KamLAND, λ0 is modeled with light attenuation of LS including scat-
ter and absorption, the incident angle of photon to PMT, the Kevlar rope
shadow e�ect on PMT, and some unknown z-asymmetry e�ect modeled em-
pirically. These facters do depend on Rp. They just vary so slowly that their
contribution to the gradient is ignored for simplicity.
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4 Dark Charge and KamFEE Window

Dark charges are observed in PMTs that are not related to any known physics
events originating from LS. They are speculated to be of electronic noise or
thermal-excitated electrons, and are modeled with a constant rate, the rate
coe�cient δ (PE/ns) being taken as an average of over vacant time windows
of each run[4, p. 63]. It is of order 10-5 PE/ns.

Dark charge is introduced in the probability model by taking the substi-
tution scheme of Eqn(11-13) from [1],

λ→ λd = λ+D

ψ̃(τ) → ψ̃d(τ) =
λψ̃(τ) + δ

λ+D

Ψ̃(τ) → Ψ̃d(τ) =
λΨ̃(τ) + δ(τ − τi)

λ+D

, (9)

where τ−τi = tp−ti is the PMT hit time(tp) o�set from the earliest time(ti)
at which an FBE could have been triggered, i.e. the time window permitting
a dark charge to be recorded. It has two components accordingly, To, the
�rst rising edge relative to the beginning of the waveform, and the launch

o�set, labeled by ξ clocks, the clocks between launch command (beginning
of the waveform) and the digitization command from trigger. (Figure 2) [2,
p. 31]

Figure 2: Event timing of KamFEE. ti/tp and τi/τ are time coordinates
relative to KamFEE and light curve respectively, the di�erence being up to
a constant o�set.

KamFEE have at most 13 launch o�sets of 25ns(Tc), and a waveform
length (Ta) of about 192.768(=128 × 1.506)ns. The total time window
(Tb) for the launch command to initiate waveform recording is 350(=25 Ö
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(13+1))ns. [3, p. 20] Therefore τ ∈ [τi, τi + Tb] and D, the expected number
dark PE within Tb, is δTb, and ξ ∈ {−13,−12, . . . ,−1, 0}.2 The waveform
has to have a hit within �rst clock to get recorded, To ∈ [0, Tc].

Based on the designed e�ciency of the DAQ system, ψ(τ) falling outside
Tb is ignored.

De�ne

Ψd := (λ+D)Ψ̃d

= λΨ̃(τ) + δ(τ − τi)

Ψb
a := Ψd(b)−Ψd(a)

= λ(Ψ̃(b)− Ψ̃(a)) + δ(b− a)

Ψτ := Ψτ
−∞ = Ψd(τ)

. (10)

The probability density of KamFEE taking a waveform of charge q at
τ is the probability of non-hit in previous τ − τi multiplied by probability
density of observing charge q in the remaining waveform [τ, τ − To + Ta],
minus the probability density of charge q concentrated away from τ by an
in�nitesimal η in the waveform [τ + η, τ − To + Ta]:

H(τ, q|λ) := (11)

=
1

η

[
Z(Ψτ )c(q|Ψτ−To+Ta

τ )− Z(Ψτ+η)c(q|Ψτ−To+Ta
τ+η )

]
(12)

=− ∂

∂η

[
Z(Ψτ+η)c(q|Ψτ−To+Ta

τ+η )
]
, η → 0 (13)

.
Starting from requiring there to be a hit in [τ, τ + η], Eqn(11) could also

be obtained from

(ω(q|Ψτ+η
τ )c(q|Ψτ+η

τ )) ∗A(q|Ψτ−To+Ta
τ+η )

=A(q|Ψτ+η
τ ) ∗A(q|Ψτ−To+Ta

τ+η )− Z(Ψτ+η
τ )A(q|Ψτ−To+Ta

τ+η )

=A(q|Ψτ−To+Ta
τ )− Z(Ψτ+η

τ )A(q|Ψτ−To+Ta
τ+η )

=c(q|Ψτ−To+Ta
τ )− Z(Ψτ+η

τ )c(q|Ψτ−To+Ta
τ+η )

=
ηH(τ, q|λ)
Z(Ψτ )

,

where ∗ stands for convolution by q, A(q|λ) is the short-hand notation of the
compound distribution. A(q|λ1 + λ2) = A(q|λ1) ∗A(q|λ2).

2The KamFEE later changed this scheme and shifted ξ 4 clocks earlier, in order to use

the waveform before events to estimate the dark charge rate.
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Writing Eqn(11) explicitly,

H(τ, q|λ) = (14)

=− ∂

∂η

[
Z(Ψτ+η)c(q|Ψτ−To+Ta

τ+η )
]
, η → 0 (15)

=ψd

[
Z(Ψτ )∂λc(q|Ψτ−To+Ta

τ )− Z ′(Ψτ )c(q|Ψτ−To+Ta
τ )

]
(16)

.
Having Z(a+ x)Z(b) = Z(a+ b+ x) = Z(a)Z(b+ x), di�erentiating by

x and letting x = 0, Z ′(a)Z(b) = Z(a)Z ′(b) is obtained. Integrate q out,∫ ∞

0.3
dqH(τ, q|λ) =

=− ψd

[
Z(Ψτ )Z ′(Ψτ−To+Ta

τ ) + Z ′(Ψτ )(1− Z(Ψτ−To+Ta
τ ))

]
=− ψdZ

′(Ψτ )

(Z ′(Ψτ )Z(Ψτ−To+Ta
τ ) = Z(Ψτ )Z ′(Ψτ−To+Ta

τ ))

≈ψde
−Ψd (ignoring threshold e�ect)

=(1− e−(λ+D))ϕ̃d(τ |λ) =: ϕd(τ |λ)

(17)

in which ϕ̃d is from Eqn(14) of [1].
The probability model including dark charge is,

Pr(τ, q|λ) =
{
Z(λ+D) , non-hit
H(τ, q|λ)dτdq , hit

(18)

Note from Eqn(11) that,∫ +∞

−∞
dτ

∫ +∞

0.3
dqH(τ, q|λ)

=−
∫ +∞

−∞
dτ

∂

∂η

[
Z(Ψd(τ + η))(1− Z(Ψτ−To+Ta

τ+η )
]

=−
∫ +∞

−∞
dτ

∂

∂η
[Z(Ψd(τ + η))− Z(Ψd(τ − To + Ta))]

=−
∫ +∞

−∞
dτ

dZ(Ψd(τ))

dτ

=Z(Ψd(−∞))− Z(Ψd(+∞))

=1− Z(λ+D)

(19)

Thus Eqn(18) is properly normalized. It is even more obvious from Eqn(17).
Eqn(18) can be rewritten in the likelihood form,

L(τ, λ) =

{
Z(λ+D) =: Ln(λ)
H(τ, λ)

, (20)

q, being a measured quantity, is ignored in the notation. Ln represents the
likelihood of non-hit, respectively. H holds the form as Eqn(14).
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5 Gradient

The gradient of Ψd calls for special attention. As τ − τi = tp − ti, it does
not depend on τ if tp and ti are all observed constants. Thus from Eqn(10),

∂Ψd

∂(τ, λ)
=
(
λψ̃, Ψ̃

)
. (21)

Similarly, τ − τi in quantities like ϕ̃d, Ψ̃d, should be treated as constant.
From Eqn(3),

lnZ = −0.9652λ (22)

(lnZ)′ = −0.9652 (23)

,
For 20 inch PMTs,

lnZ20 = −0.741λ (24)

(lnZ20)
′ = −0.741 (25)

, The following calculates 17 inch only. For 20 inch, replacing 0.9652 with
0.741, and c(q|λ) with c20(q|λ) will do.

The derivative of (τ, λ) over (t, r, E) is,

∂(τ, λ)

∂(t, r, E)
=

(
−1 −R̂p 0

0 − 2λ
Rp

R̂p
λ
E

)
, (26)

a 2× 5 matrix, where R̂p :=
Rp

Rp
is the unit vector of Rp.

Chain together,

∂lnLn

∂(t, r, E)
= (0, (lnZ)′)

∂(τ, λ)

∂(t, r, E)

= 0.9652

(
0,

2λ

Rp
R̂p,−

λ

E

). (27)

8



H is a bit complicated. Its matrix form is kept, from Eqn(14)

H =ψd

∣∣∣∣Z Z ′

C C ′

∣∣∣∣ , Z := Z(Ψτ ), C := c(Ψτ−To+Ta
τ )

∂H

∂τ
=ψ′

∣∣∣∣Z Z ′

C C ′

∣∣∣∣
+ψd

{∣∣∣∣Z ′ Z ′′

C C ′

∣∣∣∣ψ +

∣∣∣∣Z Z ′

C ′ C ′′

∣∣∣∣ (ψ(τ − To + Ta)− ψ)

}
∂H

∂λ
=ψ̃

∣∣∣∣Z Z ′

C C ′

∣∣∣∣
+ψd

{∣∣∣∣Z ′ Z ′′

C C ′

∣∣∣∣ Ψ̃ +

∣∣∣∣Z Z ′

C ′ C ′′

∣∣∣∣ (Ψ̃(τ − To + Ta)− Ψ̃)

}
∂lnH

∂(τ, λ)
=

1

H

∂H

∂(τ, λ)

∂lnH

∂(t, r, E)
=

∂lnH

∂(τ, λ)

∂(τ, λ)

∂(t, r, E)

, (28)

which can be calculated by referring to Eqn(26).

6 The Ignored

If dark charge and E is ignored, from Eqn(17) the likelihood function used
in v2 is recovered,

∂lnϕ

∂(t, r)
=

∂lnϕ

∂(τ, λ)

∂(τ, λ)

∂(t, r)

= −
(
ψ′ − λψ2

ψ
, R̂p

[
ψ′ − λψ2

ψ
+

2

Rp
(1− λΨ)

]). (29)

Notice that the gradient used in v2 (and Eqn(17) in [1]) is recovered if
2
Rp

(1− λΨ) is further ignored,

∂lnϕ

∂si
∼ −ψ

′ − λψ2

ψ

(
1, R̂p

)
=

1

ϕ

∂ϕ(τ, λ)

∂τ

∂τ

∂si
, (30)

Let's take a closer look at ϵ := 2
Rp

(1− λΨ).

First, Ψ ∈ [0, 1]. Taking Ψ on average ∼ 0.5, and λ less than 2 for low
energy events, ϵ > 0. ϵ therefore contributes in Newton method as a term
(according to Eqn (18) in [1]) of,

−B−1∇lnL ∼ B−1ϵR̂p (31)

In a well-posed maximum likehood problem, lnL is concave and B < 0.
Therefore B−1ϵR̂p is antiparallel to R̂p: towards the PMT and away from

center. Ignoring ϵ creates a �tter bias towards the center.
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Second, R̂p cancels out each other for opposite PMTs. The more away
from center the event is, the more unbalanced the PMT hits, the more this
bias manifests.

Third, ϵ is of order 1
Rp

and Rp > 250cm for a 6m �ducial volume. In
v2, multiplying SFactor, Rp > 200. The bias being small, the �tter shows a
reasonable accuracy with this term ignored.

7 Likelihood

From Eqn(20),

L =
∏
p∈hit

H(λp, τp)
∏

p∈non-hit
Ln(λp) (32)

lnL =
∑
p∈hit

lnH(λp, τp) +
∑

p∈non-hit
lnLn(λp) (33)

∂lnL

∂(t, r, E)
=
∑
p∈hit

∂lnH(λp, τp)

∂(t, r, E)
+

∑
p∈non-hit

∂lnLn(λp)

∂(t, r, E)
(34)

where λp is understood as λ0
R2

p
E, as in Eqn(8). Combinded with Eqn(27,28),

the gradient of lnL could be obtained.
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