
CERN Program Library Long Writeup Q121

PAWPAWPAWPAWPAWPAWPAWPAWPAWPAWPAWPAWPAWPAWPAWPAWPAWPAWPAW
Physics Analysis Workstation

User’s guide

Information Technology Division

CERN, Geneva, Switzerland

Copyright Notice

PAW – Physics Analysis Workstation

CERN Program Library entry Q121

c© Copyright CERN, Geneva 1992–1999

Copyright and any other appropriate legal protection of these computer programs and associated documenta-
tion reserved in all countries of the world.

These programs or documentation may not be reproduced by any method without prior written consent of the
Director-General of CERN or his delegate.

Permission for the usage of any programs described herein is granted apriori to those scientific institutes
associated with the CERN experimental program or with whom CERN has concluded a scientific collaboration
agreement.

Requests for information should be addressed to:

CERN Program Library Office

CERN-IT Division

CH-1211 Geneva 23

Switzerland

Tel. +41 22 767 4951

Fax. +41 22 767 8630

Internet: cernlib@cern.ch

Trademark notice: All trademarks appearing in this guide are acknowledged as such.

Contact Person: Olivier Couet (Olivier.Couet@cern.ch)

Document Consultant: Michel Goossens (Michel.Goossens@cern.ch)

Edition – January 1999

About this guide

Preliminary remarks

In this manual examples are in monotype face and strings to be input by the user are underlined. In the index
the page where a command is defined is in bold, page numbers where a routine is referenced are in normal type.

Related Manuals

This document can be complemented by the following manuals:

– COMIS, Compilation and Interpretation System [1]

– HBOOK User Guide — Version 4 [2]

– HIGZ-HPLOT — High level Interface to Graphics and ZEBRA and HPLOT User Guide [3]

– KUIP — Kit for a User Interface Package [4]

– MINUIT — Function Minimization and Error Analysis [5]

– ZEBRA — Data Structure Management System [6]

This document present the basic concepts of PAW. For more detailed and up to date informations on the system it
is strongly recommended to look at the following URL:

http://wwwcn.cern.ch/pl/paw/

Acknowledgements

The authors of PAW would like to thank all their colleagues who, by their continuous interest and encouragement,
have given them the necessary input to provide a modern and easy to use data analysis and presentation system.

i

ii

Table of Contents

1 A few words on PAW 1

1.1 A short history . 1

1.2 What is PAW? . 1

1.3 What Can You Do with PAW? . 1

1.4 A User’s View of PAW . 2

1.5 Fundamental Objects of PAW . 3

1.6 The Component Subsystems of PAW . 6

1.6.1 KUIP - The user interface package . 6

1.6.2 HBOOK and HPLOT - The histograming and plotting packages 6

1.6.3 HIGZ - The graphics interface package . 6

1.6.4 ZEBRA - The data structure management system . 7

1.6.5 MINUIT - Function minimization and error analysis . 7

1.6.6 COMIS - The FORTRAN interpreter . 7

1.6.7 SIGMA - The array manipulation language . 7

1.7 A PAW Glossary . 8

2 General principles 10

2.1 Access to PAW . 10

2.1.1 VAX/VMS . 10

2.1.2 Unix systems . 10

2.1.3 Workstation type . 10

2.1.4 Different modes to start PAW . 10

2.2 Initialising PAW . 11

2.3 Command structure . 11

2.4 Getting help . 12

2.4.1 Usage . 14

2.5 Special symbols for PAW . 14

2.6 PAW entities and their related commands . 15

3 User interface - KUIP 16

3.1 Command line syntax . 16

3.1.1 Command structure . 16

3.1.2 Arguments . 18

3.1.3 More on command lines . 22

3.2 Aliases . 24

3.2.1 Argument aliases . 25

3.2.2 Command aliases . 26

3.3 System functions . 27

3.3.1 Inquiry functions . 27

3.3.2 String manipulations . 28

3.3.3 Expression evaluations . 30

3.3.4 Histograms inquiry functions . 31

3.3.5 Graphics inquiry functions . 32

3.3.6 Cuts manipulations . 32

3.4 Vectors . 32

iii

3.4.1 Creating vectors . 32

3.4.2 Accessing vectors . 33

3.5 Expressions . 33

3.5.1 Arithmetic expressions . 33

3.5.2 Boolean expressions . 34

3.5.3 String expressions . 35

3.5.4 Garbage expressions . 35

3.5.5 The small-print on expressions . 36

3.6 Macros . 37

3.6.1 Macro definitions and variables . 37

3.6.2 Flow control constructs . 45

3.7 Motif mode . 50

3.7.1 The Browser Interface . 50

3.7.2 The “Executive Window” . 53

3.7.3 User Definable Panels of Commands . 55

3.7.4 X-Windows Resources . 60

3.8 Nitty-Gritty . 61

3.8.1 System dependencies . 61

3.8.2 The edit server . 63

4 Vectors 64

4.1 Vector creation and filling . 64

4.2 Vector addressing . 64

4.3 Vector arithmetic operations . 65

4.4 Vector arithmetic operations using SIGMA . 65

4.5 Using vectors in a COMIS routine . 65

4.6 Usage of vectors with other PAW objects . 65

4.7 Graphical output of vectors . 65

4.8 Fitting the contents of a vector . 66

5 SIGMA 67

5.1 Access to SIGMA . 67

5.2 Vector arithmetic operations using SIGMA . 67

5.2.1 Basic operators . 68

5.2.2 Logical operators . 68

5.2.3 Control operators . 68

5.3 SIGMA functions . 68

5.3.1 SIGMA functions - A detailed description. 68

5.4 Available library functions . 76

6 HBOOK 77

6.1 Introduction . 77

6.1.1 The functionality of HBOOK . 77

6.2 Basic ideas . 77

6.2.1 RZ directories and HBOOK files . 78

6.2.2 Changing directories . 78

6.3 HBOOK batch as the first step of the analysis . 79

6.3.1 Adding some data to the RZ file . 80

iv

6.4 Using PAW to analyse data . 81

6.4.1 Plot histogram data . 81

6.5 Ntuples: A closer look . 81

6.5.1 Ntuple plotting, variables and selection mechanisms . 81

6.5.2 Masks . 83

6.5.3 Examples . 88

6.6 Fitting with PAW/HBOOK/MINUIT . 88

6.6.1 Basic concepts of MINUIT. 90

6.6.2 Basic concepts - The transformation for parameters with limits. 90

6.6.3 How to get the right answer from MINUIT. 90

6.6.4 Interpretation of Parameter Errors: . 91

6.6.5 Fitting histograms . 92

6.6.6 A simple fit with a gaussian . 93

6.7 Doing more with Minuit . 96

7 Graphics (HIGZ and HPLOT) 100

7.1 HPLOT, HIGZ and local graphics package . 100

7.2 The metafiles . 100

7.3 The HIGZ pictures . 101

7.3.1 Pictures in memory . 102

7.3.2 Pictures on direct access files . 104

7.3.3 Automatic storage pictures in memory . 105

7.3.4 HIGZ pictures generated in a HPLOT program . 105

7.4 Setting attributes . 105

7.5 More on labels . 110

7.6 Colour, line width, and fill area in HPLOT . 112

7.7 Information about histograms . 114

7.8 Text drawing . 118

7.9 The HIGZ graphics editor . 128

8 Distributed PAW 129

8.1 Access to remote files from a PAW session . 129

8.2 Using PAW as a presenter on VMS systems (global section) . 130

8.3 Using PAW as a presenter on OS9 systems . 131

9 PAW++: A guided tour 132

9.1 The Executive Window . 136

9.1.1 The Executive Window menu bar . 137

9.2 The Main Browser . 138

9.2.1 The objects in the “object window” . 139

9.2.2 The Main Browser Menu Bar . 147

9.2.3 Information Windows . 151

9.2.4 Content Window . 152

9.3 Graphics . 155

9.3.1 The Graphics Window . 155

9.3.2 Ntuple . 156

9.3.3 1D-Histogram . 156

9.3.4 2D-Histogram . 157

v

9.3.5 X Axis . 157

9.3.6 Y Axis . 158

9.3.7 Locate on Histograms . 158

9.3.8 Locate on Ntuples . 159

9.3.9 Integrate Histograms . 159

9.4 The Histogram Style Panel . 160

9.4.1 The Histogram Style Panel Menu Bar . 161

9.4.2 Plot Info . 161

9.4.3 Style . 163

9.4.4 General Attributes . 163

9.4.5 Object Attributes . 165

9.4.6 Geometry . 167

9.4.7 Viewing Angles . 167

9.4.8 Axis Scaling . 168

9.4.9 Zones . 168

9.4.10 Axis Settings . 169

9.4.11 Font . 170

9.4.12 Coordinate Systems . 171

9.4.13 Plot Options . 172

9.5 Ntuple Viewer . 173

9.6 The Cut Editor . 174

9.6.1 The Cut Editor Menu Bar . 174

9.6.2 Ntuple Scanner . 175

9.7 KUIP/Motif Panel Interface . 175

A X Window resources 176

A.1 X resources for PAW++ . 176

A.2 X resources for for KUIP/Motif . 178

B Editing keys in the Input Pad 180

C The Motif user interface tools 181

C.1 Scale . 181

C.2 Buttons . 181

C.2.1 Toggle Buttons . 181

C.2.2 Push Buttons . 181

C.2.3 Selection Buttons . 181

C.3 Paned Window . 181

C.4 Window manager buttons . 182

Bibliography 183

Index 184

vi

Chapter 1: A few words on PAW

1.1 A short history

At the beginning of 1986 the Physics Analysis Workstation project PAW was launched at CERN. The first public
release of the system was made at the beginning of 1988. At present the system runs on most of the computer
systems used in the High Energy Physics (HEP) community (Mainframes, Workstations, PC’s). In addition to its
powerful data analysis, particular emphasis has been put on the quality of the user interface and of the graphical
presentation.

1.2 What is PAW?

PAW is an interactive utility for visualizing experimental data on a computer graphics display. It may be run in
batch mode if desired for very large and time consuming data analyses; typically, however, the user will decide on
an analysis procedure interactively before running a batch job.

PAW combines a handful of CERN High Energy Physics Library systems that may also used individually in
software that processes and displays data. The purpose of PAW is to provide many common analysis and display
procedures that would be duplicated needlessly by individual programmers, to supply a flexible way to invoke
these common procedures, and yet also to allow user customization where necessary.

1.3 What Can You Do with PAW?

PAW can do a wide variety of tasks relevant to analyzing and understanding physical data, which are typically
statistical distributions of measured events. Below we list what are probably the most frequent and best-adapted
applications of PAW; the list is not intended to be exhaustive, for it is obviously possible to use PAW’s flexibility
to do a huge number of things, some more difficult to achieve than others within the given structure.

Typical PAW Applications:

• Plot a Vector of Data Fields for a List of Events. A set of raw data is typically processed by the user’s own
software to give a set of physical quantities, such as momenta, energies, particle identities, and so on, for
each event. When this digested data is saved on a file as an Ntuple, it may be read and manipulated directly
from PAW. Options for plotting Ntuples include the following:

– One Variable. If a plot of a one variable from the data set is requested, a histogram showing the
statistical distribution of the values from all the events is automatically created. Individual events are
not plotted, but appear only as a contribution to the corresponding histogram bin.

– Two or Three Variables. If a plot of two or three variables from the data set is requested, no histogram
is created, but a 2D or 3D scatter plot showing a point or marker for each distinct event is produced.

– Four Variables. If a plot of four variables is requested, a 3D scatter plot of the first three variables is
produced, and a color map is assigned to the fourth variable; the displayed color of the individual data
points in the 3D scatter plot indicates the approximate value of the fourth variable.

– More than Four Variables. More than four variables can be plotted but it is up to the user to customize
the system in order to assign the additional variables to graphics attributes like the size or the shape
(type) of the markers.

– Vector Functions of Variables. PAW allows the user to define arbitrary vector functions of the original
variables in an Ntuple, and to plot those instead of the bare variables. Thus one can easily plot some-

thing like
√

(P 2
x + P 2

y) if Px and Py are original variables in the data without having to add a new data

field to the Ntuple at the time of its creation.

– Selection Functions (Cuts). PAW does not require you to use every event in your data set. Several
methods are provided to define Boolean functions of the variables themselves that pick out subsets of
the events to be included in a plot.

– Plot presentation options. The PAW user can set a variety of options to customize the format and
appearance of the plots.

1

2 Chapter 1. A few words on PAW

• Histogram of a Vector of Variables for a List of Events. Often one is more interested in the statistical
distribution of a vector of variables (or vector functions of the variables) than in the variables themselves.
PAW provides utilities for defining the desired limits and bin characteristics of a histogram and accumulating
the bin counts by scanning through a list of events. The following are some of the features available for the
creation of histograms:

– One Dimensional Histograms. Any single variable can be analyzed using a one-dimensional histogram
that shows how many events lie in each bin. This is basically equivalent to the single-variable data
plotting application except that it is easier to specify personalized features of the display format. A
variety of features allow the user to slice and project a 2D scatter plot and make a 1D histogram from
the resulting projection.

– Two-Dimensional Histograms. The distribution of any pair of variables for a set of events can be
accumulated into a 2D histogram and plotted in a various of ways to show the resulting surface.

– Vector Functions of Variables. User-defined functions of variables in each event can be used to define
the histogram, just as for an Ntuple plot.

– Selection Functions (Cuts). Events may also be included or excluded by invoking Boolean selection
functions that are arbitrary functions of the variables of a given event.

– Event Weights. PAW allows the user to include a multiplicative statistical bias for each event which is
a scalar function of the available variables. This permits the user to correct for known statistical biases
in the data when making histograms of event distributions.

– Histogram Presentation Options. Virtually every aspect of the appearance of a histogram can be con-
trolled by the user. Axis labels, tick marks, titles, colors, fonts, and so on, are specified by a large
family of options.

• Fit a Function to a Histogram. Once a histogram is defined, the user may fit the resulting shape with one
of a family of standard functions, or with a custom-designed function. The parameters of the fit are returned
in user-accessible form. Fitted functions of one variable may be attached to a 1D histogram and plotted with
it. The capability of associating fits to higher dimensional histograms and overlaying their representations
on the histogram is in the process of being added to PAW.

The fitting process in PAW is normally carried out by the MINUIT library. To user this package effectively,
users must typically supply data with reasonable numerical ranges and give reasonable initial conditions for
the fit before passing the task to the automated procedure.

• Annotate and Print Graphics. A typical objective of a PAW user is to examine, manipulate, and display
the properties of a body of experimental data, and then to prepare a graph of the results for use in a report,
presentation, or publication. PAW includes for convenience a family of graphics primitives and procedures
that may be used to annotate and customize graphics for such purposes. In addition, any graphics display
presented on the screen can be converted to a PostScript file for black-and-white or color printing, or for
direct inclusion in a manuscript.

1.4 A User’s View of PAW

In order to take advantage of PAW, the user must first have an understanding of its basic structure. Below we
explain the fundamental ways in which PAW and the user interact.

Initialization. PAW may be invoked in a variety of ways, depending on the user’s specific computer system; these
are described in the following chapter. As PAW starts, it prompts the user to select an interaction mode (or non-
interactive mode) and window size and type (if interactive). The available window sizes and positions are specified
in the user file "higz_windows.dat". User-specific intializations are specified in the file "pawlogon.kumac".

Command Mode Interface. The most basic interface is the KUIP “command mode” interface. KUIP provides
a basic syntax for commands that are parsed and passed on to the PAW application routines to perform specific
tasks. Among the basic features of KUIP with which the user interacts are the following:

1.5. Fundamental Objects of PAW 3

• Command Entry. Any unique partially entered command is interpreted as a fully entered command. KUIP
responds to an ambiguous command by listing the possible alternatives. On Unix systems, individual com-
mand lines can be edited in place using individual control keystrokes similar to those of the emacs editor, or
the bash or tcsh Unix command shells. On other systems, a command line that is in error can only be
revised after it is entered, using the VAX/VMS editor “EDT” style text line editing language.

• Parameters. Parameters are entered after the basic command on the same line and are separated by spaces.
If a parameter has embedded blanks, it must be it must be put between quotes. An exclamation point (!)
can be used to keep the default parameters in a sequence when only a later parameter is being changed. If
an underscore (_) is the last character on a line, the command may be continued on the next line; no spaces
are allowed in the middle of continued parameter fields.

• On-Line Assistance. The "usage" and "help" commands can be used to get a short or verbose description
of parameters and features of any command.

• Command History. A command history is kept both in memory for interactive inspection and on a disk file.
The command history file can be recovered and used to reconstruct a set of actions carried out interactively.

• Aliases. Allow the abbreviation of partial or complete command sequences.

• Macros. A text file containing PAW commands and flow control statements.

KUIP/MOTIF Interface. If the user’s workstation supports the OSF/Motif windowing system, PAW can be
started in the KUIP/MOTIF mode: the executable module to be run in that case is called PAW++. However, a
small text panel and a command history panel keep track of individual actions, and permit entry and recall of typed
commands similar to the command mode interface.

The basic features of this interface are:

• Pull-Down Menu “Commands”. Each PAW command (that can be given in input) has a corresponding
item in a hierarchical pull-down menu (entry “Commands”). Commands that require arguments cause a
parameter-entry dialog box to appear; when the arguments are entered and command execution requested
(button “OK” or “Execute”), the command is executed as though typed from the command mode interface.

• Action Panel(s). A user may have a family of frequently executed macros or commands assigned to specific
buttons on the action panel(s). These panels are totally user definable.

• Object Browser. All the objects known in PAW (Histograms, Ntuples, Vectors etc...) can be manipulated via
icons and pull-down menus in the “Object Browser”.

• Direct Graphics Interaction. One can click in the graphics area and identify automatically which object has
been selected. A pop-up menu appears with a list of possible actions on this object.

Graphics Output Window. The graphics image produced by PAW commands, regardless of the command in-
terface, appears on a separate graphics output window. The actual size and position of this window on the screen is
controlled by a list of numbers of the form x-upper-left y-upper-left x-width y-height in the user file
higz_windows.dat. The width and height of the drawing area within this window are subject to additional user
control, and the user can specify “zones,” which are essentially ways of dividing the window into panes to allow
simultaneous display of more than one plot. Some picking facilities are also available.

1.5 Fundamental Objects of PAW

PAW is implicitly based on a family of fundamental objects (see figure 1.1 on the following page). Each PAW
command performs an action that either produces another object or produces a “side-effect” such as a printed
message or graphics display that is not saved anywhere as a data structure. Some commands do both, and some
may or may not produce a PAW data structure depending on the settings of global PAW parameters. In this section,
we describe the basic objects that the user needs to keep in mind when dealing with PAW. The reader should
perhaps note that the PAW commands themselves do not necessarily reflect the nature of PAW objects as clearly
as they might, while the MOTIF interactive graphics interface in fact displays distinct icons for most of the object
types listed below.

4 Chapter 1. A few words on PAW

Data

Analysis Presentation

Vectors

Histograms

Ntuples

Fitting

Smoothing

Array Manipulation

FORTRAN Interpreter

Cuts

Projections

1D, 2D, and 3D Plots

1D
2D
3D

1D
2D

RWN

CWN

ASCII RZ

Figure 1.1: PAW’s fundamental “data” objects

Objects:

• 1D Histograms. A histogram is the basic statistical analysis tool of PAW. Histograms are created (“booked”)
by choosing the basic characteristics of their bins, variables, and perhaps customized display parameters;
numbers are entered into the histogram bins from an Ntuple (the histogram is “filled”) by selecting the de-
sired events, weights, and variable transformations to be used while counts are accumulated in the bins.
Functional forms are frequently fit to the resulting histograms and stored with them. Thus a fit as an object
is normally associated directly with a histogram, although it may be considered separately.

• 2D Histograms. 2D (and higher-dimensional) histograms are logical generalizations of 1D histograms. 2D
histograms, for example, are viewable as the result of counting the points in a the sections of a rectangular
grid overlaid on a scatter plot of two variables. Higher-dimensional histograms can also be fitted, and support
for associating the results of a fit to a higher-dimensional histogram is currently being incorporated in PAW.

• Ntuples. An Ntuple is the basic type of data used in PAW. It consists of a list of identical data structures, one
for each event. Typically, an Ntuple is made available to PAW by opening a HBOOK file; this file, as created
by HBOOK, contains one or more Ntuples and possibly also directories, which may store a hierarchy of
Ntuples and histograms. A storage area for an Ntuple may be created directly using NTUPLE/CREATE; data
may then be stored in the allocated space using the NTUPLE/LOOP or NTUPLE/READ commands. Other com-
mands merge Ntuples into larger Ntuples, project vector functions of the Ntuple variables into histograms,
and plot selected subsets of events.

• Cuts. A cut is a Boolean function of Ntuple variables. Cuts are used to select subsets of events in an Ntuple
when creating histograms and ploting variables.

• Masks. Masks are separate files that are logically identical to a set of boolean variables added on the end of
an Ntuple’s data structure. A mask is constructed using the Boolean result of applying a cut to an event set.
A mask is useful only for efficiency; the effect of a mask is identical to that of the cut that produced it.

• Vectors. PAW provides the facilities to store vectors of integer or real data. These vectors, or rather arrays
with up to 3 index dimensions, can be manipulated with a set of dedicated commands. Furthermore they are
interfaced to the array manipulation package SIGMA and to the Fortran interpreter COMIS. They provide a
convenient and easy way to analyse small data sets stored in ASCII files.

1.5. Fundamental Objects of PAW 5

PAW

KUIP

HPLOT

HIGZ

HBOOK

MINUIT

ZEBRA COMIS

SIGMA

ZEBRA MEMORYZEBRA FILES

X-Window
GKS, DI3000, PHIGS
MCIntosh, IBM PC etc ...

The Plotting Package

The Graphics Package:

basic graphics and

graphics editor for

pictures in data base

User Interface

Command Processor

Menu Dialogue

Motif Interface

Histogramming

N-Tuples

Statistical Analysis

Minimization Package

FORTRAN Interpreter

Arrays Manipulation

Data Structure Manager

Input/Output Server

Data Base Manager

Figure 1.2: PAW and its components

• PostScript (meta)files. PostScript format (meta)files are especially useful because they can be directly
printed on most printers; furthermore, the printed quality of graphics objects such as fonts can be of much
higher quality than the original screen image.

• Pictures. A picture is an exact copy of the screen image, and so its storage and redisplay time are indepen-
dent of complexity. Pictures are also intensively used for object picking in the Motif version of PAW.

• ZEBRA(RZ) Logical Directories. In a single PAW session, the user may work simultaneously with many
Ntuples, histograms, and hierarchies of Ntuple and histograms. However, this is not accomplished using the
native operating system’s file handler. Instead, the user works with a set of objects that are similar to a file
system, but are instead managed by the ZEBRA RZ package. This can be somewhat confusing because a
single operating system file created by RZ can contain an entire hierarchy of ZEBRA logical directories;
furthermore, sections of internal memory can also be organized as ZEBRA logical directories to receive
newly-created PAW objects that are not written to files. A set of commands CDIR, LDIR, and MDIR are the
basic utilities for walking through a set of ZEBRA logical directories of PAW objects; Each set of directories
contained in an actual file corresponds to a logical unit number, and the root of the tree is usually of the form
//LUNx; the PAW objects and logical directories stored in internal memory have the root //PAWC. A macro
is a set of command lines stored in a file, which can be created or modified with any text editor. In addition
to all the PAW commands, special macro flow control statements are also available.

• Operating System File Directories. Many different ZEBRA files, some with logically equivalent Ntuples
and histograms, can be arranged in the user’s operating system file directories. Thus one must also keep
clearly in mind the operating system file directories and their correspondence to the ZEBRA logical directo-
ries containing data that one wishes to work with. In many ways, the operating system file system is also a
type of “object” that forms an essential part of the user’s mental picture of the system.

6 Chapter 1. A few words on PAW

1.6 The Component Subsystems of PAW

The PAW system combines different tools and packages, which can also be used independently and some of which
have already a long history behind them (e.g. HBOOK and HPLOT, SIGMA, COMIS, MINUIT). Figure 1.2 shows
the various components of PAW.

1.6.1 KUIP - The user interface package

The purpose of KUIP (Kit for a User Interface Package) is to handle the dialogue between the user and the
application program (PAW in our case). It parses the commands input into the system, verifies them for correctness
and then hands over control to the relevant action routines.

Commands are grouped in a tree structure and they can be abbreviated to their shortest unambiguous form. If
an ambiguous command is typed, then KUIP responds by showing all the possibilities. Aliases allow the user to
abbreviate part or the whole of commonly used command and parameters. A sequence of PAW commands can be
stored in a text file and, combined with flow control statements, form a powerful macro facility. With the help
of parameters, whose values can be passed to the macros, general and adaptable task solving procedures can be
developed.

The user has the choice between different dialogue styles ranging from the conventional command line interface
to a high-level windowed environment based on OSF/Motif . In order to save typing, default values, providing
reasonable settings, can be used for most parameters of a command. A history file, containing the n most recently
entered commands, is automatically kept by KUIP and can be inspected, copied or re-entered at any time. The
history file of the last PAW session is also kept on disk.

1.6.2 HBOOK and HPLOT - The histograming and plotting packages

HBOOK and its graphics interface HPLOT are libraries of FORTRAN callable subroutines which have been in use
for many years. They provide the following functionality:

– One- and two-dimensional histograms and Ntuples

– Projections and slices of two-dimensional histograms and Ntuples

– Complete control (input and output) of the histogram contents

– Operations and comparison of histograms

– Minimization and parameterization tools

– Random number generation

– Histograms and Ntuples structured in memory (directories)

– Histograms and Ntuples saved onto direct access ZEBRA files

– Wide range of graphics options:

– Contour histograms, bar chart, shaded histograms, error bars, colour

– Smoothed curves and surfaces

– Scatter, lego, contour and surface plots

– Automatic windowing

– Graphics input

1.6.3 HIGZ - The graphics interface package

A High level Interface to Graphics and ZEBRA (HIGZ) has been developed within the PAW project. This package
is a layer between the application program (e.g. PAW/HPLOT) and the basic graphics package (e.g. X11) on a
given system. Its basic aims are:

– Full transportability of the picture data base.

– Easy manipulation of the picture elements.

– Compactness of the data to be transported and accessibility of the pictures in direct access mode.

1.6. The Component Subsystems of PAW 7

– Independence of the underlying basic graphics package. Presently HIGZ is interfaced with several GKS
packages, X- Windows (X11), PHIGS, Mac, PC’s graphic systems, GL (Silicon Graphics), GDDM (IBM),
GPR (Apollo) as well as with the DI3000 system. Note that some of these graphics systems are now obsolete.
PAW is now mainly used in its X11 version.

These requirements have been incorporated into HIGZ by exploiting the data management system ZEBRA.

HIGZ does not introduce new basic graphics features, but introduces some macroprimitives for frequently used
functions (e.g. arcs, axes, boxes, pie-charts, tables). The system provides the following features:

– Basic graphics functions: basic primitives, attributes, space definition.

– Higher-level macroprimitives.

– Data structure management using an interface to the ZEBRA system.

– Interactive picture editing.

These features, which are available simultaneously, are particularly useful during an interactive session, as the user
is able to “replay” and edit previously created pictures, without the need to re-run the application program. A direct
interface to PostScript is also available.

1.6.4 ZEBRA - The data structure management system

The data structure management package ZEBRA was developed at CERN in order to overcome the lack of dynamic
data structure facilities in FORTRAN, the favourite computer language in high energy physics. It implements the
dynamic creation and modification of data structures at execution time and their transport to and from external
media on the same or different computers, memory to memory, to disk or over the network, at an insignificant
cost in terms of execution-time overheads.

ZEBRA manages any type of structure, but specifically supports linear structures (lists) and trees. ZEBRA in-
put/output is either of a sequential or direct access type. Two data representations, native (no data conversion
when transferred to/from the external medium) and exchange (a conversion to an interchange format is made), al-
low data to be transported between computers of the same and of different architectures. The direct access package
RZ can be used to manage hierarchical data bases. In PAW this facility is exploited to store histograms, Ntuples
and pictures in a hierarchical direct access directory structure.

1.6.5 MINUIT - Function minimization and error analysis

MINUIT is a tool to find the minima of a multi-parameter function and analyse the shape around the minimum.
It can be used for statistical analysis of curve fitting, working on a χ2 or log-likelihood function, to compute the
best fit parameter values, their uncertainties and correlations. Guidance can be provided in order to find the correct
solution, parameters can be kept fixed and data points can be easily added or removed from the fit. An interactive
Motif based interface is in preparation.

1.6.6 COMIS - The FORTRAN interpreter

The COMIS interpreter allows the user to execute interactively a set of FORTRAN routines in interpretive mode.
The interpreter implements a large subset of the complete FORTRAN language. It is an extremely important tool
because it allows the user to specify his own complex data analysis procedures, for example selection criteria or a
minimisation function.

1.6.7 SIGMA - The array manipulation language

A scientific computing programming language SIGMA (System for Interactive Graphical Mathematical Applications),
which was designed essentially for mathematicians and theoretical physicists is integrated into PAW. Its main char-
acteristics are:

– The basic data units are scalars and one or more dimensional rectangular arrays, which are automatically
handled.

– The computational operators resemble those of FORTRAN.

8 Chapter 1. A few words on PAW

1.7 A PAW Glossary

Data Analysis Terminology

DST A “Data Summary Tape” is one basic form of output from a typical physics experiment. A DST is
generally not used directly by PAW, but is analyzed by customized user programs to produce Ntuple
files, which PAW can read directly.

Ntuple A list of identical data structures, each typically corresponding to a single experimental event. The
data structures themselves frequently consist of a row of numbers, so that many Ntuples may be
viewed as two-dimensional arrays of data variables, with one index of the array describing the po-
sition of the data structure in the list (i.e., the row or event number), and the other index referring
to the position of the data variable in the row (i.e., the column or variable number). A meaningful
name is customarily assigned to each column that describes the variable contained in that column
for each event.

Event A single instance of a set of data or experimental measurements, usually consisting of a sequence
of variables or structures of variables resulting from a partial analysis of the raw data. In PAW ap-
plications, one typically examines the statistical characteristics of large sequences of similar events.

Variable One of a user-defined set of named values associated with a single event in an Ntuple. For example,
the (x, y, z) values of a momentum vector could each be variables for a given event. Variables
are typically useful experimental quantities that are stored in an Ntuple; they are used in algebraic
formulas to define boolean cut criteria or other dependent variables that are relevant to the analysis.

Cut A boolean-valued function of the variables of a given event. Such functions allow the user to specify
that only events meeting certain criteria are to be included in a given distribution.

Mask A set of columns of zeros and ones that is identical in form to a new set of Ntuple variables. A
mask is typically used to save the results of applying a set of cuts to a large set of events so that
time-consuming selection computations are not repeated needlessly.

Function Sequence of one or more statements with a FORTRAN-like syntax entered on the command line or
via an external file.

Statistical Analysis Terminology

Histogram A one- or two-dimensional array of data, generated by HBOOK in batch or in a PAW session.
Histograms are (implicitly or explicitly) declared (booked); they can be filled by explicit entry of
data or can be derived from other histograms. The information stored with a histogram includes a
title, binning and packing definitions, bin contents and errors, statistic values, possibly an associated
function vector, and output attributes. Some of these items are optional. The ensemble of this
information constitutes an histogram.

Booking The operation of declaring (creating) an histogram.

Filling The operation of entering data values into a given histogram.

Fitting Least squares and maximum likelihood fits of parametric functions to histograms and vectors.

Projection The operation of projecting two-dimensional distributions onto either or both axes.

Band A band is a projection onto the X (or Y) axis restricted to an interval along the other Y (or X) axis.

Slice A slice is a projection onto the X (or Y) axis restricted to one bin along the other Y (or X) axis.
Hence a slice is a special case of a band, with the interval limited to one bin.

Weight PAW allows the user to include a multiplicative statistical bias for each event which is a scalar
function of the available variables. This permits the user to correct for known statistical biases in the
data when making histograms of event distributions.

KUIP/ZEBRA User Environment Terminology

Macro A text file containing a set commands and logical constructs to control the flow of execution. Pa-
rameters can be supplied when calling a macro.

1.7. A PAW Glossary 9

Vector The equivalent of a FORTRAN array supporting up to three dimensions. The elements of a vector
can be stored using a real or an integer representation; they can be entered interactively on a terminal
or read from an external file.

Logical Directory The ZEBRA data storage system resembles a file system organized as logical directories. PAW
maintains a global variable corresponding to the “current directory” where PAW applications will
look for PAW objects such as histograms. The ZEBRA directory structure is a tree, and user func-
tions permit the “current directory” to be set anywhere in the current tree, as well as creating new
“directories” where the results of PAW actions can be stored. A special directory called //PAWC

corresponds to a memory-resident branch of this virtual file system. ZEBRA files may be written to
the operating system file system, but entire hierarchies of ZEBRA directories typically are contained
in a single binary operating system file.

Graphics Production Terminology

Metafile A file containing graphical information stored in a device independent format, which can be replayed
on various types of output devices. (e.g. PostScript).

Picture A graphics object composed of graphics primitives and attributes. Pictures are generated by the
HIGZ graphics interface and they can be stored in a picture direct-access database, built with the
RZ-package of the data structure manager ZEBRA.

PostScript A high level page description language permitting the description of complex text and graphics us-
ing only text commands. Using PostScript representations of graphics makes it possible to create
graphics files that can be exchanged with other users and printed on a wide variety of printers with-
out regard to the computer system upon which the graphics were produced. Any graphics display
produced by PAW can be expressed in terms of PostScript, written to a file, and printed.

Chapter 2: General principles

2.1 Access to PAW

At CERN the PAW program is interfaced on all systems via a command procedure which gives access to the three
release levels of the CERN Program Library (PROduction, OLD and the NEW areas) and sets the proper environment
if necessary. Users who are not at CERN or who are using non-central computer systems should contact their
system administrator for help on PAW.

2.1.1 VAX/VMS

A command file CERN_ROOT:[EXE]PAW.COM is defined system-wide via the logical symbol PAW; its interface is:

PAW/ver (the default is PRO)

You may set the initialization of PAW either as a PAWLOGON.KUMAC located in your home directory, or through the
logical symbol DEFINE PAW$LOGON disk:[user.subdir]file.kumac to be defined usually in your LOGIN.COM.

2.1.2 Unix systems

The driver shell script is located in the file /cern/pro/bin/paw. In order to access it automatically you could
add the directory /cern/pro/bin to your command search path. The command syntax is:

paw -v ver (the default is -v PRO)

2.1.3 Workstation type

PAW needs to know the X-host where graphics must be displayed; this can be specified on each system on the
command line:

Vax/VMS: PAW/X11/host=yourhost

Unix: paw -d X11 -h yourhost

or at the “Workstation” prompt in PAW: Workstation type (?=HELP) [CR]=1 : 1.yourhost

If yourhost is not specified, the output is redirected (like for all X11 applications) to the display defined via the
environment variable DISPLAY.
The workstation type selects which type of workstation has to be opened. It corresponds to a line number in a file
higz_windows.dat. PAW tries to open this file in your current working directory. If it does not succeed it tries
in your HOME directory. If it doesn’t succeed once more, it creates the file in your HOME directory as follows:

0000 0000 0600 0600

.

.

.

0000 0000 0600 0600

where the lines define each of the workstation types (from 1 to 10) with the x-margin (left), y-margin (top), x-size
(width) and y-size (height) of the corresponding window in pixels.
For a more complete and up to date description you can refer to the PAW FAQs avaialable from the PAW web
home page.

2.1.4 Different modes to start PAW

– A batch version of PAW is available (note that batch implies workstation type 0):

On Unix do: paw -b macroname

On VMS do: PAW/BATCH=macroname

– One can disable the automatic execution of the PAWLOGON macro:

On Unix do: paw -n

On VMS do: PAW/NOLOG

10

2.2. Initialising PAW 11

2.2 Initialising PAW

When PAW is started, a system startup procedure is initiated, which indicates the current version of PAW and
requests the workstation type of the terminal or workstation which you are using.

$ PAW

**

* *

* W E L C O M E to P A W *

* *

* Version 2.10/01 2 September 1998 *

* *

**

Workstation type (?=HELP) <CR>=1 : ?

List of valid workstation types:

0: Alphanumeric terminal

1-10: Describe in file higz_windows.dat

n.host: Open the display on host (1 < n < 10)

7878: FALCO terminal

7879: xterm

Note that if you specify 0, PAW will not open a graphics workstation. This may be appropriate if one wants to use
PAW on an alphanumeric terminal.

Before passing control to the user, the system looks for a user-supplied file pawlogon.kumac. The latter can
contain commands which the user wants to be executed at PAW startup, e.g. declaration of files, creation of
aliases, definition of HPLOT parameters. A simple version of this PAW initialisation file, displaying date and time,
can be:

mess ’**’

mess ’* *’

mess ’* Starting PAW session on ’//$date//’ at ’//$time//’ *’

mess ’* *’

mess ’**’

In order to only have one version of this file on VAX/VMS the user should define a logical name PAW$LOGON in
his LOGIN.COM, as explained on the previous page. The file pawlogon.kumac is taken in the current directory.

2.3 Command structure

PAW is based on the KUIP[4] User Interface package, which can provide different types of dialogue styles:

– Command mode, where the user enters a command line via the terminal keyboard.

– Alphanumeric menu mode, where the command is selected from a list.

– Graphics menu modes:
• Pull-down menus, fixed layout reflecting the command structure;
• Panels of function keys, interactive user definable multiple layouts.

It is possible to change interactively from one style to another.

The general format of a PAW command line is:

command parameters

The first part of the command has the format:

object/verb

12 Chapter 2. General principles

where the object is the item on which the action is performed (e.g. HISTOGRAM, VECTOR, NTUPLE) and the verb
is the action to be performed (e.g. CREATE, DELETE, PLOT). In some cases the object needs to be specified further
(e.g. GRAPHICS/PRIMITIVE), while in other cases the verb’s action needs to be clarified further (e.g. CREATE/1D).
All components can be abbreviated to their shortest unambiguous form. For example the two following lines will

have the same effect of creating a vector A with nine components:

VECTOR/CREATE A(9)

or
VE/CR A(9)

In the case that the form is ambiguous all possible interpretations for the given abbreviation are displayed.

The second part of a command are its parameters and their meaning is determined by their position. Some
of these can be mandatory with the remaining ones optional. If all mandatory parameters are not provided on
the command line, PAW will prompt the user to specify them, indicating the default values if defined. If the user
wants to assign the default value to a parameter from the command line he can use the place-holder character
exclamation mark (!) to signify this to PAW. In the case of optional parameters, the user must provide them in
the correct sequence if he wants to change their values, otherwise the corresponding defaults are taken. Parameters
containing blanks must be enclosed within single quotes.

In the example below we create a one-dimensional histogram, providing the parameters one by one answering the
PAW query:

PAW > histogram/create/1dhisto

Histogram Identifier (<CR>=): 10

Histogram title (<CR>=): title1

Number of channels (<CR>=100): <CR>

Low edge (<CR>=0): 10.

Upper edge (<CR>=100): 20.

For the command below we provide all parameters on the command line, including an optional one (1000.), which
by default has the value 0. Note that this parameter must be specified explicitly, since PAW does not prompt for
it, as seen in the previous example. Note also the use of the exclamation mark to take the default for the number of
channels (100).

PAW > hi/cr/1d 20 title2 ! 10. 20. 1000.

2.4 Getting help

Once inside PAW, one can start entering commands. An interesting first try would be the HELP command, which
displays a list of items, preceded by a number and followed by one line of explanation. In the next example we
search for a command to create a one-dimensional histogram.

PAW > help

From /...

1: KUIP Command Processor commands.

2: MACRO Macro Processor commands.

3: VECTOR Vector Processor commands.

4: HISTOGRAM Manipulation of histograms, Ntuples.

5: FUNCTION Operations with Functions. Creation and plotting.

6: NTUPLE Ntuple creation and related operations.

7: GRAPHICS Interface to the graphics packages HPLOT and HIGZ.

8: PICTURE Creation and manipulation of HIGZ pictures.

9: ZEBRA Interfaces to the ZEBRA RZ, FZ and DZ packages.

10: FORTRAN Interface to MINUIT, COMIS, SIGMA and FORTRAN

Input/Output.

11: NETWORK To access files on remote computers.

12: OBSOLETE Obsolete commands.

Enter a number (’Q’=command mode): 4

/HISTOGRAM

2.4. Getting help 13

Manipulation of histograms, Ntuples. Interface to the HBOOK package.

From /HISTOGRAM/...

1: * FILE Open an HBOOK direct access file.

2: * LIST List histograms and Ntuples in the current directory.

3: * DELETE Delete histogram/Ntuple ID in Current Directory

(memory).

4: * PLOT Plot a single histogram or a 2-Dim projection.

5: * ZOOM Plot a single histogram between channels ICMIN and

ICMAX.

6: * MANY_PLOTS Plot one or several histograms into the same plot.

7: * PROJECT Fill all booked projections of a 2-Dim histogram.

8: * COPY Copy a histogram (not Ntuple) onto another one.

9: * FIT Fit a user defined (and parameter dependent) function

to a histogram ID (1-Dim or 2-Dim) in the specified

range.

10: 2D_PLOT Plotting of 2-Dim histograms in various formats.

11: CREATE Creation ("booking") of HBOOK objects in memory.

12: HIO Input/Output operations of histograms.

13: OPERATIONS Histogram operations and comparisons.

14: GET_VECT Fill a vector from values stored in HBOOK objects.

15: PUT_VECT Replace histogram contents with values in a vector.

16: SET Set histogram attributes.

Enter a number (’=́one level back, ’Q’=command mode): 11

/HISTOGRAM/CREATE

Creation ("booking") of HBOOK objects in memory.

From /HISTOGRAM/CREATE/...

1: * 1DHISTO Create a one dimensional histogram.

2: * PROFILE Create a profile histogram.

3: * BINS Create a histogram with variable size bins.

4: * 2DHISTO Create a two dimensional histogram.

5: * PROX Create the projection onto the x axis.

6: * PROY Create the projection onto the y axis.

7: * SLIX Create projections onto the x axis, in y-slices.

8: * SLIY Create projections onto the y axis, in x-slices.

9: * BANX Create a projection onto the x axis, in a band of y.

10: * BANY Create a projection onto the y axis, in a band of x.

11: * TITLE_GLOBAL Set the global title.

Enter a number (’=́one level back, ’Q’=command mode): 1

* /HISTOGRAM/CREATE/1DHISTO ID TITLE NCX XMIN XMAX [VALMAX]

ID C ’Histogram Identifier’ Loop

TITLE C ’Histogram title’ D=’ ’

NCX I ’Number of channels’ D=100

XMIN R ’Low edge’ D=0.

XMAX R ’Upper edge’ D=100.

VALMAX R ’Maximum bin content’ D=0.

Create a one dimensional histogram. The contents are set to zero. If

VALMAX=0, then a full word is allocated per channel, else VALMAX is used

as the maximum bin content allowing several channels to be stored into

the same machine word.

<CR>=continue, ’Q’=command mode, ’X’=execute: q

An item preceded by a star indicates a terminal leaf in the command tree, i.e. an executable command.
One can also inquire about creating a one-dimensional histogram by typing simply:

HELP histogram/create/1dhisto

or

14 Chapter 2. General principles

HELP his/cre/1d

or even
HELP 1

The system will then display the following information:

* /HISTOGRAM/CREATE/1DHISTO ID TITLE NCX XMIN XMAX [VALMAX]

ID C ’Histogram Identifier’ Loop

TITLE C ’Histogram title’ D=’ ’

NCX I ’Number of channels’ D=100

XMIN R ’Low edge’ D=0.

XMAX R ’Upper edge’ D=100.

VALMAX R ’Maximum bin content’ D=0.

Create a one dimensional histogram. The contents are set to zero. If

VALMAX=0, then a full word is allocated per channel, else VALMAX is used

as the maximum bin content allowing several channels to be stored into

the same machine word.

2.4.1 Usage

Very often a single line description of the usage of a command is sufficient as a reminder. This can be obtained by
the USAGE command, e.g.:

PAW > USAGE 1d

* /HISTOGRAM/CREATE/1DHISTO ID TITLE NCX XMIN XMAX [VALMAX]

2.5 Special symbols for PAW

One should pay attention to the fact that, in addition to their common arithmetic meaning, the symbols in table 2.1
have a special connotation when working with PAW .

Symbol Meaning

blank Separator between command and parameter and between different parameters

/ Separator between command elements

Comment line (if first character of the command line)

| Inline comments

’ String delimiter

_ Line continuation in KUIP commands

@ Escape character to be put in front of | and ’ to interpret them as literal

! Place-holder for command parameter (i.e. default value is taken)

At beginning of command line: Unix C shell-like history
(e.g. !!, !number, !-number, !string)

[] Macro argument delimiters

Separator between macro file and macro member

() Vector subscript delimiters

: Vector subscript range

, Multi-dimensional vector subscript dimensions delimiter

Note: These special characters loose their effect when imbedded in single quotes.

Table 2.1: Special symbols

2.6. PAW entities and their related commands 15

Ntuples

Vectors Histograms

ASCII

Files

HBOOK

Files

V
E

C
T

O
R

/R
E

A
D

H
R

IN

H
R

IN

N
T

U
P

L
E

/R
E

A
D

V
E

C
T

O
R

/W
R

IT
E

N
T

U
P

L
E

/S
C

A
N

H
R

O
U

T

H
R

O
U

T

N
T

U
P

L
E

/L
O

O
P

G
E

T
/C

O
N

T
E

N
T

S

N
T

U
P

L
E

/P
R

O
JE

C
T

P
U

T
/C

O
N

T
E

N
T

S

Figure 2.1: PAW entities and their related commands

2.6 PAW entities and their related commands

Relations which exist between various PAW entities as described in section 1.6 on page 6 and the operations which
can be performed upon them have been schematically represented in figure 2.1. All commands shown in the picture
next to the lines connecting the objects have been abbreviated in a way that they are unambiguous and can be typed
to PAW, which will then detail the various parameters to be supplied.

There are three main input/output formats, namely a simple text file (e.g. with data points or commands), a direct
access ZEBRA RZ file (used by HBOOK and HIGZ for storing histograms and pictures on a given machine) and a
ZEBRA FZ sequential file, which can be used to transfer structured ZEBRA data between various computers. The
RZ and FZ representations can be transformed into each other using the TOALFA and FRALFA commands.

The three main PAW objects, Ntuples, histograms and vectors, can be printed on an alphanumeric screen (PRINT
commands) or they can be plotted on a graphics screen (PLOT commands). The picture can be transformed into a
ZEBRA data structure and stored in a HIGZ database for later reference (e.g. editing by the HIGZ editor), or an
external presentation can be obtained via the creation of a metafile.

Chapter 3: User interface - KUIP

——————————————————————–

3.1 Command line syntax

The general syntax of a command line is a command path optionally followed by an argument list. The command
path and the arguments have to be separated from each other by one or more space characters. Therefore arguments
containing spaces or other special characters have to be quoted.

In the following we want to use an appropriate formalism to describe the syntax rules. The notation will be
introduced step by step as needed. The verbal explanation given above can be written as:

command-line ::= command-path { argument }
The slanted symbols are non-terminal, i.e. they are composed of other terminal or non-terminal symbols. The
definition of a non-terminal symbol is denoted by “::=”. Symbols enclosed in braces (“{...}”) are optional and
they can appear zero or more times.

3.1.1 Command structure

The set of commands is structured as an (inverted) tree as shown in figure 3.1.

KUIP MACRO VECTOR HISTOGRAM FUNCTION NTUPLE GRAPHICS PICTURE ZEBRA FORTRAN NETWORK

FILE LIST DELETE PLOT ZOOM MANY_PLOT PROJECT COPY FIT 2D_PLOT CREATE HIO

1DHISTO PROFILE BINS 2DHISTO PROX PROY SLIX SLIY BANX BANY

Example of command path : HISTOGRAM / CREATE / 2DHISTO

PAW

Figure 3.1: Example of the PAW command tree structure

This structure is comparable to a Unix file system. The command set can be dynamically extended by linking new
commands or menus into the tree. Compared to a flat list structure the tree allows a cleaner representation through
menus, especially when the command set is large. paw has more than 200 commands. It would be hard to visualize
such a number of command in a single graphics menu.

16

3.1. Command line syntax 17

Abbreviations

A command path consists of a menu path and a command name. The menu path itself consists of a list of menu
names up to an arbitrarily deep level of sub-menus.

command-path ::= [menu-path/]command-name
menu-path ::= [/]menu-name{/menu-name}

Here we introduced two more notations. Symbols in teletype mode (“/”) are literals, i.e. the menu and command
names have to be separated by a slash character. Symbols enclosed in brackets (“[...]”) are optional which can
appear zero or one times.

These syntax rules already show that a command path may be abbreviated by omitting part of the leading menu
path. For example, if the complete command path is

/MENU/SUBMENU/COMMAND

valid abbreviations are

MENU/SUBMENU/COMMAND

SUBMENU/COMMAND

COMMAND

but not “MENU/COMMAND” or “/SUBMENU/COMMAND”. Note that the command name matching is case-insensitive,
i.e. the following are all valid possibilities:

COMMAND

command

Command

Furthermore, menu and command names may be abbreviated by omitting trailing parts, i.e.

SUB/COMMAND

COMMA

/M/S/C

are also valid abbreviations.

The shortest unambiguous abbreviation for any command is not fixed but depends on the whole command set.
PAW lists all possible ambiguities if a given abbreviation has no unique match:

PAW > LIST

*** Ambiguous command list. Possible commands are :

/KUIP/ALIAS/LIST

/MACRO/LIST

/VECTOR/LIST

/HISTOGRAM/LIST

/NTUPLE/LIST

/PICTURE/LIST

Changing the root menu The command SET/ROOT defines the menu from which the search for command name
starts. It is not quite comparable to the Unix cd or VMS SET DEFAULT command. If no matching command is
found going downwards from the SET/ROOT menu a second attempt is made starting off at the top menu “/”.

Disabling commands The command SET/VISIBILITY allows to disable/enable individual commands. Dis-
abled commands cannot be executed and they do not contribute to name ambiguities. However, the HELP infor-
mation is still available. Note that the VISIBILITY command can disable itself which makes it impossible to
re-enable any command.

18 Chapter 3. User interface - KUIP

Automatic macro execution The command MACRO/DEFAULT implements two facilities. First it allows to define
a directory search path used by the EXEC command for locating .kumacmacro files. Second it controls the implicit
interpretation of the command name token as a possible macro filename:

-Command This is the default setting which does not try to interpreted cmd as macro name.

-Auto If the search path contains a file cmd.kumac it is executed, i.e. the actual command becomes
“EXEC cmd”, otherwise the search for a command named cmd starts.

-AutoReverse If cmd is either not a command name or ambiguous and a file cmd.kumac exists the command
is transformed into “EXEC cmd”.

Command template The command SET/COMMAND allows to define a template which is used whenever the com-
mand token does not match any command name. The template can contain “$1”,. . . , “$9” which are substituted
with the n’th token from the original command line, or “$*” which is replaced by the complete line. For example,
PAW can be turned into a calculator by

PAW > SET/COMMAND ’mess $sigma($*)’

PAW > 17+2*5

27

“SET/COMMAND ’EXEC $*’” has almost the same effect as “DEFAULT -AutoReverse” but these are two distinct
facilities which can be active simultaneously. The difference is that for SET/COMMAND the token in the command
name position must not match any command. If does not apply if the token is an ambiguous command name.

Both Auto/AutoReverse and SET/COMMAND logic are ignored during the execution of macro scripts.

3.1.2 Arguments

Most commands have parameters for which the user is expected to supply argument values. Parameters are either
mandatory or optional. Mandatory arguments which are not specified on the command line are prompted for. If
optional arguments are omitted a default value is used instead.

Mandatory parameters always precede the optional parameters. The command USAGE allows to see the number of
parameters for a command:

PAW > usage manual

* KUIP/MANUAL ITEM [OUTPUT OPTION]

The optional parameters are enclosed in square brackets. The default values can be seen from the help text for
a command. The STYLE command shown in figure 3.2 has only optional arguments. The corresponding default
values are indicated in the help information as “D=value”.

Mandatory parameters may also have a default value which is used if the prompt is acknowledged by simple hitting
the RETURN-key. Otherwise the proposed default is the value used in the previous command execution.

The STYLE command also shows that there are three different kind of parameters: character values indicated by
“C” after the parameter name, real values (“R”) and integer values (“I”).

Numeric (real or integer) parameters may be restricted in the range of acceptable values. In the help text this
is indicated as “R=lower:upper . If the argument value is outside the range PAW prompts the user to enter an
acceptable value before the command can be executed. The lower or upper range value may be missing to indicate
an unlimited range in one direction. Instead of a simple numeric value the argument may also be an expression.

For both numeric and character parameters the range may also be given as a comma-separated list of values. PAW
will accept an argument only if it matches one of the values in the list.

In general the arguments given on the command line are assigned to the command parameters from left to right but
there are also ways to change the order. In our syntax notation, using “|” to indicate possible alternatives, we can
write:

argument ::= value | ! | !! | name=value | -value
An argument given as a simple value is assigned to the next parameter expected. The special values “!” and “!!”
are templates for the default value and the value from the previous command execution, respectively.

3.1. Command line syntax 19

PAW > HELP STYLE

* KUIP/SET_SHOW/STYLE [OPTION SGYLEN SGSIZE SGYSPA SGBORD WKTYPE]

OPTION C ’Option’ D=’?’

SGYLEN R ’max Y LENgth of each menu item box’ D=0.025 R=0.005:0.25

SGSIZE R ’space available for the application’ D=0.8 R=0:0.90

SGYSPA R ’max Y length of space between menus’ D=0.02 R=-0.5:0.50

SGBORD R ’X or Y border for menus’ D=0.015 R=0:0.25

WKTYPE I ’Graphics workstation type’ D=0

Possible OPTION values are:

? show current style

C Command line : select Command line input

AN Menu with Numbers : select general Alpha menu (with Numbers)

AL Menu with Letters : select general Alpha menu (with Letters)

Figure 3.2: Parameter types, default values, and range limits

Named arguments

The form “name=value” allows to invert the argument order or to skip a list of optional parameters for which the
default values should be used. For example,

STYLE G SGBORD=0.1

is equivalent to

STYLE G ! ! ! 0.1

A simple argument following a named argument is assigned to the parameter following the named parameter, i.e.

STYLE G SGBORD=0.1 1

is equivalent to

STYLE G ! ! ! SGBORD=0.1 WKTYPE=1

Parameter names are case-insensitive but in general they may not be abbreviated. In the help text the abbreviat
level is indicated by a “*” inside the parameter name. For example, if the parameter name is shown as

LIB*RARY

the acceptable abbreviations are “LIB=”, “LIBR=”, “LIBRA=”, “LIBRAR=”, and “LIBRARY=”.

PAW does not insist that an argument of the form “name=value” matches one of the parameter names. The
argument including the “name=” part is simply assigned to the next parameter expected.

Option arguments

The last alternative “-value” to specify an argument applies only to option parameters. (Note the distinction
between option and optional. Option parameters are usually but not necessarily optional.) In the help text option
parameters are tagged by the list of possible values (figure 3.3). Frequently these parameters are named “OPTION”
or “CHOPT”.

The “-value” form allows to specify option arguments out of order, emulating the Unix style of options preceded
other command arguments. For example,

MANUAL -LATEX /KUIP

20 Chapter 3. User interface - KUIP

PAW > HELP MANUAL

* KUIP/MANUAL ITEM [OUTPUT OPTION]

ITEM C ’Command or menu path’

OUTPUT C ’Output file name’ D=’ ’

OPTION C ’Text formatting system’ D=’ ’

Possible OPTION values are:

’ ’ plain text : plain text format

LATEX LaTeX format (encapsulated)

TEX LaTeX format (without header)

Figure 3.3: Example for option parameters

is equivalent to

MANUAL /KUIP OPTION=LATEX

Note that this is not equivalent to “MANUAL OPTION=LATEX /KUIP”. Unlike to the “-value” form subsequent
simple arguments are still assigned to the next parameter expected, not to the one following the option parameter
itself.

Since a leading “-” can be part of a valid (non-option) argument the value is checked against a set of rules before
it is actually interpreted as an option assignment.

The option argument can be a concatenation of several of the allowed option values. PAW checks that the argument
string is exclusively constructed from valid option values. This check is done by removing matches of option values
from the argument string, starting with the longest option values first. For example, with the definition

Possible OPTION values are:

AB

ABC

CD

the argument “-ABCD” is not interpreted as option assignment because after removing the longest match “ABC” the
remainder “D” is not anymore a valid option value. (This case would have to be written as “-CDAB”.

Argument values

Since in command line blanks are used to separate the command name and the individual arguments string val-
ues containing blanks have to be quoted. The rules are the same as used by Fortran: the quote character is the
apostrophe “’”, and apostroph inside a quoted string have to be duplicated:

MESS ’Hello world’

MESS ’Do or don’’t’

Note that the MESSAGE command has only a single parameter:

* KUIP/MESSAGE [STRING]

STRING C ’Message string’ D=’ ’

...

Nevertheless, in most cases quoting the message string is not necessary. If the command line contains more
arguments than there are parameters the additional values are concatenated to the argument for the last parameter.
In the concatenation each value is separated by a (single) blank character, i.e. the commands

3.1. Command line syntax 21

MESS ’Hello World’

MESS Hello World

MESS Hello World

yield all the same output. Therefore the message text only needs quoting if the words should be separated by more
than one space character.
Quoting inhibits the interpretation of the enclosed string as special argument values. Printing an exclamation mark
as message text has to written as

MESS ’!’

because “MESS !” would mean to take the default value for the parameter STRING and yield an empty line only.
Another instance is if an argument of the form “name=value” should be taken literally. For example, the command
line

EXEC mac foo=bar

initializes the macro variable “foo” to the value “bar”. However, if the intention is to pass the string “foo=bar”
as argument to the macro quotes must be used:

EXEC mac ’foo=bar’

In addition, some commands, e.g.

* NTUPLE/PLOT IDN [UWFUNC NEVENT IFIRST NUPD OPTION IDH]

use the form “name=value” for equality tests in the cut expression UWFUNC. For example, the command

NT/PLOT 10.energy year=1998

selects all event for which the Ntuple column YEAR has the value 1998. Any name clash between the Ntuple
column and one of the command parameters requires quoting. If the column was called NUPD instead of YEAR the
command would have to be written as

NT/PLOT 10.energy ’nupd=1998’

or alternatively as “NT/PLOT 10.energy UWFUNC=nupd=1998”.
Finally, quoted strings are also exempted from any substitutions of aliases, system functions, and macro variables.
For example,

MESS ’foo’

always prints “foo” while

MESS foo

can result in “bar” if preceded by the command “ALIAS/CREATE foo bar”. Since square brackets denote macro
variable substitution and system functions names start with a dollar-sign it is especially recommended to quote
VMS file specifications.
The operator “//” allows to concatenate several parts to a single argument value. Unquoted strings on either
side of the concatenation operator are implicitly treated as literals unless they are subject to a substitution, i.e. the
command lines

MESS ’abc’//’def’

MESS ’abc’//def

MESS abc//’def’

MESS abc//def

MESS abcdef

MESS ’a’//’b’//’c’//’d’//’e’//’f’

are all equivalent (provided that abc and def are not defined as aliases). The character sequence “//” at the
beginning or end of an argument is taken literally, e.g. in

CD //LUN2//1

the command receives the value “//LUN21”.

22 Chapter 3. User interface - KUIP

3.1.3 More on command lines

The command line syntax allows to write several commands in one line and also to extend commands with long
argument lists over several lines.

Multiple commands on a single line

An input line presented to the PAW command processor may contain several commands separated by “;”. The
commands are executed sequentially as if they were on separate lines:

MESS Hello world!; MESS How are you?

is equivalent to

MESS Hello world!

MESS How are you?

Note that the text following the semicolon will not be used to satisfy any prompts emitted by the preceding com-
mand, e.g. “usage; manual” will not behave as “usage manual”.

The semicolon is not interpreted as line separator if it is immediately followed by a digit or one of the characters

+ - * ? [

For example, issuing a VMS command with a file version number such as

SHELL delete *.tmp;*

does not require quoting. Note that this exception rule applies independently of the operating system. In order to
avoid surprises we recommend to put always at least one blank after a semicolon intended to be a line separator.

Each command execution returns a status code which is zero for success and non-zero for failure. The sequences
“;&” and “;!” allow to execute the remaining part of an input line depending on the status code of the preceding
command. With

cmd1 ;& cmd2 ; cmd3

the commands cmd2 and cmd3 are only executed if cmd1 succeeded while with

cmd1 ;! cmd2 ; cmd3

the remaining commands are only executed if the first one failed. Note that the two characters must follow each
other immediately without intervening blank.

In some commands, for example HISTO/PLOT, one of the parameters is marked in the help text with the attribute
“Loop”. If the corresponding argument is a comma-separated list of values PAW implicitly repeats the command
for each value in the list individually:

HISTO/PLOT 10,20,30

is equivalent to

HISTO/PLOT 10

HISTO/PLOT 20

HISTO/PLOT 30

Note that “,” inside parentheses is not taken as value separator, i.e.

HISTO/PLOT 10(1:25,1:25)

executes a single command.

3.1. Command line syntax 23

^A/^E Move cursor to beginning/end of the line.

^F/^B Move cursor forward/backward one character.

^D Delete the character under the cursor.

^H, DEL Delete the character to the left of the cursor.

^K Kill from the cursor to the end of line.

^L Redraw current line.

^O Toggle overwrite/insert mode. Text added in overwrite mode (including yanks) overwrites exist-
ing text, while insert mode does not overwrite.

^P/^N Move to previous/next item on history list.

^R/^S Perform incremental reverse/forward search for string on the history list. Typing normal charac-
ters adds to the current search string and searches for a match. Typing ^R/^S marks the start of
a new search, and moves on to the next match. Typing ^H or DEL deletes the last character from
the search string, and searches from the starting location of the last search. Therefore, repeated
DEL’s appear to unwind to the match nearest the point at which the last ^R or ^S was typed. If
DEL is repeated until the search string is empty the search location begins from the start of the
history list. Typing ESC or any other editing character accepts the current match and loads it into
the buffer, terminating the search.

^T Toggle the characters under and to the left of the cursor.

^U Kill from the prompt to the end of line.

^Y Yank previously killed text back at current location. Note that this will overwrite or insert, de-
pending on the current mode.

TAB By default adds spaces to buffer to get to next TAB stop (just after every 8th column).

LF, CR Returns current buffer to the program.

Table 3.1: Key-binding for recall style KSH

Single commands on multiple lines

For commands with very long argument lists it can become necessary to continue it on the next line. An input line
ending with an “_” character is joined with the following line.

In the concatenation the underscore itself and all but one of the leading blanks from the next line are removed.
Blanks preceding the underscore are left intact. For example,

ME_

SS _

’Hello_

world’

is an extravagant way of writing

MESS ’Hello world’

Note that the interpretation of “_” as line continuation cannot be escaped. If the command line should really end
with an underscore the last argument must be quoted.

Recalling previous commands

The command lines types during a session are written into a history file. By default the file is called last.kumac

and is updated every 25 commands. The commands LAST and RECORDING allow to change the file name and the
frequency. At the start of a new session the existing file is renamed into last.kumacold (except on VMS) before
the new last.kumac is created. Comment lines indicate the date and time at which the sessions were started and
stopped.

In this way the user can keep track of all commands entered in the previous and in the current session. The
command “LAST -99” flushes the buffered lines into last.kumac and envokes the editor on the file. The user

24 Chapter 3. User interface - KUIP

BS/^E Move cursor to beginning/end of the line.

^F/^D Move cursor forward/backward one character.

DEL Delete the character to the left of the cursor.

^A Toggle overwrite/insert mode.

^B Move to previous item on history list.

^U Delete from the beginning of the line to the cursor.

TAB Move to next TAB stop.

LF,CR Returns current buffer to the program.

Table 3.2: Key-binding for recall style DCL

can then extract the interactively typed commands and copy them into another .kumac file from which they can be
re-executed.
The command “LAST -n” prints the last n commands entered. On a workstation this allows to re-execute com-
mand sequences by doing cut-and-paste operations with the mouse.
PAW provides a mechanism similar to the one found in the Unix csh shell for re-executing commands:

!-n executes the n’th last command once more.

!! is an short-cut for “!-1” re-executing the last command.

!n re-executes the n’th command entered since the beginning of the session.

! prints the commands together with their numbers. The number of lines printed depend on the recording
frequency.

!foo re-executed the latest command line starting with the string “foo”.

The command line numbering can also be seen if the prompt string contains “[]”:

PAW > PROMPT ’Paw[] ’

Paw[2]

On Unix and VMS PAW also provides recalling and editing of command lines for re-executing. The command
RECALL allows to choose between different key-bindings:

– Recall style KSH has an Emacs-like binding (table 3.1) similar to the one used by the ksh and bash shells.
If the terminal returns ANSI escape sequences the arrow keys can be used instead of ^B/^F/^N/^P.

– Recall style DCL implements the key-binding of VMS line editing (table 3.2).

– The style names KSHO and DCLO allow to switch to overstrike mode instead of the default insert mode.

– Recall style NONE directs PAW to do plain reading from the terminal input.

3.2 Aliases

Aliases allow the user to define abbreviations for parts of a command line. There are two types of aliases, command
aliases and argument aliases, which differ in the way they are recognized in a command line. Both alias types can
be defined by the ALIAS/CREATE command:

* KUIP/ALIAS/CREATE NAME VALUE [CHOPT]

NAME C ’Alias name’

VALUE C ’Alias value’

CHOPT C ’Option’ D=’A’

Possible CHOPT values are:

A create an Argument alias

C create a Command alias

N No alias expansion of value

3.2. Aliases 25

The alias value may be any string but the alias name can only consist letters, digits, “_”, “-”, “@”, and “$”
characters. Command and argument aliases share the same name space. If a command alias with the same name
as an existing argument alias is created, the argument alias is deleted first, and vice versa.

3.2.1 Argument aliases

If an argument alias name is recognized anywhere in the command line it is substituted by its value. The name
matching is case-insensitive and the substitution is literally, i.e. without case folding or insertion of additional
blanks. The replacement is scanned for further occurrences of alias names which in turn will be replaced as well.

The alias name must be separated from the rest of the command line either by a blank or by one of the special
characters

/ , = : ; . % ’ ()

(not necessarily the same character on both sides). For example, if foo and bar are alias names, foot and Bar-B-Q
are not affected. If two alias replacements need to be concatenated the “//” operator can be used, i.e.

ALIAS/CREATE DIR disk$user:[paw]

ALIAS/CREATE FIL file.dat

HISTO/FILE 1 DIR//FIL

translates into “HISTO/FILE 1 disk$user:[paw]file.dat”. Since argument aliases are also recognized in the
command position with the definition abbreviations like HISTO/FIL cannot be used anymore.

Alias substitution does not take place inside quoted strings. The ALIAS commands themselves are treated as a
special case. In the command line parsing they are specifically exempted from alias translation in order to allow
aliases can be deleted and redefined without quoting. For example,

PAW > ALIAS/DELETE *

PAW > ALIAS/CREATE foo bar

PAW > ALIAS/CREATE bar BQ

PAW > ALIAS/CREATE foo tball

PAW > ALIAS/LIST

Argument aliases:

BAR => BQ

FOO => tball

No Command aliases defined.

redefines FOO rather than creating a new alias name BQ. The value part, however, is subject to alias translations. If
the aliases are created in reverse order

PAW > ALIAS/DELETE *

PAW > ALIAS/CREATE bar BQ

PAW > ALIAS/CREATE foo bar

PAW > ALIAS/LIST

Argument aliases:

BAR => BQ

FOO => BQ

No Command aliases defined.

the second alias is created as “ALIAS/CREATE foo BQ”. In this case quoting the alias value does not avoid the
translation. Writing instead

ALIAS/CREATE foo ’bar’

will yield the same result. Since the ALIAS commands bypass part of the command line parsing the translation of
the value part has to be applied by the ALIAS/CREATE command itself. At that stage the information about quoting
is no longer available.

The option “N” allows to inhibit the alias expansion in the value. Using this option can lead to an infinite recursion
of alias translations which will be detected only when one the alias names involved is actually used.

26 Chapter 3. User interface - KUIP

PAW > ALIAS/DELETE *

PAW > ALIAS/CREATE foo bar

PAW > ALIAS/CREATE -N bar foo

PAW > ALIAS/LIST

Argument aliases:

BAR => foo

FOO => bar

No Command aliases defined.

PAW > foo

*** Recursive command alias in foo

*** Recursive argument alias in foo

*** Unknown command: foo

PAW > bar

*** Recursive command alias in bar

*** Recursive argument alias in bar

*** Unknown command: bar

Alias substitution happens before the command line is split-up into command name and arguments. Hence, aliases
can represent several arguments at once. For example,

ALIAS/CREATE limits ’100 -1.57 1.57’

FUN1 10 sin(x) limits

is equivalent to

FUN1 10 sin(x) 100 -1.57 1.57

The quotes in the ALIAS/CREATE command are necessary but they are not part of the alias value. If an alias value
containing blanks is supposed to be treated as a single argument four extra quotes are needed in order that

ALIAS/CREATE htitle ’’’X vs. Y’’’

1D 10 htitle 100 0 1

is equivalent to

1D 10 ’X vs. Y’ 100 0 1

Argument aliases can lead to unexpected interpretations of command lines. For example, a user defining

ALIAS/CREATE e EDIT

wants “E” to be short-hand for the command EDIT. However, the following consequence is probably not intended:

PAW > nt/plot 30.e

***** Unknown name ---> EDIT

For historic reasons the default option for the ALIAS/CREATE command is to define an argument alias. However,
the use of argument aliases can lead to subtle side-effects and should therefore be restricted as much as possible.

3.2.2 Command aliases

This problem described above does not arise if a command alias is created instead:

ALIAS/CREATE -C e EDIT

Command aliases are only recognized if they appear at the beginning of a command line (ignoring leading blanks).
Hence, there is no need to protect command arguments from inadvertent substitutions. Furthermore the match
must be exact (ignoring case differences), i.e. the command

/GRAPHICS/HPLOT/ERRORS

can still be abbreviated as HPLOT/E.
Alias values can also represent several commands by using one of the line separators described in section 3.1.3,
e.g.

ALIAS/CREATE -C ciao ’MESS Hello world! ; MESS How are you?’

3.3. System functions 27

3.3 System functions

A set of built-in, so-called system functions is provided. They allow, for example, to inquire the current di-
alogue style or to manipulate strings. The complete list of available functions can be obtained from “HELP
KUIP/FUNCTIONS”.

The function name is preceded by a $-sign. Arguments are given as a comma separated list of values delimited by
“(” and “)”. The arguments may be expressions containing other system functions.

Functions without arguments must be followed by a character which is different from a letter, a digit, an underscore,
or a colon1. “$OSMOSIS” will not be recognized as the function “$OS” followed by “MOSIS”. If that is the desired
effect the concatenation operator has to be used: “$OS//MOSIS”. Note however that two functions can follow each
other, e.g. “OSMACHINE” because the $-sign does not belong to the function name.

Depending on the setting of the SET/DOLLAR command the name following the $-sign may also be an environment
variable2. The replacement value for “$xxx” is obtained in the following order:

1 If xxx is a system function followed by the correct number and types of arguments, replace it by its value.

2 Otherwise if xxx is an argument-less system functions, replace it by its value.

3 Otherwise if xxx is a defined environment variable, replace it by its value.

4 Otherwise no replacement takes place.

3.3.1 Inquiry functions

Style inquiries

– $STYLE returns the name of the currently active dialogue style (“C”, “G”, “GP”, etc.). This allows, for
example, to a common logon macro containing different default setups depending whether PAW is started in
command line mode or in Motif mode:

IF $STYLE=’XM’ THEN

...

ELSE

...

ENDIF

– $LAST returns the previously executed command sequence:

PAW > MESS Hello world! ; MESS How are you?

Hello world!

How are you?

PAW > MESS $LAST

MESS Hello world! ; MESS How are you?

– $KEYVAL returns the content of the last selected panel box in style GP and

– $KEYNUM returns row/column address in the form “row.col”. The column address is always given as a
two-digit number.

Alias inquiries

– $ANUM returns the number of argument aliases currently defined.

– $ANAM(n) returns the name and

– $AVAL(n) returns the value of the n’th argument alias. No substitution takes place if n is not a number
between 1 and $ANUM. There is no guarantee that “$ANAM($ANUM)” refers to the most recently created alias.

1Excluding the colon as separator avoids the substitution of VMS logical name containing a dollar-sign such as in
“DISK$OS:[dir]file.dat!’’

2On VMS there is a distinction between lowercase and uppercase names. Uppercase names (without the $-sign) are searched for first in the
logical name tables and then in the symbol table while lowercase names are searched for only in the symbol table. The names HOME, PATH,
TERM, and USER have a predefined meaning. In order to avoid conflicts with DCL symbols which are merely defined as abbreviations for
running executables and DCL procedures all values starting with a “$” or “@” character are excluded from substitution.

28 Chapter 3. User interface - KUIP

Vector inquiries

– $NUMVEC returns the number of vectors currently defined.

– $VEXIST(name) returns a positive number if a vector name is currently defined. The actual value returned
is undefined and may even change between tests on the same name. If the vector is undefined the value “0”
is returned.

– $VDIM(name,dim) returns the vector size along index dimension dim; dim = 1 is used if the second
argument is omitted. If the vector is undefined the value “0” is returned.

– $VLEN(name) returns for a 1-dimensional vector the index of the last non-zero element. For 2- and 3-
dimensional vectors the result is the same as for $VDIM. If the vector is undefined the value “0” is returned.

PAW > V/CREATE v1(10) R 1 2 3 4 0 6

PAW > MESS $VDIM(v1) $VLEN(v1)

10 6

PAW > V/CREATE v2($VLEN(v1))

PAW > MESS $VDIM(v2) $VLEN(v2)

6 0

Environment inquiries

– $ARGS returns the program arguments with which PAW was invoked.

– $DATE returns the current date in the format “dd/mm/yy”.

– $TIME returns the current time in the format “hh/mm/ss”.

– $RTIME returns the number of seconds elapsed since the previous usage of $RTIME.

– $CPTIME returns the seconds of CPU time spent since the previous usage of $CPTIME.

– $OS returns an identification for the operating system PAW is running on, e.g. “UNIX”, “VMS” etc...

– $MACHINE returns an identification for the particular hardware platform or Unix brand, e.g. “HPUX”, “IBM”,
or “VAX”. Table 3.3 shows the $OS and $MACHINE values for the different platforms.
On Unix platforms the operating system version can be obtained by $SHELL(’uname -r’).

– $PID returns the process number or “1” if the operating system does not support the notion of process IDs.

– $IQUEST(i) returns the i ’th component of the status vector

COMMON /QUEST/ IQUEST(100)

IQUEST(1) always contains the return code of the most recently executed command.

– $DEFINED(name) returns name if a variable of that name is defined, or the empty string if the variable is
not defined. The argument can contain “*” as wildcard matching any sequence of characters. All matching
variable names are returned as a blank separated list.

– $ENV(name) returns the value of the environment variable name, or the empty string if the variable is not
defined.

– $FEXIST(filename) returns “1” if the file exists, or “0 otherwise.

– $SHELL(command,n) returns the n’th line of output from the shell command.

– $SHELL(command,sep) returns the output from the shell command, where newlines are replaced by the
separator string. The sep argument can be omitted and defaults to a single blank character.
The $SHELL function is operational only on Unix systems. The command string is passed to the shell set by
the HOST_SHELL command. Alias definitions etc. in the shell specific startup script (e.g. .cshrc) are taken
into account.

3.3.2 String manipulations

– $LEN(string) returns the number of characters in string.

– $INDEX(string,substring) returns the position of the first occurence of substring inside string or zero
if there is none.

– $LOWER(string) and

– $UPPER(string) return the argument string converted to lower or upper case, respectively.

– $SUBSTRING(string,k,n) returns the substring

3.3. System functions 29

$OS $MACHINE Platform

UNIX ALPHA DEC Alpha OSF

UNIX APOLLO HP/Apollo DomainOS

UNIX CONVEX Convex

UNIX CRAY Cray Unicos

UNIX DECS DECstation Ultrix

UNIX HPUX HP/UX

UNIX IBMAIX AIX for IBM/370

UNIX IBMRT AIX for RS/6000

UNIX LINUX Linux for PCs

UNIX NEXT NeXT

UNIX SGI Silicon Graphics Irix

UNIX SOLARIS Sun Solaris

UNIX SUN SunOS

VM IBM VM/CMS for IBM/370

MVS IBMMVS MVS for IBM/370

VMS ALPHA VMS for Alpha

VMS VAX VMS for Vax

MSDOS IBMPC MSDOS for PCs

WINNT ALPHA Windows/NT for DEC Alpha

WINNT IBMPC Windows/NT for PCs

Table 3.3: Platform identification with $OS and $MACHINE

– string(k : k + n − 1) if k > 0, or
– string(l + k + 1 : l + k + n) if k ≤ 0, where l = LEN(string).

In any case the upper bound is clamped to LEN(string). The argument n may be omitted and the result
will extend to the end of string. Character counting starts with 1; by definition the replacement is empty if
k = 0 or n = 0. If n < 0 an error message is emitted.

PAW > MESS $SUBSTRING(abcde,2)/$SUBSTRING(abcde,2,3)

bcde/bcd

PAW > MESS $SUBSTRING(abcde,-2)/$SUBSTRING(abcde,-4,3)

de/bcd

– $WORDS(string,sep) returns the number of words in string separated by the sep character. Leading and
trailing separators are ignored and strings of consecutive separators count as one only. The second argument
may be omitted and defaults to blank as the separator character.

PAW > MESS $WORDS(’,abc,def,,ghi’,’,’)

3

– $WORD(string,k,n,sep) returns n words starting from word k. The last two arguments may be omitted
default to blank as separator character and the replacement value extending to the last word in string.

PAW > MESS $WORD(’abc def ghi’,2)

def ghi

PAW > MESS $WORD(’abc def ghi’,2,1)

def

– $QUOTE(string) returns a quoted version of string, i.e. the string is enclosed by quote characters and quote
characters inside string are duplicated. The main use of this function is if an alias value containing blanks
should be treated as a single lexical token in a command line:

ALIAS/CREATE htitle ’Histogram title’

1d 10 $QUOTE(htitle) 100 0 1

30 Chapter 3. User interface - KUIP

Another useful application of $QUOTE is to pass the value of an alias or macro variable as a character constant
to a comis function, for example

foo = ’bar’

CALL fun.f($QUOTE([foo]))

is equivalent to “CALL fun.f(’bar’)”. Since the quotes around “’bar’” are not part of the variable value
the construct “CALL fun.f([foo])” would given the desired result only if the value contains blanks forcing
the implicit quoting in the variable substitution.

– $UNQUOTE(string) returns a string with enclosing quote characters removed. The main use of this function
is if a macro variable should be treated as several blank-separated lexical tokens:

limits = ’100 0 1’

1d 10 ’Histogram title’ $UNQUOTE([limits])

3.3.3 Expression evaluations

– $EXEC(cmd) executes a macro command and returns the macro’s EXITM value. Thus

mess $EXEC(’mname 5’)

is equivalent to

EXEC mname 5

mess [@]

– $EVAL(expr) returns the value of a numeric expression. The expression can contain numeric constants and
references to vector elements joined by “+”, -”, “*”, “/”. Parentheses may be used to override the usual
operator precedence. In addition, the functions ABS(x) (absolute value), INT(x) (truncation towards zero),
and MOD(x,y) (modulus) are available. Note that all operations, including division of two integer numbers,
use floating point arithmetic.

PAW > V/CREATE vec(3) R 1.2 3.4 4.5

PAW > MESS $EVAL((2+3)/4) $EVAL(vec(1)+vec(2)+vec(3))

1.25 9.1

Even if expr is merely a constant, the result is always in a canonical format with a maximum of 6 non-zero
digits. Non-significant zeroes and the decimal point are omitted after rounding the last digit towards +∞ or
−∞. A mantissa/exponent notation is used if the absolute value is ≥ 106 or < 10−4.

PAW > MESS $EVAL(1.500) $EVAL(14.99999) $EVAL(0.000015)

1.5 15 1.5E-05

The explicit use of $EVAL is only necessary if the result should be inserted in a place where a string is
expected, for example in the MESSAGE command. In the instances where a command expects an integer or
real argument expressions are implicitly evaluated even without the $EVAL function.

– $SIGMA(expr) passes the expression to sigma for evaluation. sigma is an array manipulation package
which supports a multitude of mathematical functions (SQRT, EXP, etc.) operating on scalars and vectors:

PAW > V/CREATE v10(10) R 1 2 3 4 5 6 7 8 9 10

PAW > MESS $SIGMA(2*pi) $SIGMA(vsum(v10))

6.28319 55

For a description of the complete sigma expression syntax refer to chapter 5.
sigma expressions do not follow the syntax rules for PAW expressions. Therefore they cannot contain PAW
system functions with arguments. They may, however, contain argument-less system functions, alias names,
and macro variables.

– $RSIGMA is a slight variation of $SIGMA. Both functions return a scalar result in the same canonical format
used by $EVAL. The only difference is that $SIGMA removes the decimal point from integral values while
$RSIGMA leaves it in. For example, $RSIGMA should be used to calculate argument values to be passed to a
comis routine

SUBROUTINE FUN(X)

PRINT *,X

END

as floating point constants:

3.3. System functions 31

PAW > CALL fun.f($SIGMA(sqrt(8)))

2.828430

PAW > CALL fun.f($SIGMA(sqrt(9)))

.4203895E-44

PAW > CALL fun.f($RSIGMA(sqrt(9)))

3.000000

If the expression evaluates to a vector result $SIGMA (and $RSIGMA) return the name of a temporary vector con-
taining the result. $SIGMA with a vector result can be used in all places where a vector name is expected, e.g.

PAW > V/PRINT $SIGMA(sqrt(array(3,1#3)))

?SIG1(1) = 1

?SIG1(2) = 1.41421

?SIG1(3) = 1.73205

The lifetime of these vectors is limited to the current command. Hence, their names should not be assigned to
macro variables and not be used in alias definitions:

PAW > A/CREATE square_roots $SIGMA(sqrt(array(3,1#3)))

PAW > V/PRINT square_roots

*** VECTOR/PRINT: unknown vector ?SIG1

– $FORMAT(expr,format) returns the expression value formatted according to the Fortran format specifier.
The possible formats are “F”, “E”, “G”, “I”, and “Z” (hexadecimal).

PAW > MESS ’x = ’//$FORMAT(1.5,F5.2)

x = 1.50

PAW > MESS ’i = ’//$FORMAT(15,I5)

i = 15

PAW > MESS ’j = ’//$FORMAT(15,I5.4)

j = 0015

– $INLINE(name) allows to insert the value of an alias or macro variable into an expression which is then
treated as being part of the expression. For example,

convert = ’$UPPER’

foo = $INLINE([convert])(’bar’)

is equivalent to “foo = $UPPER(’bar’)”, i.e. “foo = ’BAR’”. Without $INLINE the content of [convert]
would be treated as a text string with the result that “foo = ’$UPPER(’’bar’’)’”.

3.3.4 Histograms inquiry functions

– $HEXIST(id) returns 1 if histogram id exists or 0 otherwise

– $HINFO(id,’ENTRIES’) returns the number of entries.

– $HINFO(id,’MEAN’) returns the mean value.

– $HINFO(id,’RMS’) returns the standard deviation.

– $HINFO(id,’EVENTS’) returns the number of equivalent event.

– $HINFO(id,’OVERFLOW’) returns the content of overflow channel.

– $HINFO(id,’UNDERFLOW’) returns the content of underflow channel.

– $HINFO(id,’MIN’) returns the minimum bin content.

– $HINFO(id,’MAX’) returns the maximum bin content.

– $HINFO(id,’SUM’) returns the total histogram content.

– $HINFO(id,’XBINS’) returns the number of bins in X direction.

– $HINFO(id,’XMIN’) returns the lower histogram limit in X direction.

– $HINFO(id,’XMAX’) returns the upper histogram limit in X direction.

– $HINFO(id,’YBINS’) returns the number of bins in Y direction.

– $HINFO(id,’YMIN’) returns the lower histogram limit in Y direction.

– $HINFO(id,’YMAX’) returns the upper histogram limit in Y direction.

– $HTITLE(id) returns the histogram title.

32 Chapter 3. User interface - KUIP

3.3.5 Graphics inquiry functions

– $GRAFINFO(’XZONES’) returns the number of zones in X direction.

– $GRAFINFO(’YZONES’) returns the number of zones in Y direction.

– $GRAFINFO(’NT’) returns the current normalization transformation number.

– $GRAFINFO(’WNXMIN’) returns the lower X limit of window in current NT.

– $GRAFINFO(’WNXMAX’) returns the upper X limit of window in current NT.

– $GRAFINFO(’WNYMIN’) returns the lower Y limit of window in current NT.

– $GRAFINFO(’WNYMAX’) returns the upper Y limit of window in current NT.

– $GRAFINFO(’VPXMIN’) returns the lower X limit of viewport in current NT.

– $GRAFINFO(’VPXMAX’) returns the upper X limit of viewport in current NT.

– $GRAFINFO(’VPYMIN’) returns the lower Y limit of viewport in current NT.

– $GRAFINFO(’VPYMAX’) returns the upper Y limit of viewport in current NT.

– $GRAFINFO(’?attr’) returns the current value of the hplot/higz attribute attr. See the HELP of the
command SET to have the list of the valid values of attr.

3.3.6 Cuts manipulations

– $CUT(n) returns the cut expression $n

– $CUTEXPAND(string) replace $n in the (quoted) string by $CUT(n)

3.4 Vectors

PAW provides the facilities to store vectors of integer or real data. These vectors, or rather arrays with up to 3 index
dimensions, can be manipulated by PAW commands (see “HELP VECTOR”). Furthermore they are interfaced to the
array manipulation package sigma and to the Fortran interpreter comis (see chapter 5).
Vectors are memory resident only, i.e. they are not preserved across program executions. The commandsVECTOR/READ
and VECTOR/WRITE allow to save and restore vector data from an external file in text format.
Vector names may be composed of letters, digits, underscores and question marks up to a maximum length of
32 characters3. Names starting with “?” are reserved for internal use by PAW.
The only exception is the predefined vector simply called “?” which has a fixed size of 100 real elements. Unlike
the others the “?” vector is mapped to a fixed memory location (the common block /KCWORK/). It does not show
up in VECTOR/LIST output and it is not counted in the result of $NUMVEC.

3.4.1 Creating vectors

Vectors can be created with the VECTOR/CREATE command. The size of the index dimensions is given in Fortran
notation, e.g.

VECTOR/CREATE v1(100)

VECTOR/CREATE v2(10,10)

The lower index bound always starts off at 1, i.e. “V/CREATE v(-10:10)” is not allowed. Omitting the index
dimension as in

VECTOR/CREATE v

is equivalent to

VECTOR/CREATE v(1)

PAW does not keep track of the actual number of index dimension given in the VECTOR/CREATE command, i.e.

VECTOR/CREATE v1(10)

VECTOR/CREATE v3(10,1,1)

are equivalent.

3Vector names which should be processed by sigma are currently limited to 7 characters.

3.5. Expressions 33

Definition: VECTOR/CREATE V(NCOL)

+---+---+---+---+

| | | * | | * is addressed by V(3)

+---+---+---+---+

Definition: VECTOR/CREATE V(NCOL,NROW)

+---+---+---+---+ V(:,3) is the 1-dim array representing the 3rd row
| | | | | V(2,:) is the 1-dim array representing the 2nd column
+---+---+---+---+ the shortcut notation V(2) can be used as well
| | | | |

+---+---+---+---+

| | * | | | * is addressed by V(2,3)

+---+---+---+---+

Definition: VECTOR/CREATE V(NCOL,NROW,NPLANE)

+---+---+---+---+

+---+---+---+---+ |

+---+---+---+---+ |-+

| | | * | |-+ | * is addressed by V(3,1,1)

+---+---+---+---+ |-+

| | | | |-+ |

+---+---+---+---+ |-+

| | | | |-+

+---+---+---+---+

Figure 3.4: Addressing scheme for vectors

3.4.2 Accessing vectors

Single vector elements can be used in expressions where they are treated as numeric constants. Vectors with a
single element only we will refer to as “scalar vectors”. They have the special property that in expressions it is
sufficient to give the name without the “(1)” subscript.

Complete vectors and vector subranges can be used in the $SIGMA function and as argument to commands expect-
ing a vector name. The subrange notation is the same as in Fortran, e.g. v(3:5). The elements of arrays are stored
in column-major order, i.e. the elements v(1,2) and v(2,2) are adjacent in memory (see figure 3.4).

The vector processing commands are expected to deal only with contiguous vectors. Therefore a subrange referring
to a non-contiguous set of elements is copied into a temporary vector and cannot be used as output parameter.

3.5 Expressions

PAW has a built-in parser for different kinds of expressions: arithmetic expressions, boolean expressions, string
expressions, and “garbage expressions”.

3.5.1 Arithmetic expressions

The syntactic elements for building arithmetic expressions are shown in table 3.4. They can be used
– in the macro statements DO, FOR, and EXITM;
– in macro variable assignments;
– as system function arguments where a numeric value is expected;
– as argument to the $EVAL function.

Note that all arithmetic operations are done in floating point, i.e. “5/2” becomes “2.5”. If a floating point result
appears in a place where an integer is expected, for example as an index, the value is truncated.

34 Chapter 3. User interface - KUIP

expr ::= number
| vector-name for scalar vectors

| vector-name (expr)
| vector-name (expr , expr)
| vector-name (expr , expr , expr)
| [variable-name] if variable value has form of a numeric constant or

is the name of a scalar vector

| [variable-name] (expr ...) if variable value is a vector name

| alias-name if alias value has form of a numeric constant

| $system-function (...) if function returns a numeric value

| - expr
| expr + expr
| expr - expr
| expr * expr
| expr / expr
| (expr)
| ABS (expr)
| INT (expr)
| MOD (expr , expr)

Table 3.4: Syntax for arithmetic expressions

bool ::= expr rel-op expr
| string eq-op string
| expr eq-op string
| .NOT. bool
| bool .AND. bool
| bool .OR. bool
| (bool)

rel-op ::= .LT. | .LE.

| < | <=

| .GT. | .GE.

| > | >=

| eq-op
eq-op ::= .EQ. | .NE.

| = | <>

Table 3.5: Syntax for boolean expressions

3.5.2 Boolean expressions

Boolean expressions can only be used in the macro statements IF, WHILE, and REPEAT. The possible syntactic
elements are shown in table 3.5.

In addition, a single arithmetic expression is also accepted as boolean expression, interpreting any non-zero value
as true. This allows, for example, the short-cuts

IF $VEXIST(v1) THEN

...

WHILE 1 DO

...

instead of the explicit forms

IF $VEXIST(v1)<>0 THEN

...

WHILE 1=1 DO

...

Note, however, that an arithmetic expression is not equivalent to a boolean value. This implies that

3.5. Expressions 35

string ::= quoted-string
| unquoted-string
| string // string concatenation

| expr // string value of expression converted to string representation

| [variable-name]
| alias-name
| $system-function (...)

Table 3.6: Syntax for string expressions

IF $VEXIST(v1) .and. $VEXIST(v2) THEN | error

is not accepted and has to be written as

IF $VEXIST(v1)<>0 .and. $VEXIST(v2)<>0 THEN

3.5.3 String expressions

String expressions can be used
– in the macro statements CASE, FOR, and EXITM

– in macro variable assignments
– as system function arguments where a string value is expected
– as argument to the $EVAL function

They may be constructed from the syntactic elements shown in table 3.6.

3.5.4 Garbage expressions

Expressions which do not satisfy any of the above syntax rules we want to call “garbage” expressions. For example,

s = OSMACHINE

is not a proper string expression. Unless they appear in a macro statement where specifically only an arithmetic
or a boolean expression is allowed, PAW does not complain about these syntax errors. Instead the following
transformations are applied:

1 alias substitution

2 macro variable replacement; values containing a blank character are implicitly quoted

3 system function calls are replaced one by one by their value provided that the argument is a syntactically
correct expression

4 string concatenation

The same transformations are also applied to command arguments. Therefore the concatenation operator “//” can
be omitted in many cases. For example,

MESS OSMACHINE

MESS $OS//$MACHINE

MESS $EVAL($OS$MACHINE)

MESS $EVAL($OS//$MACHINE)

give all the same result.

36 Chapter 3. User interface - KUIP

3.5.5 The small-print on expressions

Expressions are evaluated by a yacc-generated parser. Yacc (“Yet Another Compiler-Compiler”) is a standard Unix tool. It
produces a C routine to parse an token stream which follows the syntax rules fixed by the grammar definition.

The parser needs as front-end a lexical analyzer which reads the input stream, separates it into tokens, and returns the token
type and its value to the parser. There is another Unix tool lex which can produce an appropriate lexical analyzer from a set
of rules. The PAW lexical analyzer had to be hand-crafted because the interpretation of a symbol depends very much on the
global context. For example, if the input stream consists is simply “foo” the lexical analyzer has to check consecutively:

– If foo is defined as an alias:
– If the alias value looks like a number, classify it as a number.
– Otherwise classify the alias value as a string.

– Otherwise classify it as the string “’foo’”.

A similar reasoning has to be applied for “[foo]”:

– If foo is a defined macro variable:
– If the variable value looks like a number, classify it as a number.
– If the variable value is the name of a scalar vector, classify it as a number.
– Otherwise classify the variable value as a string.

– Otherwise classify it as the string “’[foo]’”.

Macro variables do not have to (and cannot) be declared. The value is always stored as a string and it depends on the context
whether the value should be interpreted as a number. Also there is no way to tell in the beginning whether the right-hand side
of an assignment is an arithmetic or a string expression.

The lexical analyzer starts off interpreting tokens as a numbers if it can. For example,

a = ’1’

b = ’2’

c = [a]+[b]

is tokenized as “number + number” and gives “c = 3” even though the values assigned to a and b are originally quoted. If we
have a string expression

[foo]//[bar]

this could result in the possible token sequences

string // string

number // string

string // number

number // number

depending whether the values of foo and bar look like a number. Accordingly we would have to define four grammar rules to
cover these different cases. The same problem occurs in system functions expecting a string argument, e.g.

$SUBSTRING([foo],2,3)

would need two rules for foo being a number or a genuine string.

Yacc allows to avoid this inflation of necessary rules by using so-called lexical tie-ins. After having seen “//” or “$SUBSTRING(”
the parser can instruct the lexical analyzer that it should not attempt to classify the next token as a number. Therefore a single
rule for each system function is sufficient.

However, a lexical tie-in can only be used after the parser found a unique match between the token sequence and all grammar
rules In the case of string concatenation we still have to provide two separate rules for

string // string

number // string

The grammar rule (see above) actually says that the left-hand side of the “//” operator can be either an arithmetic or a string
expression. An arithmetic expression is evaluated and then transformed into the result’s string representation. For example,

2*3//4

gives “’64’”. On the other hand,

4//2*3

3.6. Macros 37

gives “’42*3’”. It does not become “’46’” because the right-hand side is not consider to be an arithmetic expression. It does
also not become “126” because a result of a string operation is never again treated as a number even if it looks like one.

The lexical analyzer forwards numbers in arithmetic expressions as floating point values to the parser. The result is converted
back to the string representation when it has to be stored in the macro variable. Since a single numeric value already counts as
an arithmetic expression the original string representation can be lost. For example,

a = ’0123456789’

b = [a]

MESS $LEN([a]) $LEN([b])

results in “10 11” because the assignment “b = 0123456789” is taken as an arithmetic expression which is reformatted into
1.23457E+08. The reformatting can be inhibited by using

b = $UNQUOTE([a])

The $UNQUOTE function removes quotes around a string. If the string is already unquoted it does nothing except that in this case
the parser will treat the value of [a] as a string.

Macros should not depend on this reformatting behavior. We consider it as an obscure side-effect of the present implementation
rather than a feature.

3.6 Macros

A macro is a set of command lines stored in a file, which can be created and modified with any text editor. The
command EXEC invokes the macro and allows for two ways of specifying the macro name:

EXEC file

EXEC file#macro

The first form executes the first macro contained in file while the second form selects the macro named macro.
The default extension for file is “.kumac”.

Example of macro calls

PAW > EXEC abc | Execute first (or unnamed) macro of file abc.kumac

PAW > EXEC abc#m | Execute macro M of file abc.kumac

In addition to all available commands the special “macro statements” in table 3.7 are valid only inside macros
(except for EXEC and APPLICATION, which are valid both inside and outside).

Note that the statement keywords are fixed. Aliasing such as “ALIAS/CREATE jump GOTO” is not allowed.

3.6.1 Macro definitions and variables

A .kumac file can contain several macros. An individual macro has the form

MACRO macro-name [parameter-list]

statements

RETURN [expression]

Each statement is either a command line or one of the macro constructs described below. For the first macro in the
file the MACRO header can be omitted. For the last macro in the file the RETURN trailer may be omitted. Therefore a
.kumac file containing only commands (like the LAST.KUMAC) already constitutes a valid macro.

Input lines starting with an asterisk (“*”) are comments. The vertical bar (“|”) acts as in-line comment character
unless it appears inside a quoted string. An underscore (“_”) at the end of a line concatenates it to the next line.

Invoking a macro triggers the compilation of the whole .kumac file—not just the single macro called for. The

ENDKUMAC

statement fakes an end-of-file condition during the compilation. This allows to keep unfinished material, which
would cause compilation errors, simply by moving it after the ENDKUMAC statement rather than having to comment
the offending lines.

The APPLICATION statement has the same form and similar functionality as the SET/APPLICATION command:

38 Chapter 3. User interface - KUIP

Macro Statements

STATEMENT DESCRIPTION

MACRO mname [var1=val1 ...] define macro mname

RETURN [value] end of macro definition

ENDKUMAC end of macro file

EXEC mname [val1 ...] execute macro mname

EXITM [value] return to calling macro

STOPM return to command line prompt

APPLICATION command marker In-line text passed to application command

name = expression assign variable value

READ var [prompt] prompt for variable value

SHIFT shift numbered macro variables

GOTO label continue execution at label

label: GOTO target label (must terminate with a colon)

IF expr GOTO label continue at label if expr is true

IF-THEN, ELSEIF, ELSE, ENDIF conditional block statement

CASE, ENDCASE Macro flow control

WHILE-DO, ENDWHILE Macro flow control

REPEAT, UNTIL Macro flow control

DO, ENDDO Macro flow control

FOR, ENDFOR Macro flow control

BREAKL Macro flow control

NEXTL Macro flow control

ON ERROR CONTINUE ignore error conditions

ON ERROR GOTO label continue at label on error condition

ON ERROR EXITM value return to calling macro on error condition

ON ERROR STOPM return to command input on error condition

OFF ERROR deactivate the ON ERROR GOTO handling

ON ERROR reactivate the previous ON ERROR GOTO setting

Table 3.7: Macro statements

APPLICATION command marker

text

marker

The text up to the next line containing only the end marker starting in the first column is written to a temporary file
and then passed to the application command. The text is not interpreted in any way, i.e. variable substitution etc.
does not take place.

Instead of the full spelling APPLICATION any valid abbreviation of /KUIP/SET_SHOW/APPLICATIONbe used, e.g.
“APPL”. A call to SET/APPLICATION as a result of an alias expansion, however, is not allowed.

Macro execution

Inside a macro the EXEC statement can call other macros. A macro may also call itself recursively. The EXEC

command allows two different forms for specifying the macro to be executed:

EXEC fname#mname [argument-list]

and

EXEC name [argument-list]

3.6. Macros 39

Between the EXEC statement and the EXEC command there is a slight difference. The command “EXEC name”
executes the first macro in name.kumac while the EXEC statement will try first whether a macro name is defined
within the current .kumac file.

Macro execution terminates when one of the statements

EXITM [expression]

or

RETURN [expression]

or

STOPM

is encountered. The EXITM and RETURN statements return to the calling macro. They allow to pass a return value
which is stored into the special variable [@] of the calling macro. If no value is given it defaults to “0”. Note that
the RETURN statement also flags the end of the macro definition, i.e. the construct

IF ... THEN

RETURN | error!

ENDIF

is illegal. The STOPM statement unwinds nested macro calls and returns to the command line prompt immediately.

Macro variables

Macro variables do not have to be declared. They become defined by an assignment statement:

name = expression

The right-hand side of the assignment can be an arithmetic expression, a string expression, or a garbage expression
(see section 3.5). The expression is evaluated and the result is stored as a string (even for arithmetic expressions).

The variable value can be used in other expressions or in command lines by enclosing the name in square brackets:

[name]

For example,

greet = Hello

msg = [greet]//’ World’

MESS [msg]

If the name enclosed in brackets is not a macro variable then no substitution takes place.

Variable values can also be queried from the user during macro execution. The statement

READ name [prompt]

prompts for the variable value. If the prompt string is omitted it is constructed from the macro and variable
names. The variable value prior to the execution of the READ statement is proposed as default value and will be left
unchanged if the user answers simply be hitting the RETURN-key.

Macro using the READ statement

MACRO m

READ foo

bar = abc

READ bar

MESS [foo] [bar]

msg = ’’

READ msg ’Enter message:’

MESS You said [msg].

40 Chapter 3. User interface - KUIP

Output when executing

PAW > EXEC m

Macro m: foo ? (<CR>=[foo]) 123

Macro m: bar ? (<CR>=abc)

123 abc

Enter message: (<CR>=) Hello

You said Hello.

Macro arguments

The EXEC command can pass arguments to a macro. The arguments are assigned to the numbered variables [1],
[2], etc. For example, with the macro definition

MACRO m

MESS p1=[1] p2=[2]

we get the result

PAW > EXEC m foo bar

p1=foo p2=bar

Unlike named variables undefined numbered variables are always replaced by the blank string ’ ’, i.e.

PAW > EXEC m foo

p1=foo p2=’ ’

The MACRO statement can define default values for missing arguments. With the macro definition

MACRO m 1=abc 2=def

MESS p1=[1] p2=[2]

we get the result

PAW > EXEC m foo

p1=foo p2=def

The macro parameters can also be named, for example:

MACRO m arg1=abc arg2=def

MESS p1=[arg1] p2=[arg2]

Even if the parameters are named the corresponding numbered variables are created nevertheless. The named
variables are a copy of their numbered counterparts rather that aliases, i.e. the above macro definition is equivalent
to

MACRO m 1=abc 2=def

arg1 = [1]

arg2 = [2]

The named parameters can be redefined by a variable assignment which leaves the value of the numbered variable
untouched. For example,

MACRO m arg=old

MESS [1] [arg]

arg = new

MESS [1] [arg]

yields

PAW > EXEC m

old old

old new

3.6. Macros 41

The EXEC command allows to give values for named parameters in non-positional order. For example,

MACRO m arg1=abc arg2=def

MESS [arg1] [arg2]

can be used as

PAW > EXEC m arg2=foo

abc foo

Unnamed EXEC arguments following a named argument are assigned to numbered variables beyond the parameters
listed in the MACRO definition. For example,

PAW > EXEC m arg1=foo bar

foo def

i.e. the second argument “bar” is not assigned to [arg2] or [2] but to [3]. Note that this differs from the behavior
for command arguments (see section 3.1.2).
The construct name=value may also be used in the EXEC command for names not defined in the macro’s parameter
list. The variable name is implicitly defined inside the macro. For example,

MACRO m

MESS [foo]

yields

PAW > EXEC m

[foo]

PAW > EXEC m foo=bar

bar

Therefore a string containing a “=” must be quoted if it should be passed to the macro literally:

PAW > EXEC m ’foo=bar’

foo=bar

Since a undefined variable name can be thought of as having the value ’[name]’, the construct

IF [var]<>’[var]’ THEN

allows to test whether such an external variable definition was provided.
Passing a value as argument to a macro is not quite the same as assigning the value to a variable inside the macro.
The macro argument is not tried to be evaluated as an arithmetic expression. String operations, however, such as
concatenation and alias substitutions, are applied. For example, “EXEC m1 2*3 4//5” with

MACRO m1 a=0 b=0

mess [a] [b]

yields “2*3 45”, while “EXEC m2” with

MACRO m1

a = 2*3

a = 4//5

mess [a] [b]

yields “6 45”. Macro arguments are not tried as arithmetic expressions in order to allow passing of vector names
without the use of quotes. Otherwise “EXEC m v1”, where v1 is a scalar vector, would pass the value of v1(1)
rather than the string ’v1’.
Note that the result “6 45” can also be obtained from the first of the above examples by means of the $INLINE

function:

MACRO m1 1=0 b=0

a = $INLINE([1])

mess [a] [b]

42 Chapter 3. User interface - KUIP

Special variables

A numbered variable cannot be redefined, i.e. an assignment such as “1 = foo” is illegal. The only possibly
manipulation of numbered variables is provided by the

SHIFT

statement which copies [2] into [1], [3] into [2], etc. and discards the value of the last defined numbered
variable. For example, the construct

WHILE [1] <> ’ ’ DO

arg = [1]

...

SHIFT

ENDDO

allows to traverse the list of macro arguments.

For each macro the following special variables are always defined:

– [0] contains the fully qualified macro file name, e.g. “./fname.kumac#mname”

– [#] contains the number of macro arguments

– [*] is the concatenation of all macro arguments separated by blanks

– [@] contains the return value of the most recent EXEC call

Like for numbered variables these names cannot be used on the left-hand side of an assignment. The values or [#]
and [*] are updated by the SHIFT statement.

Example of Input Macros

MACRO EXITMAC

MESSAGE At first, ’[@]’ = [@]

EXEC EXIT2

IF [@] = 0 THEN

MESSAGE Macro EXIT2 successful

ELSE

MESSAGE Error in EXIT2 - code [@]

ENDIF

RETURN

MACRO EXIT2

READ NUM

IF [NUM] > 20 THEN

MESSAGE Number too large

EXITM [NUM]-20

ELSE

V/CREATE V([NUM])

ENDIF

RETURN

Output when executing

PAW > EXEC EXITMAC

At first, [@] = 0

Macro EXIT2: NUM ? 25

Number too large

Error in macro EXIT2 - code 5

PAW > EXEC EXITMAC

At first, [@] = 0

Macro EXIT2: NUM ? 16

Macro EXIT2 successful

3.6. Macros 43

Variable indirection and arrays

Macro variables can be referenced indirectly by constructing the name using other variables, for example

DO i = 1, 10

a_[i] = [i] * [i]

ENDDO

s = 0

DO i = 1, 10

s = [s] + [a_[i]]

ENDDO

While for PAW we simply created ten variables a_1, ..., a_10, we can also look at it as an array a_i. We don’t
even need to remember the dimension of the array. The system function $DEFINED returns all defined variables
matching a wildcard, for example

s = 0

DO i = 1, $WORDS($DEFINED(’a_*’))

s = [s] + [a_[i]]

ENDDO

Instead of a_i we can also use the more conventional array notation a(i)

DO i = 1, 10

a([i]) = [i] * [i]

ENDDO

s = 0

DO i = 1, $WORDS($DEFINED(’a(*)’))

s = [s] + [a([i])]

ENDDO

as long as we have the possibility to match all array elements with a single wildcard expression.

Since for PAW all array elements are just simple variables the indices do not even need to be numeric. We can also
construct associative arrays where the indices are names, for example

events(mu) = 1000

events(el) = 100

events(tau) = 10

total = 0

names = $DEFINED(’events(*)’)

DO i = 1, $WORDS([names])

name = $WORD([names],[i],1)

total = [total] + [[name]]

ENDDO

By the same token we can also create multi-dimensional arrays, for example

DO i = 1, 3

DO j = 1, 3

a([i],[j]) = [i]*2+[j]

ENDDO

ENDDO

The $DEFINED function returns the matching variable names sorted in alphabetical order, i.e.

$DEFINED(’events(*)’) is ’events(el) events(mu) events(tau)’

$DEFINED(’a(*)’) is ’a(1) a(10) a(2) ... a(9)’

and not necessarily in the order in which they were created.

The indirection only allows for variable substitution when constructing the actual variable name. Expression
evaluation etc. does not take place and constructs such as

44 Chapter 3. User interface - KUIP

total = [total] + [$WORD([names],[i],1)] | invalid!

are not allowed.
The construct [[name]] can also be written as

[%name]

For example, this is another way to traverse the list of macro arguments:

DO i=1,[#]

arg = [%i]

...

ENDDO

Except for the [%name]

Global variables

Global variables can be made visible inside a macro by executing the commandsGLOBAL/CREATEor GLOBAL/IMPORT.
Technically these commands create a local variable with the same name initialized to the value of the global vari-
able. When assigning a value to the local variable the change is also propagated to the global variable. Therefore,
once they are made visible inside a macro, global variables are assigned to and used in the same way as local
variables.

The GLOBAL/CREATE command creates a global variable allowing to specify an initial value and a comment text,
e.g.

GLOBAL/CREATE m_e 0.0005 ’Electron mass (GeV)’

GLOBAL/CREATE m_mu 0.106 ’Muon mass (GeV)’

If executed inside a macro the global variable becomes visible there.
The GLOBAL/IMPORTcommand has an effect only when executed inside a macro. It allows to make global variables
visible which have been created elsewhere. The import list may contain “*” as a wildcard for any character
sequence, for example

GLOBAL/IMPORT m_*

Only those global variables existing at the time the GLOBAL/IMPORT is executed become visible. Therefore, global
variables created in an inferior macro do not become visible even if they match the wildcard. For example, in

MACRO a

GLOBAL/IMPORT m_*

EXEC b

...

RETURN

MACRO b

GLOBAL/CREATE m_tau 1.784 ’Tau mass (GeV)’

RETURN

m_tau is not visible in macro a unless it is imported after executing b.
Deleting a global variable in an inferior macro, on the other hand, also deletes the associated local variables in the
macro call stack. For example, in

MACRO a

GLOBAL/IMPORT m_*

EXEC b

...

RETURN

MACRO b

GLOBAL/DELETE m_mu

RETURN

3.6. Macros 45

when returning from macro b the imported variable m_mu will become undefined.

Global variables can also be set and used from the command line, for example,

PAW > g/cre x 2

PAW > x=[x]*2

PAW > mess [x]

4

However, the implicit creation when assigning a value to an undefined variables does not apply:

PAW > y=0

*** Unknown command: y=0

Global variables are available only since the 95a release.

3.6.2 Flow control constructs

There are a variety of constructs available for controlling the flow of macro execution. Most for the constructs
extend over several lines up to an end clause. The complete block counts as a single statement and inside each
block may be nested other block statements.

The simplest form of flow control is provided by the

GOTO label

statement which continues execution at the statement following the target label:

label:

If the jump leads into the scope of a block statement, for example a DO-loop, the result is undefined. The target
may be given as an expression evaluating to the actual label name, e.g.

name = label

...

GOTO [name]

...

label:

In the label definition the colon must follow the label name immediately without any intervening blanks. The label
may be followed by a command on the same line, e.g.

label: MESS Hello

Conditional execution

IF expression THEN

statements

ELSEIF expression THEN

statements

...

ELSEIF expression THEN

statements

ELSE

statements

ENDIF

The general IF construct executes the statements following the first IF/ELSEIF clause for with the boolean expres-
sion is true and then continues at the statement following the ENDIF.

The ELSEIF clause can be repeated any number of times or can be omitted altogether. If none of the expressions
is true, the statements following the optional ELSE clause are executed.

46 Chapter 3. User interface - KUIP

IF expression GOTO label

This old-fashioned construct is equivalent to

IF expression THEN

GOTO label

ENDIF

CASE expression IN

(label) [statements]

...

(label) [statements]

ENDCASE

The CASE switch evaluates the string expression and compares it one by one against the label lists until the first
match is found. If a match is found the statements up to the next label are executed before skipping to the statement
following the ENDCASE. None of the statements are executed if there is no match with any label.

Each label is a string constant and the comparison with the selection expression is case-sensitive. If a label is
followed by another label without intervening statements then a match of the first label will skip to the ENDCASE

immediately. In order to execute the same statement sequence for distinct labels a comma-separated list of values
can be used. The “*” character in a label item acts as wild-card matching any string of zero or more characters, i.e.
“(*)” constitutes the default label.

Example for CASE labels with wild-cards

MACRO CASE

READ FILENAME

CASE [FILENAME] IN

(*.ftn, *.for) TYPE = FORTRAN

(*.c) TYPE = C

(*.p) TYPE = PASCAL

(*) TYPE = UNKNOWN

ENDCASE

MESSAGE [FILENAME] is a [TYPE] file.

RETURN

Loop constructs

The loop constructs allow the repeated execution of command sequences. For DO-loops and FOR-loops the number
of iterations is fixed before entering the loop body. For WHILE and REPEAT the loop count depends on the boolean
expression evaluated for each iteration.

DO loop = start_expr, finish_expr [, step_expr]

statements

ENDDO

The step size defaults to “1”. The arithmetic expressions involved can be floating point values but care must be
taken of rounding errors. A DO-loop is equivalent to the construct

count = (finish_expr - start_expr) / step_expr

loop = start_expr

step = step_expr

label:

IF [count] >= 0 THEN

statements

loop = [loop] + [step]

count = [count] - 1

GOTO label

ENDIF

3.6. Macros 47

where all variables except for loop are temporary.

Note that “DO i=1,0” results in zero iterations and that the expressions are evaluated only once. i.e. the loop

n = 10

DO i=1,[n]

MESS [i] [n]

n = [n] - 1

ENDDO

is iterated 10 times and leaves “i = 11” afterwards.

FOR name IN expr_1 [expr_2 ... expr_n]

statements

ENDFOR

In a FOR-loop the number of iterations is determined by the number of items in the blank-separated expression list.
The expression list must not be empty. One by one each expression evaluated and assigned to the variable name

before the statements are executed. The equivalent construct is the loop-unrolling

name = expr_1

statements

name = expr_2

statements

...

name = expr_n

statements

The expressions can be of any type: arithmetic, string, or garbage expressions, and they do not need to be all of
the same type. In general each expression is a single list item even if the result contains blanks. For example,

foobar = ’foo bar’

FOR item IN [foobar]

MESS [item]

ENDFOR

results in a single iteration. The variable [*] is treated as a special case being equivalent to the expression list
“[1] [2] ... [n]” which allows yet another construct to traverse the macro arguments:

FOR arg IN [*]

...

ENDFOR

WHILE expression DO

statements

ENDWHILE

The WHILE-loop is iterated while the boolean expression evaluates to true. The loop body is not executed at all if
the boolean expression is false already in the beginning. The equivalent construct is:

label:

IF expression THEN

statements

GOTO label

ENDIF

REPEAT

statements

UNTIL expression

The body of a REPEAT-loop is executed at least once and iterated until the boolean expression evaluates to true.
The equivalent construct is:

48 Chapter 3. User interface - KUIP

label:

statements

IF .NOT. expression GOTO label

BREAKL [levels]

allows to terminate a loop prematurely. The BREAKL statement continues executing after the end clause of the
enclosing DO, FOR, WHILE, or REPEAT block.

NEXTL [levels]

allows to terminate one loop iteration and to continue with the next one. The NEXTL statement continues executing
just before the end clause of the enclosing DO, FOR, WHILE, or REPEAT block.

Both BREAKL and NEXTL allow to specify the number of nesting levels to skip as an integer constant.

Example of using BREAKL and NEXTL

WHILE 1=1 DO

...

IF expr THEN

BREAKL

ENDIF

...

DO i=1,[#]

...

IF [%i]=’-’ THEN

NEXTL

ENDIF

IF [%i]=’--’ THEN

NEXTL 2

ENDIF

...

ENDDO

...

ENDWHILE

Equivalent code using GOTOs

WHILE 1=1 DO

...

IF expr GOTO break_while

...

DO i=1,[#]

...

IF [%i]=’-’ GOTO next_do

IF [%i]=’--’ GOTO next_while

...

next_do:

ENDDO

...

next_while:

ENDWHILE

break_while:

Error handling

Each command returns a status code which should be zero if the operation was successful or non-zero if any kind
of error condition occurred. The status code is stored in the IQUEST(1) status vector and can be tested as, for
example

3.6. Macros 49

HISTO/FILE 1 foo.hbook

IF $IQUEST(1)<>0 THEN

*-- cannot open file

... do some cleanup

EXITM 1

ENDIF

ON ERROR GOTO label

installs an error handler which tests the status code after each command and branches to the given label when a
non-zero value is found. The error handler is local to each macro.

ON ERROR EXITM [expression]

and

ON ERROR STOPM

are short-hand notations for an ON ERROR GOTO statement with a EXITM or STOPM statement, respectively, at the
target label.

ON ERROR CONTINUE

nullifies the error handling. Execution continues with the next command independent of the status code. This is
the initial setting when entering a macro.

OFF ERROR

and

ON ERROR

allow to temporarily suspend and afterwards reinstate the previously installed error handling. Note that the OFF/ON
settings do not nest, for example

ON ERROR EXITM

OFF ERROR | behave like ON ERROR CONTINUE

ON ERROR STOPM

OFF ERROR

ON ERROR | restore ON ERROR STOPM

ON ERROR | unchanged, i.e. not ON ERROR EXITM !

Another way of testing the status code of a command is to use the line separators “;&” and “;!” (see section 3.1.3).
These operators take precedence over the ON ERROR setting.

cmd1 ;& cmd2 ; cmd3

is roughly equivalent to

OFF ERROR

cmd1

IF $IQUEST(1)=0 THEN

cmd2

ON ERROR

cmd3

ENDIF

ON ERROR

except that the ON/OFF ERROR statements are virtual and do not overwrite the setting saved by a real OFF ERROR

statement.

50 Chapter 3. User interface - KUIP

3.7 Motif mode

3.7.1 The Browser Interface

The Browser interface is a general tool to display and manipulate a tree structure of objects. The objects contained
in the currently selected directory can be displayed in various forms: big icons, small icons, text only, etc. It is
possible to perform actions on these objects or the directories it-selves by accessing pop-up menus directly attached
to them: this behavior of the browser gives access to a “direct object manipulation” user interface by opposition to
the usual “command mode interface”.

Description of the “Main Browser” Window

When PAW++ start one browser is automatically created and displayed: it is called the “Main Browser”. Later
on it is possible to “clone” this browser (by pressing the corresponding button at the bottom/right) when it is in a
certain state. This will give to the user the possibility to have several instances of the browser window, and look at
the same time to different kind of objects.

A “browser window” is composed of (Fig. 3.5):

– A menu bar with the menu entries “File” ➀, “View” ➁, “Options” ➂, “Commands” ➃ and “Help” ➄.

– A two lines text/label area (➊ and ➋).

– The middle part of the browser is divided into two scroll-able windows: the “FileList” or “Browsable
window” ➌ at the left and the “DirList” or “Object window” ➍ at the right.

– Two lines of information at the bottom (➎ et ➏), plus a “Clone” ➑ and a “Close” ➒ buttons.

Below follows a description of the middle (and main) part of the browser which is divided into two scroll-able
windows on the left and right sides (Fig. 3.5):

– The left hand “FileList” or “Browsable window” ➌ shows the list of all the currently connected browsables.
Some browsables can also be attached at run time by selecting the corresponding “Open” entry in the menu
“File” (e.g. ZEBRA/RZ files for access to histograms and Ntuples).
Pressing the right mouse button in this window shows a pop-up menu with all the possible actions which
have been defined for this browsable.
Selecting one item (or browsable) in this window with the left mouse button executes by default the “List”
action (first entry of the pop-up menu): it displays the content of the browsable in the right hand window
(“DirList” or “Object window”)
Note that the first entry of the pop-up menu of actions for one browsable is always “List” and that the last
entry is always “Help” : it should give information concerning the selected browsable.

– The right hand “DirList” or “Object window” ➍ shows the content of the currently selected browsable
for the selected path. E.g. when you select the browsable “Macro”, you will get all the macro files and
sub-directories which are contained in the selected directory.
Objects are selected by clicking on them with the left mouse button. Pressing the right mouse button pops
up a menu of possible operations depending on the object type ➐.
An item in a pop-up menu is selected by pointing at the corresponding line and releasing the right mouse
button. Double clicking with the left mouse button is equivalent to selecting the first menu item.
Each menu item executes a command sequence where the name of the selected object is filled into the appro-
priate place. By default the command is executed immediately whenever possible. (The commands executed
can be seen by selecting “Echo Commands” in the “Options” menu of the “Executive Window”.) In case
some mandatory parameters are missing the corresponding “Command Argument Panel” is displayed, and
he remaining arguments have to be filled in. The command is executed then by pressing the “OK” or “Exe-
cute” button. (Note that if it is not the last one in the sequence of commands bound to the menu item, PAW
is blocked until the “OK” or “Cancel” button is pressed.)

The two lines text/label area at the top displays information about (Fig. 3.5):

– the current path (or directory) for the selected browsable ➊ (entry “Path:”). The directory can be changed by
pointing at the tail of the wanted sub-path and clicking the left mouse button. Clicking a second time on the
same path segment performs the directory change and updates the “DirList” window with the list of objects.

3.7. Motif mode 51

➀ ➁ ➂ ➃ ➄

➊ ➋

➌ ➍
➎ ➏

➐
➑ ➒

Figure 3.5: “Main Browser” Window

– the number of objects of all the different classes defined for the selected browsable in the current directory
➋.

The two lines of information at the bottom are filled with (Fig. 3.5):

– a short description of the browsable which is currently selected ➎ (entry “File:”),

– a short description of the object which is selected in the “object window” for a given browsable ➏.

Below follows a description of the different Browser menus:

File

The File menu in the paw++ “Main Browser” is shown below.

52 Chapter 3. User interface - KUIP

Open Hbook File... Open one ZEBRA/RZ file.

Close Hbook File... Close one ZEBRA/RZ file.

Exit Exit from PAW.

View

The View menu allows to change the way objects are displayed or selected.

Icons display objects with normal size icons and names (default).

Small Icons display objects with small icons and names.

No Icons display objects without icons, but names and small titles.

Titles display objects without icons, but long titles.

Select All select all the objects.

Filter... ask for a filter to be put on object names.

Options

Raise Window “cascade button” with the list of all opened windows. Selecting one of this window
will pop-up the window on top of the others.

Command Argument Panel selecting this entry will prompt the user for a command name. If the command
is valid then the corresponding “Command Argument Panel” with the list and de-
scription of all parameters will be displayed. If the command is ambiguous (e.g.
command “list”) the user will be proposed a list of all the possible commands. He
can then select one and the corresponding “Command Argument Panel” will be
displayed. If the command does not exist an error message is displayed.

Commands

This menu gives access to the com-
plete tree of commands. When a ter-
minal item (command) in this menu
is selected then the corresponding
“Command Argument Panel” is dis-
played. The functionality of this
menu is quite similar to the brows-
able “Commands” (this is just a mat-
ter of taste whether the user prefer to
access commands through this pull-
down menu or through the “Com-
mands” browser).

3.7. Motif mode 53

➀ ➁ ➂ ➃ ➄

➊ ➋ ➌ ➍➍

➀ Menu bar entry
“File”.

➁ Menu bar entry
“Edit”.

➂ Menu bar entry
“View”.

➃ Menu bar entry
“Options”.

➄ Menu bar entry
“Help”.

➊ Input Pad
➋ Transcript Pad
➌ Current work-

ing directory
indicator.

➍ Hold buttons.

Figure 3.6: “Executive Window”

Browser Setting or Initialization

The following PAW command can be used to set up the browser in a given state, without having to click with the
mouse:

/MOTIF/BROWSER browsable [path]

– browsable is the name of the file (browsable) you want to open (corresponding item is selected in the list of
browsables).

– path (optional) is the pathname to be used for this browsable.

E.g. If you want to open the browser in the state displayed in Fig. 3.5, without having to click with the mouse, you
can execute the PAW command:

/MOTIF/BROWSER Files /neutrons/kuip

3.7.2 The “Executive Window”

This terminal emulator combines Input Pad and Transcript Pad, (automatic file backup of Transcript Pad, string
search in pads, etc.), the Korn shell emacs-style command line editing and command line recall mechanism.

Description and Behavior

The “Executive Window” is composed of three main parts (Fig. 3.6):

– A “menu bar” with the menu entries “File” ➀, “Edit” ➁, “View”➂, “Options”➃, and “Help”➄,.

– A Transcript Pad ➋ which contains the text output.

– An Input Pad ➊ which is an edit-able “scrolled window” where the user can type commands.

54 Chapter 3. User interface - KUIP

Commands are typed in the input pad behind the PAW prompt. Via the toggle buttons ➍ labeled “H” the Input Pad
and/or Transcript Pad can be placed in hold mode. In hold mode one can paste or type a number of commands
into the Input Pad and edit them without sending the commands to PAW. Releasing the hold button will causes the
“Executive Window” to submit all lines, up to the line containing the cursor, to PAW. To submit the lines below
the cursor, just move the cursor down. In this way one can still edit the lines just before they are being submitted
to PAW.

Commands can be edited in the Input Pad using emacs-like key sequences (see section 3.7.2). The Transcript
Pad shows the executed commands and command output. When in hold mode the Transcript Pad does not scroll
to make the new text visible.

Every time the current directory is changed, the Current working directory indicator ➌ is updated. The current
working directory is the one which is currently selected in the “Main Browser”.

Below follows a description of the different “Executive Window” menus. All “Executive Window” menus can
be dynamically extended.

Edit

Cut Remove the selected text. The selected text is written to the Cut
& Paste buffer. Using the “Paste” function, it can be written to
any X11 program. In the Transcript Pad “Cut” defaults to the
“Copy” function.

Copy Copy the selected text. The selected text is written to the Cut
& Paste buffer. Using the “Paste” function, it can be written to
any X11 program.

Paste Insert text from the Cut & Paste buffer at the cursor location
into the Input Pad.

Search... Search for a text string in the Transcript Pad.

View

Show Input Show in a window all commands entered via the
Input Pad.

Command Panel Gives access to the “PANEL interface” for a
panel which has been predefined in a macro file
(see section 3.7.3).

New Command Panel Gives access to the “PANEL interface” for set-
ting a new and empty panel to be filled interac-
tively (see section 3.7.3).

Browser Display another instance of the browser.

Options

Clear Transcript Pad Clear all text off of the top of the Transcript
Pad.

Echo Command Echo executed commands in Transcript Pad.

Timing Report command execution time (real and CPU
time).

Iconify Iconify “Executive Window” and all windows.

Raise Window Display a list of all windows connected. The user
can select the window he wants to pop-up.

Edit Key Sequences

Please note that “C-b” means holding down the Control key and pressing the “b”-key. “M-” stands for the Meta or
Alt key.

3.7. Motif mode 55

C-b: backward character

M-b: backward word

Shift M-b: backward word, extend selection

M-[: backward paragraph

Shift M-[: backward paragraph, extend selection

M-<: beginning of file

C-a: beginning of line

Shift C-a: beginning of line, extend selection

C-osfInsert: copy to clipboard

Shift osfDelete: cut to clipboard

Shift osfInsert: paste from clipboard

Alt->: end of file

M->: end of file

C-e: end of line

Shift C-e: end of line, extend selection

C-f: forward character

M-]: forward paragraph

Shift M-]: forward paragraph, extend selection

C-M-f: forward word

C-d: kill next character

M-BS: kill previous word

C-w: kill region

C-y: yank back last thing killed

C-k: kill to end of line

C-u: kill line

M-DEL: kill to start of line

C-o: newline and backup

C-j: newline and indent

C-n: get next command, in hold mode: next line

C-osfLeft: page left

C-osfRight: page right

C-p: get previous command, in hold mode: previous line

C-g: process cancel

C-l: redraw display

C-osfDown: next page

C-osfUp: previous page

C-SPC: set mark here

C-c: send kill signal

C-h: toggle hold button of pad containing input focus

F8: re-execute last executed command

Shift F8: put last executed command in input pad

Shift-TAB: change input focus

3.7.3 User Definable Panels of Commands

The “PANEL interface” allows to define command sequences which are executed when the corresponding button
in the panel is pressed.

New Panel

It is possible to fill a new and empty panel interactively (see section 3.7.3) giving a label to each button.
In the top menu bar 3 pull-down menus (‘File”, “View” and “Help”) are available. The pull-down menu “File”,
whose contents is displayed, contains the 2 items “Save” (to save the actual panel configuration after editing) and
“Close” (to close the panel and erase it from the screen). The “View” menu contains various options for displaying
the same panel in different ways (see section 3.7.3), and the “Help” menu contains various items to help the user
concerning this panel interface.
This new panel definition can also be done with the command PANEL using the sequence

PANEL 0

PANEL 4.06 ’ ’

PANEL 0 D ’This is my first panel’ 250x200+500+600

56 Chapter 3. User interface - KUIP

NEWPANEL 4 6 ’First panel’ _

250 200 500 600

This command creates an empty panel with 4 rows and
6 columns of buttons. The title of this panel will be set
to “First panel”. The panel size in pixels is 250 (width)
x 200 (height), and the panel position (in pixels) is 500
(along X axis), 600 (along Y axis).

Figure 3.7: New Panel of Commands

You can get automatically access to the command “NEWPANEL” (and its corresponding “Command Argument
Panel”) by selecting the menu item “New Command Panel” in the “View” menu of the “Executive Window” (Fig.
3.7.2).

Predefined Panel of Commands

The command “PANEL” for a key (or button) definition has to be used if you want to describe your panel in a
macro file in order to keep trace of the panel definition, and be able to retrieve it later on. You can predefine as
many panels as you want, and you can easily access them by selecting the menu item “Command Panel” in the
“View” menu of the “Executive Window” (section 3.7.2).

You have to describe in the macro file(s) each button individually. You can also request the macro(s) execution in
your “pawlogon.kumac” file so that the panel(s) will be automatically displayed at the beginning of the session.

The general syntax of the command “PANEL” for a key definition is:

panel x.y command [label] [pixmap]

– x.y is the key position (column and row number),

– command is the complete command (or list of commands) to be executed when the corresponding button is
pressed,

– label (optional) is an alias-name for this command. If specified, this alias-name is used for the button label
(when the appropriate “View” option is selected) instead of the complete command (which is generally too
long for a “user-friendly” button label).

– pixmap (optional) has to be specified for graphical keys (fully described in the next section 3.7.3).

An example of a panel definition is given in figure 3.8.

Panel with Graphical keys (Icons) and “View” Selection

As seen in the previous section, the general syntax of the command “PANEL” for a key definition allows the user
to define graphical keys (or buttons) where pixmaps are used instead of alpha-numerical labels:

panel x.y command [label] [pixmap]

The last parameter pixmap (optional) is the pixmap to be used for representing the key (button) graphically. If it is
specified the graphical representation is displayed by default. It is anyway always possible at run time to ask for
an alpha-numerical representation by selecting the appropriate entry in the “View” menu of the panel.

To create a new icon bitmap (or pixmap) one can use the X11 standard bitmap editor “bitmap”. E.g., to get a
20×20 pixel icon called “m1”, one can type: bitmap m1.bm 20x20. The output file m1.bm containing “#define

3.7. Motif mode 57

➊ ➋ ➌

➀ ➁ ➂

Macro for panel definition

*

* MOTIF_PANEL panel_test.kumac

*

panel 0

panel 3.02 ’list’

panel 3.03 ’null 1 100 1 100’

panel 4.03 ’file’

panel 6.01 ’FUNDEMO’

panel 6.03 ’null’

panel 0 d ’Test Panel’ 450x250+600+600

➊ Close button (to close panel)

➋ Save button (to save panel into a macro file)

➌ Access to various “helps” on the “PANEL interface”

➀ ➁ ➂ User defined buttons

Figure 3.8: Predefined Panel of Commands

m1_width 20 ...” has to be referred in the command “/MOTIF/ICON” (with the correct path for the filename),
e.g. /MOTIF/ICON m1 /user/.../.../m1.bm

The following macro is a general example for a panel definition with graphical keys.

* *

* *** panel.kumac *** *

* *

* General example for a panel with icons definition *

* *

* *

*

* Icon bitmaps

*

/motif/icon m1 mk1.bm

/motif/icon m2 mk2.bm

/motif/icon m3 mk3.bm

/motif/icon m4 mk4.bm

/motif/icon m5 mk5.bm

*

* Panel keys definition

* N.B. General syntax:

* panel r.c command [label] [pixmap]

* label --> command alias

* (written in the panel and executed for <Button press>).

* if <label> (optional) is defined then:

* /KUIP/ALIAS/CREATE <label> <command>

* is automatically generated.

* if <label> is not defined then "command" is used

* for button label.

*

panel 0

panel 2.01 null

58 Chapter 3. User interface - KUIP

panel 2.02 tex_1

panel 3.01 ’/example/general kuip.tex tex 1’ ’tex_1’ m1

panel 3.02 ’/example/general kuip.tex tex 2’ ’tex_2’ m2

panel 3.03 ’/example/general kuip.tex tex 3’ . m3

panel 3.04 ’/example/general kuip.tex tex 4’ . m4

panel 4.01 ’ ’ . m5

panel 4.02 ’tex_5’ . m5

panel 5.01 ’/example/general kuip.tex tex 6’ . sm_menu

panel 5.02 ’/example/general kuip.tex tex 6’ . big_menu

panel 6.01 ’/example/general kuip.tex tex 7’ ’tex_7’

panel 6.02 ’/example/general kuip.tex tex 7’ ’tex_7’ m1

panel 0 d ’Marker Types’ 300x300+500+500

Figure 3.9 shows the panel defined in the macro listed above with different “View(ing)” options. In the first window
(top/right) the “View” menu is displayed, with the different possibilities which are offered to the user to see the
same panel in different ways.

Panel Edition and Saving

All the panels (new or predefined) can be edited interactively. Clicking with the left mouse button on a panel button
removes its definition. Clicking with the right mouse button on an empty panel button the user will be asked to
give a definition to this button (figure 3.10).

The PANEL commands needed to recreate a panel can be automatically saved into a macro file by pressing the
”Save” button ➋ (Fig. 3.8). The panel configuration with its current size and position (which can be modified
interactively) is kept into the macro. Panels can be reloaded either by executing the command ’PANEL 0 D’
or by pressing the ”Command Panel” button in the ”View” menu of the “Executive Window” and entering the
corresponding macro file name.

Some characters in the panel keys/buttons have a special meaning:

– The dollar sign inside a key is replaced by additional keyboard input. For example:

’V/PRINT V($)’ | entering 11:20 will execute V/PRINT V(11:20)

– Keys ending with a double minus sign make an additional request of keyboard input. For example:

V/PRINT V--’ | entering AB will execute V/PRINT VAB

“Multi˙panel” or Palette of panels Definition

It may be nice or more user-friendly to group a certain number of panels (related to similar actions or objects to be
manipulated) in a so-called “palette” of panels. This is possible with the command “MULTI_PANEL” which opens
such a widget. 4

/MOTIF/MULTI_PANEL [title] [geometry]

E.g. MULTI_PANEL ’My Palette’ ’200x100+0+0’will display a ”multi˙panel” widget with title “My Palette”
and geometry “200x100+0+0” (Position=0,0 in X and Y, width=200, height=100). When this command is exe-
cuted all panel definitions and executions will go into this ”multi˙panel” (or palette) widget. This can be done
simply by executing macro(s) containing your panel definition(s), or by selecting the ”Add button” entry in the
menu “File” available in the ”multi˙panel” widget. To terminate a ”multi-panel” setting one just have to type:
MULTI_PANEL end. This means that the following panel definitions and executions will be displayed as individ-
ual panels and will not go into this ”palette” anymore, unless another palette is opened (by executing again the
command “MULTI˙PANEL”). Then the panels will go into that new palette.

The following sequence of commands (which can be put inside a macro) can be used to set up a palette:

4For those who are familiar with the “UIMX” User Interface Management System, this is an emulation of the “Palette” widget which is
built-in inside this program.

3.7. Motif mode 59

‘‘By Name’’ (bottom left): The panel is dis-
played with alphanumeric labels. If the alias-name
“label” is specified in the “panel” command it is
used for the button label, otherwise the complete
command is displayed.

‘‘By Icon’’ (top right): The panel is displayed
with graphical labels (icons), if “pixmap” is speci-
fied in the “panel” command. Otherwise “label” or
the complete command are used instead (no graph-
ical representation). This “view” setting is the de-
fault one (the setting can be changed interactively
at run time, and the default setting can be changed
with the appropriate resource in the “.Xdefaults”
for each user individually).

‘‘By Name and Icon’’: The panel is displayed
with both alphanumeric and graphical (if any) la-
bels. (Not yet implemented ...).

‘‘By Command (normal)’’ The panel is dis-
played with the complete command names. The
arrangement of the buttons stay the same (which
might not be very convenient ... See below).

‘‘By Command (1 col.) (bottom right): The
panel is displayed with the complete command
names BUT the arrangement of the buttons is mod-
ified: all buttons are displayed on one column, and
“blank” buttons are suppressed (this can save a lot
of space, and is more user-friendly, for this kind of
viewing option).

Figure 3.9: Panel “View” Selection

Figure 3.10: Interactive panel button
definition

User-defined “palette”
with 3 panels :

“Various Icons” : this
panel is not displayed
(arrow turned left to
right) at the moment.
One would just have
to press the arrow but-
ton to make it visible
...

“Marker Types” : this
user-defined panel is
visible (arrow turned
top to down). One
can turned it off by
pressing the arrow
button.

”Other Various
Icons” : this user-
defined panel is also
visible.

Figure 3.11: Multi˙panel (or Palette)

60 Chapter 3. User interface - KUIP

MULTI_PANEL

EXEC PANEL1.KUMAC

EXEC PANEL2.KUMAC

EXEC PANEL3.KUMAC

MULTI_PANEL end

N.B. panel1.kumac, panel2.kumac, and panel3.kumac are macro files with “usual” panel setting and defini-
tion.

Figure 3.11 shows an example of a user-defined palette (with some predefined panels). The “arrow buttons” can
be pressed either to reduce the panel to a label containing the panel title (arrow button is then turned left to right)
or to display it (arrow button turned up to down). One can see that the “palette” is a good way to have many panels
defined and save space on the screen.

3.7.4 X-Windows Resources

X-Windows resources control the appearance and behavior of an application. PAW resources be can redefine
them by specifying new values in the standard X11 way : i.e. by editing the “.Xdefaults” file or the system wide
“/usr/lib/X11/app-defaults/<appl_class>”.

Each new resource has to be specified on a separate line. The syntax for editing one specific resource is always the
following:

<appl._class>*<resource_name>: <resource_value>

where:

– “appl.˙class” has to be replaced by “Paw++”.

– “resource˙value” is the value to be given to the corresponding “resource˙name”. It can be an integer, a
boolean value, a color, a font, or any kind of predefined syntax (e.g. for geometry).

The following is a non exhaustive list of the most important or frequently used X-Windows resources. The default
values are put inside “[]”.

– Background and foreground color for all windows (except KXTERM):

...*background: ...

...*foreground: ...

– Geometry ([width]x[height]+[xpos]+[ypos]) of the “Executive Window” (KXTERM):

...*kxtermGeometry: ... [650x450+0+0]

– Geometry of the Browser(s):

...*kuipBrowser_shell.geometry: ... [-0+0] (1) or [+0+485] (2)

(1) without any graphics window - (2) with graphics window(s) managed by HIGZ.

– Geometry of the Graphics Window(s) (if any):

...*kuipGraphics_shell.geometry: ... [600x600-0+0]

– Character font for menus, buttons and dialog area:

...*fontList: ... [-adobe-helvetica-bold-r-normal--12-120-75-75-p-70-iso8859-1]

– Character font for the Input Pad and Transcript Pad (KXTERM):

...*kxtermFont: ... [*-courier-medium-r-normal*-120-*]

– Character font for the “HELP” windows:

...*helpFont: ... [*-courier-bold-r-normal*-120-*]

– Character font for all “Text” widgets:

...*XmText*fontList: ...

...*XmTextField*fontList: ...

– Character font for the icon labels in the browser(s) “Object window”:

...*dirlist*fontList: ...

3.8. Nitty-Gritty 61

– Background and foreground colors for the “Object window” in browser(s):

...*dirlist*background: ...

...*dirlist*foreground: ...

– Background and foreground colors for the icons associated to the object class “objclass”:

...*dirlist*<objclass>*iconBackground: ... [white]

...*dirlist*<objclass>*iconForeground: ... [black]

– Background and foreground colors for the icon-labels associated to the object class “objclass”:

...*dirlist*<objclass>*iconLabelBackground: ... [white]

...*dirlist*<objclass>*iconLabelForeground: ... [black]

– Possibility to turn on/off the zooming effect when traversing directories structures inside the browser(s):

...*zoomEffect: ... [on]

– Speed of the zooming effect in the browser(s) when turned on:

...*zoomSpeed: ... [10]

– Double click interval in milliseconds (time span within which 2 button clicks must occur to be considered
as a double click rather than two single clicks):

...*doubleClickInterval: ... [250]

– Background and foreground colors for the “Browsable window” in browser(s):

...*fileList*background: ...

...*fileList*foreground: ...

– Focus policy:

...*keyboardFocusPolicy: ...

If “explicit” focus is set by the mouse or a keyboard command. If “pointer” focus is determined by the
mouse pointer position.

The appearance and behavior of the “Executive Window” are managed by “KXTERM” whose class-name is
“KXterm”. It means that, for instance, to change the background and foreground color of the “Executive Win-
dow”, one has to override the following resources:

KXterm*background: ...

KXterm*foreground: ...

Concerning the appearance of the built-in icons (browsers for “Commands”, “Files” and “Macro”), the classes of
objects which are currently predefined are:

Cmd -- Command

InvCmd -- Deactivated command

Menu -- Menu tree

MacFile -- Macro File

RwFile -- Read-write file

RoFile -- Read-only file

NoFile -- No access file

ExFile -- Executable file

DirFile -- Directory

DirUpFile -- Up directory (..)

3.8 Nitty-Gritty

3.8.1 System dependencies

PAW tries to provide as far as possible a homogeneous environment across different operating systems and hard-
ware platforms. Here we want to summarize the remaining system-dependencies. To a large extend the comments
made on Unix apply also to the MS-DOS and Windows/NT implementations.

62 Chapter 3. User interface - KUIP

SHELL command

The SHELL command allows to pass a command line to the underlying operating system for execution. If used with-
out arguments the SHELL command suspends PAW and allows to enter OS commands interactively. When leaving
the subprocess, either with the command return or exit depending on the system, PAW resumes execution.

Unix The command HOST_SHELL defines the shell to be invoked. The start-up value is taken from the
environment variable SHELL or set to an appropriate default such as /bin/sh. On some Unix
implementations the SHELL command can fail if there is not enough free swap space to duplicate
the current process.

VMS The SHELL command spawns a subprocess with a DCL command processor. This is notoriously
slow and there is no way to combine several DCL commands into one SHELL command.

EDIT command

The EDIT command allows to edit a file without leaving the PAW. The command HOST_EDITOR defines the editor
to be invoked. The start-up value is taken from the environment variables KUIPEDITOR, EDITOR, or set to a system
dependent default.
HOST_EDITOR sets the shell command (sans filename) for starting the editor. Some values have a system dependent
special meaning.

Unix The default editor is vi. The shell command containing a “&” does not necessarily mean that the
editor will run as a background process (see section 3.8.2).

VMS The special names EDT and TPU use the callable interface to these two editors. The startup time is
much less than, for example EDIT/TPU which spawns a subprocess. However, there is a problem
with the callable EDT. If any error condition occurs (invalid filename etc.) the callable EDT will be
unusable for the rest of the session.

Exception handling

PAW installs a signal handler in order to catch exceptions and return to the command input prompt. The command
“BREAK OFF” disables the signal handler, i.e. PAW aborts in case of an exception. For some systems “BREAK ON”
allows to request a traceback of where the exception has happened.
There are two major types of exceptions caught by the signal handler. Program exceptions indicate either a bug in
PAW or insufficient protection against invalid user input:

Floating point exceptions are caused by divide by zero, floating point overflow, square root of negative numbers
etc. Floating point underflows are usually silently ignored and the result is treated as being zero.

Segmentation violation indicates an attempt to read or write a memory location outside the address space reserved
by the process, e.g. if an array index is out of bounds. In C code it is most often caused by dereferencing
a NULL pointer which is prohibited on many systems.

Bus error is usually caused by an unaligned access. Most RISC processors have strict requirements for properly
aligned data.

Illegal instruction can mean that PAW tries to executed data as code, for example if the return address on the stack
has been overwritten.

Don’t be surprised if PAW shows irregular behavior after an exception!
The second type of exceptions handled by the PAW signal handler are user breaks. Hitting the break key (usually
Ctrl-C) aborts a running command and returns to the input prompt.

Unix The actual break key can be changed with the Unix command stty. The default setup usually is
“stty intr ^C”. Unix provides a second kind of keyboard interrupt which is intentionally not
caught by the PAW signal handler to allow killing run-away processes. A convenient setting is
“stty quit ’\\’”
User break interception does not work for Windows/NT. Tell Microsoft that signal handlers are
pretty useless if they are not allowed to use printf and longjmp.

VMS The user break key is Ctrl-C. Ctrl-Y is treated like Ctrl-C, i.e. it does not bring up the DCL
prompt.

3.8. Nitty-Gritty 63

3.8.2 The edit server

By default editing from within a PAW is synchronous, i.e. PAW is suspended until the editor terminates. On
a workstation this is an inconvenient restriction because the editor can run in a separate window while PAW
continues to accept commands.

To take care of this problem PAW provides a facility called the “edit server”. Instead of calling the editor directly,
PAW starts the editor server as a background process which leaves PAW ready to accept more commands. The
server invokes the editor and waits for it. When the editor terminates the server informs PAW about the file which
is ready.

The processing routine cannot be called at the very instant the file is ready. PAW waits until the user hits the
RETURN-key to execute the next command. The file is then checked in before the command just entered is executed.

As a protection especially for users working alternately on a terminal or on a workstation PAW does not try
asynchronous editing if one of the following conditions is missing:

– The edit server module kuesvr must be found in the search path.

– The editor command set by HOST_EDITOR must end with an ampersand (“&”).

– The environment variable DISPLAY must be set.

Note that the editor command must create its own window, possibly by wrapping the editor into a terminal window.
For convenience “HOST_EDITOR ’vi &’” is interpreted automatically as “xterm -e cmd &”.

Some Unix windowing editors tend to fork themselves as a detached process by default. For example the jot

editor found on Silicon Graphics systems requires a special option “-noFork”. Otherwise the edit server and PAW
think that the editor has already terminated leaving the file unchanged.

In Paw++ it is essential to use the edit server mechanism. Otherwise invoking the editor from a pop-up menu
freezes the screen when the right-hand mouse button is pressed before the subprocess terminates.

The screen can only be unlocked by logging in remotely and killing the PAW.

For asynchronous editing on VMS either the Motif version of TPU must be used or the hosteditor command must
create its own terminal window, e.g.

HOST_EDITOR TPU/DISPLAY=MOTIF

HOST_EDITOR ’CREATE/TERM/WAIT EDT’

Chapter 4: Vectors

Vectors are named arrays of numerical data, memory resident, which can be created during a session, loaded from
HBOOK objects, typed in by hand, read from disk files, operated upon using the full functionality of SIGMA or
COMIS. Vectors can be used to produce graphics output, and, if necessary, stored away on disk files for further
usage. Vectors provide a very convenient mechanism to transport numerical information between different PAW
objects, and to manipulate mathematically their content. At the end of an interactive session, they are lost, unless
previously saved onto disk files.

Vectors can have up to 3 dimensions (in fact they are “arrays”, called “vectors” for historical reasons). They can
be handled by using VECTOR/... commands.

Simple arithmetic operations can be applied to vectors. In addition, as SIGMA is part of PAW, powerful array
manipulation operations are available, through the SIGMA, $SIGMA and APPLICATION SIGMA commands (see
section 5.1 on page 67).

4.1 Vector creation and filling

A vector is created either by the PAW command VECTOR/CREATE, by the SIGMA function ARRAY. or by the
COMIS statement VECTOR.

Example of vector creation

VECTOR/CREATE X(100) will create a 100-components vector, values = 0.

SIGMA X=ARRAY(100,1#100) will create a 100-components vector and assign

to each element the values 1,2,...100

VECTOR X(100) in a COMIS routine creates a 100-components vector

and initialises each element to zero

Once the vector is created, it can be manipulated using the following PAW commands:

VECTOR/INPUT vlist Input from the terminal values into the vector elements specified by the list vlist.

VECTOR/READ vlist Values can be read in from a file into the vector elements specified by the list vlist.

VECTOR/COPY v1 v2 Values in v1 are copied into v2.

VECTOR/WRITE vlist Values in the vector elements specified by the list vlist can be saved on a file.

VECTOR/PRINT vlist Values of the vector elements specified in vlist will be printed on the terminal.

VECTOR/LIST A list of existing vectors and their characteristics is printed on the terminal.

VECTOR/DELETE Allows global or selective deletion of vectors.

4.2 Vector addressing

Indexing of vectors is possible. The indexing permitted in PAW can be considered as a superset of that permitted
by FORTRAN.

Example of vector indices

Vec for all elements

Vec(13) for element 13

Vec(12:) for elements 12 up to the last

Vec(:10) for elements 1 to 10

Vec(5:8) for elements 5 to 8

Sub-elements of the two-dimensional vector Vec(3,100) (3 columns by 100 rows) may be addressed by:

64

4.3. Vector arithmetic operations 65

Using two-dimensional vectors

Vec(2,5:8) for elements 5 to 8 in column 2

Vec(2:3,5:8) for elements 5 to 8 columns 2 to 3

Vec(2,5) for element 5 in column 2

Vec(:,3) for all elements in row 3

Vec(2) for all elements in the 2-nd column (SPECIAL CASE)

4.3 Vector arithmetic operations

A number of basic vector arithmetic operations is available:

VBIAS v1 bias v2 v2(I) = bias + v1(I)

VSCALE v1 scale v2 v2(I) = scale * v1(I)

VADD v1 v2 v3 v3(I) = v1(I) + v2(I)

VMULTI v1 v2 v3 v3(I) = v1(I) * v2(I)

VSUBTR v1 v2 v3 v3(I) = v1(I) - v2(I)

VDIVID v1 v2 v3 v3(I) = v1(I) / v2(I), if v2(I)<>0

In all operations only the minimum vector length is considered, i.e. an operation between a vector A of dimension
10 and a vector B of dimension 5 will involve the first 5 elements for both vectors. If the destination vector does
not exist, it is created with the same length as specified in the source vector.

4.4 Vector arithmetic operations using SIGMA

A more complete and convenient mechanism for the mathematical manipulation of entire vectors is provided by
SIGMA. SIGMA-generated arrays are stored as PAW vectors and therefore are accessible to PAW commands, and
PAW vectors are accessible to SIGMA. The facilities available via SIGMA are described in the next chapter.

4.5 Using vectors in a COMIS routine

The declaration VECTOR vector_name may be used inside a COMIS routine to address a PAW vector. If the
vector does not exist, it is created with the specifications provided by the declared dimension.

4.6 Usage of vectors with other PAW objects

Vectors can be used to transport numerical information between different PAW objects, and to manipulate mathe-
matically their content.

VECTOR/HFILL VNAME ID Each vector element of VNAME is used to fill the existing histogram ID.

HISTOGRAM/GET_VECTOR/CONTENT Provides an interface between vectors and histograms.

HISTOGRAM/PUT_VECTOR/CONTENT Provides an interface between histograms and vectors.

4.7 Graphical output of vectors

VECTOR/DRAW VNAME Interprets the content of the vector VNAME as a histogram contents and draw a
graph.

VECTOR/PLOT VNAME Vector elements are considered as individual values to be entered into a his-
togram and a graph is produced. If VNAME is the name of a vector, then each vec-
tor element of VNAME is used to fill a histogram which is automatically booked
with 100 channels and plotted. If VNAME has the form VNAME1%VNAME2 then a
scatter-plot of vector VNAME1 versus VNAME2 is plotted.

A number of graphical primitives are available in PAW. Those directly related to the graphical output of vectors
are:

66 Chapter 4. Vectors

GRAPH N X Y Draw a curve through a set of points defined by arrays X and Y.

HIST N X Y Draw an histogram defined by arrays X and Y.

PIE X0 Y0 RAD N VAL Draw a pie chart, of N slices, with size of slices given in VAL, of a radius RAD,
centered at X0, Y0.

4.8 Fitting the contents of a vector

A user defined (and parameter dependent) function can be fitted to the points defined by the two vectors X and Y

and the vector of associated errors EY. The general syntax of the command to fit vectors is:

VECTOR/FIT x y ey func [chopt np par step pmin pmax errpar]

For more information have a look at the online help of this command in PAW.

Chapter 5: SIGMA

5.1 Access to SIGMA

The SIGMA array manipulation package can be accessed in three different ways in PAW:

Precede the statement by the prefix SIGMA

Example

PAW > SIGMA xvec=array(100,-pi#pi*2)

PAW > SIGMA y=sin(xvec)*xvec

Note the use of the predefined constant PI in SIGMA with the obvious value.

The PAW command: APPLication SIGMA

All commands typed in after this command will be directly processed by SIGMA. The command EXIT will return
control to PAW, e.g.

PAW > APPLication SIGMA

SIGMA > xvec=array(100,-pi#pi*2)

SIGMA > sinus=sin(xvec)*xvec

SIGMA > cosinus=cos(xvec)*xvec

SIGMA > exit

PAW > vector/list

Vector Name Type Length Dim-1 Dim-2 Dim-3

XVEC R 100 100

SINUS R 100 100

COSINUS R 100 100

Total of 3 Vector(s)

The PAW system function $SIGMA

The expression to be evaluated must be enclosed in parentheses. The function will return the numerical value of
the expression (if the result is a scalar) or the name of a temporary vector (if the result is a vector).
Assuming that the computation of the function sin(x)*x in the above example would be only for the purpose
of producing a graph, (i.e. the result is not needed for further calculations), then one could just have typed the
following commands:

PAW > SIGMA xvec=array(100,-pi#pi*2)

PAW > GRAph 100 xvec $SIGMA(SIN(XVEC)*XVEC)

5.2 Vector arithmetic operations using SIGMA

A complete and convenient mechanism for the mathematical manipulation of vectors is provided by SIGMA. In
the following, we use the words “array” and “vector” as synonyms. In both cases, we refer to PAW vectors, in the
sense that SIGMA offers an alternative way to generate and to manipulate PAW vectors (see section 4 on page 64).
The notation of SIGMA is similar to that of FORTRAN, in the sense that is based upon formulae and assignment
statements.
The special operator ARRAY is used to generate vectors:

vname = ARRAY (arg1,arg2)

vname Name of the vector (array) being created.

arg1 Defines the array structure, i.e. the Number of COmponents (NCO) of the array.

arg2 Provides the numerical values filling the array row-wise.
If arg2 is absent (or does not provide enough values) the array is filled with 1.

67

68 Chapter 5. SIGMA

5.2.1 Basic operators

+ Add

- Subtract

* Multiply

/ Divide

** Exponentiation

& Concatenation

Note that ill defined operations will give 0. as result. For instance: a division by zero gives zero as result.

5.2.2 Logical operators

Logical operators act on entities that have Boolean values 1 (true) or 0 (false). The result is Boolean.

AND Logical operation AND

NOT Logical operation NOT

OR Logical operation OR

EQ EQual to

GE Greater or Equal to

GT Greater Than

LE Less or Equal to

LT Less Than

NE Not Equal

5.2.3 Control operators

!PRINT Provides the automatic printing of every newly created array or scalar.

!NOPRINT Suppresses the automatic printing of every newly created array or scalar.

Examples

A=ARRAY (6,1#6) 1 2 3 4 5 6

A=ARRAY (4) 1 1 1 1

A=ARRAY (5,2&3&-1&2&1.2) 2 3 -1 2 1.2

A=ARRAY (3)*PI 3.1415927 3.1415927 3.1415927

A=ARRAY (1,123E4) 1230000.0

5.3 SIGMA functions

SIGMA provides some functions which perform a task on a whole array. These functions have no analogues in
FORTRAN because all FORTRAN functions operate on one or more single numbers. Presently available SIGMA
functions are listed in table 5.1 below.

5.3.1 SIGMA functions - A detailed description.

In the following description of the SIGMA functions, the letter R always denotes the result and arg denotes one or
more arguments. Any argument may itself be an expression. In that case arg means the result of this expression.
Let OP denote any of the above array functions, then the statement:

R = OP (arg1,arg2,...)

produces R without doing anything to the contents stored under the names appearing in arg1,arg2,.... Thus,
although in the description we may say “...OP does such and such to arg ...”, in reality it leaves arg intact and
works on the argument to produce R.

5.3. SIGMA functions 69

Name Result Explanation

ANY Scalar The result is a Boolean scalar of value 1 (true) if at least one component of the argu-
ment is true and 0 (false) otherwise.

DEL Vector Analog to the Dirac-DELta Function. V1=DEL(V) sets each element of V1 to 0.0 (if
corresponding element in V is non-zero) or to 1.0 (if corresponding element is zero).

DIFF Vector V2=DIFF(V) forward difference of V. The rightmost value in V1 is obtained by
quadratic extrapolation over the last three elements of V.

LS Vector V1=LS(V,N) shifts index of V to the left by N steps (cyclic).

LVMAX Scalar S1=LVMAX(V1) sets S1 equal to the index (location) of the maximum value in vector
V1.

LVMIM Scalar S1=LVMIN(V1) sets S1 equal to the index (location) of the minimum value in vector
V1.

MAX Vector V3=MAX(V1,V2) sets each element of V3 equal to the maximum of the corresponding
elements in V1 and V2.

MAXV Vector V1=MAXV(V) sets each element of V1 equal to the maximum value in V.

MIN Vector V3=MIN(V1,V2) sets each element of V3 equal to the minumum of the corresponding
elements in V1 and V2.

MINV Vector V1=MINV(V) sets each element of V1 equal to the minimum value in V.

NCO Scalar V1=NCO(V) Number of COmponents of vector of V.

ORDER Vector V1=ORDER(V,V2) finds a permutation that brings V2 in a non-descending order and
applies it to V to generate V1.

PROD Vector V1=PROD(V) V1 is the running product of V.

QUAD Vector V2=QUAD(V1,H)The quadrature function QUAD numerically integrates each row of V1
with respect to the scalar step size H.

SUMV Vector V2=SUMV(V1) running sum of V.

VMAX Scalar S1=VMAX(V1) sets S1 equal to the maximum value in vector V1.

VMIN Scalar S1=VMIN(V1) sets S1 equal to the minimum value in vector V1.

VSUM Scalar S1=VSUM(V) sum of all components of V.

Table 5.1: SIGMA functions

R = ANY (arg)

The function ANY considers the result of the argument expression as a Boolean array. SIGMA represents “true” by
1 and “false” by 0. Thus the components of arg must be either 0 or 1, otherwise an error is generated.

If at least one component of the result of the argument expression is 1, than ANY returns the scalar 1. If all
components of the result of the argument expression are 0 then ANY returns the scalar 0. If arg is a Boolean scalar,
R = arg.

Example of the ANY command

PAW > APPL SIGMA

SIGMA > !PRINT | Print newly created vectors and scalars

SIGMA > W=(-2)**ARRAY(10,1#10)

NCO(W)= 10

W =

-2.000 4.000 -8.000 16.00 -32.00 64.00

-128.0 256.0 -512.0 1024.

SIGMA > X=W GT 0

NCO(X)= 10

X =

0.0000 1.000 0.0000 1.000 0.0000 1.000

70 Chapter 5. SIGMA

0.0000 1.000 0.0000 1.000

SIGMA > R=ANY(X)

NCO(R)= 1

R 1.000

R = DEL (arg)

DEL is a discrete analogue of a Dirac delta function. DEL works independently on each row of the argument array.
If the elements of any row of the argument are denoted by X1, X2, . . . , Xi, . . . , Xn then the corresponding row
of the result of the delta function operation will be Z1, Z2, . . . , Zi, . . . , Zn where all Zi = 0 except in three
cases, in which Zi = 1, namely:

1 When the component Xi is itself zero.

2 When Xi−1, Xi are of opposite sign and |Xi| < |Xi−1| If i = 1 then linear extrapolation to the left is used.

3 When Xi, Xi+1 are of opposite sign and |Xi| ≤ |Xi+1| If i = 1 then linear extrapolation to the right is
used.

If arg is a scalar, the value of DEL(arg) will be 1 if arg is zero, and 0 otherwise.

Example of the del command

SIGMA > W=array(11,-1#1)

NCO(W)= 11

W =

-1.000 -0.8000 -0.6000 -0.4000 -0.2000 -0.2980E-07

0.2000 0.4000 0.6000 0.8000 1.000

SIGMA > X= (W+1.01)*W*(W-.35)*(W-.42)

NCO(X)= 11

X =

-0.1917E-01 -0.2357 -0.2384 -0.1501 -0.5524E-01-0.4425E-08

0.7986E-02 -0.5640E-03 0.4347E-01 0.2476 0.7578

SIGMA > R=del(x)

NCO(R)= 11

R =

1.000 0.0000 0.0000 0.0000 0.0000 1.000

0.0000 1.000 0.0000 0.0000 0.0000

R = DIFF (arg)

The DIFF function generates the forward difference of each row of the argument array, say X1, X2, . . . ,
Xi, . . . , Xn and creates an array with components equal to the forward difference of X : X2 − X1, X3 − X2,
. . . , Xn − Xn−1, X0 where the rightmost value X0 is obtained by quadratic extrapolation over the last three
elements of the result of arg. Applied to a scalar DIFF gives a zero result.

Example of the DIFF command

SIGMA > x=array(6,5#0)

NCO(X)= 6

X =

5.000 4.000 3.000 2.000 1.000 0.0000

SIGMA > Y=x*x

NCO(Y)= 6

Y =

25.00 16.00 9.000 4.000 1.000 0.0000

SIGMA > Z=Diff(Y)

NCO(Z)= 6

Z =

-9.000 -7.000 -5.000 -3.000 -1.000 1.000

5.3. SIGMA functions 71

R = LS (arg1,arg2)

The LS rearrangement function performs a left shift. arg1 is the array to be shifted; arg2 must be a scalar value
(rounded if necessary by the system), interpreted as the number of places the array has to be shifted to the left. The
scalar arg2 can be negative, in which case LS shifts to the right a number of places equal to the absolute value of
arg2.

It should be noted the the shift is performed circularly modulo N, where N is the number of components in the
rows of the array to be shifted. Hence, LS(X,N+l) shifts the N component rows of X by 1 to the left, and LS(X,-l)
shifts the rows by N-1 to the left (or by 1 to the right). If arg1 is a scalar, R = arg1.

Example of the left shift command

SIGMA > X=array(4&5,array(20,1#20))

NCO(X)= 4 5

X =

1.000 2.000 3.000 4.000

5.000 6.000 7.000 8.000

9.000 10.00 11.00 12.00

13.00 14.00 15.00 16.00

17.00 18.00 19.00 20.00

SIGMA > y=ls(x,1)

NCO(Y)= 4 5

Y =

2.000 3.000 4.000 1.000

6.000 7.000 8.000 5.000

10.00 11.00 12.00 9.000

14.00 15.00 16.00 13.00

18.00 19.00 20.00 17.00

SIGMA > y=ls(x,-3)

NCO(Y)= 4 5

Y =

2.000 3.000 4.000 1.000

6.000 7.000 8.000 5.000

10.00 11.00 12.00 9.000

14.00 15.00 16.00 13.00

18.00 19.00 20.00 17.00

SIGMA > X=array(5,1#5)

NCO(X)= 5

X 1.000 2.000 3.000 4.000 5.000

SIGMA > z=ls(x,3)

NCO(Z)= 5

Z 4.000 5.000 1.000 2.000 3.000

SIGMA > z1=ls(x,-4)

NCO(Z1)= 5

Z1 2.000 3.000 4.000 5.000 1.000

R = LVMAX (arg1) and R = LVMIN (arg1)

The functions LVMAX and LVMIN returns as a scalar result the index (position) of the largest or smallest element,
respectively, in the argument array.

Example of using the LVMAX and LVMIN commands

SIGMA > x=sin(array(10,1#10))

NCO(X)= 10

X =

72 Chapter 5. SIGMA

0.841 0.909 0.141 -0.757 -0.959 -0.279 0.657

0.989 0.412 -0.544

SIGMA > r=lvmax(x)

NCO(R)= 1

R 8.00

R = MAX (arg1,arg2) and R = MIN (arg1,arg2)

The functions MAX and MIN work independently on each element of their arguments. arg2 can be a scalar. The
result has the same dimension as the argument array arg1 and each element of the result is set equal to the largest
or smallest element, respectively, of the corresponding element of the argument arrays.

Example of using the MAX and MIN commands

SIGMA > x=sin(array(10,1#10))

NCO(X)= 10

X =

0.841 0.909 0.141 -0.757 -0.959 -0.279 0.657

0.989 0.412 -0.544

SIGMA > y=cos(array(10,1#10))

NCO(Y)= 10

Y =

0.540 -0.416 -0.990 -0.654 0.284 0.960 0.754

-0.146 -0.911 -0.839

SIGMA > z=min(x,y)

NCO(Z)= 10

Z =

0.540 -0.416 -0.990 -0.757 -0.959 -0.279 0.657

-0.146 -0.911 -0.839

R = MAXV (arg) and R = MINV (arg)

The extrema functions MAXV and MINV work on each element of their argument and the result has the same di-
mension as the argument array arg1. Each element of of the result is set equal to the largest or smallest element,
respectively, of the corresponding row of the argument array.

All these functions, if applied to a scalar argument, yield R=arg.

Example of using the MAX and MIN commands

SIGMA > x=array(10,0#10)

NCO(X)= 10

X =

0.0000 1.111 2.222 3.333 4.444 5.556

6.667 7.778 8.889 10.00

SIGMA > s=sin(x)*x

NCO(S)= 10

S =

0.0000 0.9958 1.767 -0.6352 -4.286 -3.695

2.494 7.755 4.539 -5.440

SIGMA > x=minv(s)

NCO(X)= 10

X =

-5.440 -5.440 -5.440 -5.440 -5.440 -5.440

-5.440 -5.440 -5.440 -5.440

5.3. SIGMA functions 73

R = NCO (arg)

The “Number of COmponents” (NCO) control function obtains the NCO vector of the arg. The NCO vector of a
scalar is the scalar 1. For any argument the NCO(NCO(arg)) gives the number of dimensions of the arg.

Using the NCO command

SIGMA > x=array(4&3&2,array(24,2#48))

NCO(X)= 4 3 2

X =

2.000 4.000 6.000 8.000

10.00 12.00 14.00 16.00

18.00 20.00 22.00 24.00

26.00 28.00 30.00 32.00

34.00 36.00 38.00 40.00

42.00 44.00 46.00 48.00

SIGMA > r=nco(x)

NCO(R)= 3

R 4.000 3.000 2.000

SIGMA > ndim=nco(nco(x))

NCO(NDIM)= 1

NDIM 3.000

R = ORDER (arg1,arg2)

The ordering function ORDER acts independently on each row of arg1. arg2 must have the same row length as
arg1.
ORDER finds the permutation that brings arg2 into a non-descending sequence (row-wise) and constructs the result
by applying this permutation to arg1. It may in some cases be expanded to that structure by using the techniques
of the topological arithmetic. This is particularly useful if arg2 is a single vector with the length of the rows of
arg1.

Using the ORDER command

SIGMA > X = 1&1&2&4&-3&1&3

NCO(X)= 7

X =

1.00 1.00 2.00 4.00 -3.00 1.00 3.00

SIGMA > P = ORDER(X,X)

NCO(P)= 7

P =

-3.00 1.00 1.00 1.00 2.00 3.00 4.00

SIGMA > P = ORDER(X,-X)

NCO(P)= 7

P =

4.00 3.00 2.00 1.00 1.00 1.00 -3.00

SIGMA > Y = ARRAY(7,1# 7)

NCO(Y)= 7

Y =

1.00 2.00 3.00 4.00 5.00 6.00 7.00

SIGMA > P = ORDER(Y,X)

NCO(P)= 7

P =

5.00 1.00 2.00 6.00 3.00 7.00 4.00

R = PROD (arg)

The PROD function generates the running product of each row of the argument array, say X1, X2, . . . , Xn and
creates an array with components equal to the running product of the component of the argument: X1, X2, . . . , Xn

X1, X1 × X2, . . . , X1 × X2 × . . . Xn

74 Chapter 5. SIGMA

Using the TIMES command

SIGMA > x=array(6&4,array(24,1#24))

NCO(X)= 6 4

X =

1.000 2.000 3.000 4.000 5.000 6.000

7.000 8.000 9.000 10.00 11.00 12.00

13.00 14.00 15.00 16.00 17.00 18.00

19.00 20.00 21.00 22.00 23.00 24.00

SIGMA > y=prod(x)

NCO(Y)= 6 4

Y =

1.000 2.000 6.000 24.00 120.0 720.0

7.000 56.00 504.0 5040. 0.5544E+05 0.6653E+06

13.00 182.0 2730. 0.4368E+05 0.7426E+06 0.1337E+08

19.00 380.0 7980. 0.1756E+06 0.4038E+07 0.9691E+08

R = QUAD (arg1,arg2)

The quadrature function QUAD numerically integrates each row of arg1 with respect to the scalar step size h

defined by arg2.

The result R has the same dimension as arg1 and the integration constant is fixed by choosing the first point of the
result to be zero.

The method uses a four-point forward and backward one-strip-formula based on Lagrange interpolation. We have
for the first point of the result:

R1 =

∫ x1

x1

(arg1)dx = 0

for the second and third points

Ri+1 = Ri +
h

24
(9fi + 19fi+1 − 5fi+2 + fi+3)

and for all subsequent points

Ri = Ri−1 +
h

24
(fi−3 − 5fi−2 + 19fi−1 + 9fi)

where the fi are elements of arg1 and are assumed to be values of some functions evaluated at equidistant intervals
with interval width equal to h (h being equal to the value of arg2).

R = SUMV (arg)

The SUMV function generates the running summation of each row of the argument array, say X1, X2, . . . ,
Xi, . . . , Xn and creates an array with components equal to the running sum of the Xi namely: X1, X1 + X2,
. . . , X1 + X2 + . . .Xi, . . . , X1 + X2 + . . . Xn.

Using the SUM function

SIGMA > x=array(6&4,array(24,1#24))

NCO(X)= 6 4

X =

1.000 2.000 3.000 4.000 5.000 6.000

7.000 8.000 9.000 10.00 11.00 12.00

13.00 14.00 15.00 16.00 17.00 18.00

19.00 20.00 21.00 22.00 23.00 24.00

5.3. SIGMA functions 75

SIGMA > *********************

SIGMA > * SIGMA application *

SIGMA > * showing use of *

SIGMA > * QUAD numeric *

SIGMA > * integration *

SIGMA > *********************

SIGMA > x=array(101,0#2*pi)

SIGMA > * Function value array

SIGMA > y=sin(x)

SIGMA > * Step size

SIGMA > dx=0.6283186E-01

SIGMA > print dx

NCO(DX)= 1

DX 0.6283186E-01

SIGMA > * Integration of SIN(X)

SIGMA > * in interval 0<=X<+2*PI

SIGMA > f=quad(y,dx)

SIGMA > * Analytical result

SIGMA > * is 1-COS(X)

SIGMA > g=1-cos(x)

SIGMA > * Compute the difference

SIGMA > erro=(g-f)*10**6

SIGMA > * Plot the difference

SIGMA > * in units of 10−6

SIGMA > exit

PAW > opt GRID

PAW > gra 101 x erro

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5 6

Figure 5.1: Using numerical integration with SIGMA

SIGMA > y=sumv(x)

NCO(Y)= 6 4

Y =

1.000 3.000 6.000 10.00 15.00 21.00

7.000 15.00 24.00 34.00 45.00 57.00

13.00 27.00 42.00 58.00 75.00 93.00

19.00 39.00 60.00 82.00 105.0 129.0

R = VMAX (arg) and R = VMIN (arg)

The functions VMAX and VMIN return a scalar equal to the largest or smallest element of the array arg.

R = VSUM (arg1)

The VSUM function generates the sum of each element of the argument array, say X1, X2, . . . , Xi, . . . , Xn and
creates a scalar whose value is equal to the sum of all the components of X namely: X1 + X2 + X3, . . . , Xn

Using the VSUM function

SIGMA > x=array(10)

NCO(X)= 10

X =

1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00

SIGMA > r=vsum(x)

NCO(R)= 1

R 10.0

76 Chapter 5. SIGMA

5.4 Available library functions

The library functions available under SIGMA are listed below. All these functions have a single argument, unless
otherwise indicated. The number indicated between parentheses corresponds to the number of the same function
in the CERN program library.

ABS ABSolute value

ACOS ArCOSine

ALOGAM LOGarithm of the GAMma Function (C341)

ASIN ArcSINe

ATAN ArcTANgent

ATAN2 ArcTANgent2 (2 arguments)

BESI0 Mod. Bessel Function I0 (C313)

BESI1 Mod. Bessel Function I1 (C313)

BESJ0 Bessel Function J0 (C312)

BESJ1 Bessel Function J1 (C312)

BESK0 Mod. Bessel Function K0 (C313)

BESK1 Mod. Bessel Function K1 (C313)

BESY0 Bessel Function Y0 (C312)

BESY1 Bessel Function Y1 (C312)

COS COSine

COSH Hyperbolic COSine

COSINT COSine INTegral (C336)

DILOG DILOGarithm Function (C304)

EBESI0 exp(−|x|)I0(x) (C313)

EBESI1 exp(−|x|)I1(x) (C313)

EBESK0 exp(x)K0(x) (C313)

EBESK1 exp(x)K1(x) (C313)

ELLICK Complete Elliptic Integral K (C308)

ELLICE Complete Elliptic Integral E (C308)

ERF Error Function ERF (C300)

ERFC Error Function ERFC (C300)

EXP EXPonential

EXPINT EXPonential INTegral (C337)

FREQ Normal Frequency Function FREQ (C300)

GAMMA GAMMA Function (C305)

INT Takes INTegral part of decimal number

LOG Natural LOGarithm

LOG10 Common LOGarithm

MOD Remaindering

RNDM Random Number Generator: V1=RNDM(V), with NCO(V1)=NCO(V) generates random numbers between 0 and 1.

SIGN Transfer of SIGN: V2=SIGN(V,V1), V2=|V|*V1/|V1|

SIN SINe Function

SINH Hyperbolic SINe

SININT SINe INTegral (C336)

SQRT SQuare RooT

TAN TANgent

TANH Hyperbolic Tangent

Ill defined functions will return 0. as result. (e.g. SQRT of a negative number is taken as 0).

Chapter 6: HBOOK

6.1 Introduction

Many of the ideas and functionality in the area of data presentation, manipulation and management in PAW find
their origin in the HBOOK subroutine package [2], which handles statistical distributions (histograms and Ntuples).
HBOOK is normally run in a batch environment, and it produces generally graphics output on the line printer or,
optionally, via the HPLOT [7] package on a high resolution graphic output device.
The HBOOK system consists of a few hundred FORTRAN subroutines which enable the user to symbolically
define, fill and output one- and two-dimensional density estimators, under the form of histograms, scatter-plots
and tables.
Furthermore the analysis of large data samples is eased by the use of Ntuples, which are two-dimensional arrays,
characterised by a fixed number N, specifying the number of entries per element, and by a length, giving the total
number of elements. An element of a Ntuple can be thought of as a physics “event” on e.g. a Data Summary
Tape (micro-DST). Selection criteria can be applied to each “event” or element and a complete Ntuple can be
statistically analysed in a fast, efficient and interactive way.

6.1.1 The functionality of HBOOK

The various user routines of HBOOK can be subdivided by functionality as follows:

Booking Declare a one- or two-dimensional histogram or a Ntuple

Projections Project two-dimensional distributions onto both axes

Ntuples Way of writing micro data-summary-files for further processing. This allows to
make later projections of individual variables or correlation plots. Selection mech-
anisms may be defined

Function representation Associates a real function of 1 or 2 variables to a histogram

Filling Enter a data value into a given histogram, table or Ntuple

Access to information Transfer of numerical values from HBOOK-managed memory to Fortran vari-
ables and back

Arithmetic operations On histograms and Ntuples

Fitting Least squares and maximum likelihood fits of parametric functions to histogramed
data

Smoothing Splines or other algorithms

Random number generation Based on experimental distributions

Archiving Information is stored on mass storage for further reference in subsequent pro-
grams

Editing Choice of the form of presentation of the histogramed data

6.2 Basic ideas

The basic data elements of HBOOK are the histogram (one- and two-dimensional) and the Ntuple. The user
identifies his data elements using a single integer. Each of the elements has a number of attributes associated
with it.
The HBOOK system uses the ZEBRA [6] data manager to store its data elements in a COMMON block /PAWC/,
shared with the KUIP [4] and HIGZ [8] packages, when the latter are also used (as is the case in PAW). In fact
the first task of a HBOOK user is to declare the length of this common to ZEBRA by a call to HLIMIT, as is seen
in the programs shown in Section 6.31.
In the /PAWC/ data store, the HBOOK, HIGZ and KUIP packages have all their own division (see [6] for more
details on the notion of divisions) as follows (figure 6.1):

1This is of course not necessary in PAW, which is already precompiled when it is run. However when treating very large data samples or
in other special applications, it might be necessary to specify a different value for the length of the dynamic store, which is defined by a call
to PAWINT from the main initialisation routine PAMAIN. The “default” value for the length of /PAWC/ is 500000 (Apollo), 200000 (IBM) or
300000 (other systems), with respectively 10000 and 68000 words initially reserved for HIGZ and KUIP.

77

78 Chapter 6. HBOOK

link

area

work

area

free

space

HBOOK

div

HIGZ

div

KUIP

div

system

div

Figure 6.1: The layout of the /PAWC/ dynamic store

LINKS Some locations at the beginning of /PAWC/ for ZEBRA pointers.

WORKS Working space (or division 1) used by the various packages storing information in /PAWC/

HBOOK Division 2 of the store. Reserved to HBOOK

HIGZ A division reserved for the HIGZ graphics package.

KUIP A division reserved for the KUIP user interface package.

SYSTEM The ZEBRA system division. It contains some tables, as well as the Input/Output buffers for HRIN and
HROUT.

6.2.1 RZ directories and HBOOK files

An advantage of using ZEBRA in HBOOK is that ZEBRA’s direct access RZ package is available. The latter
allows data structures to be uniquely addressed via pathnames, carrying a mnemonic meaning and showing the
relations between data structures. Related data structures are addressed from a directory. Each time a RZ file is
opened via a call to HRFILE a supplementary top directory is created with a name specified in the calling sequence.
This means that the user can more easily keep track of his data and also the same histogram identifiers can be used
in various files, what makes life easier if one wants to study various data samples with the same program, since
they can be addressed by changing to the relevant file by a call to HCDIR first.

Example of using directories

CALL HRFILE(1,’HISTO1’,’ ’) ! Open first HBOOK RZ file (read only)

CALL HRFILE(2,’HISTO2’,’U’) ! Open second HBOOK RZ file (update)

CALL HCDIR(’//HISTO1’,’ ’) ! Make HISTO1 current directory

CALL HRIN(20,9999,0) ! Read ID 20 on file 1

....

CALL HCDIR(’//HISTO2’,’ ’) ! Make HISTO2 current directory

CALL HRIN(10,9999,0) ! Read ID 10 on file 2

....

CALL HROUT(20,ICYCLE,’ ’) ! Write ID 20 to file 2

CALL HREND(’HISTO1’) ! Close file 1

CALL HREND(’HISTO2’) ! Close file 2

In the previous example (and also in the code presented in section 6.3) it is shown how an external file is available
via a directory name inside HBOOK (and PAW), and that one can change from one to the other file by merely
changing directory, via the PAW command CDIR, which calls the HBOOK routine HCDIR.

6.2.2 Changing directories

One must pay attention to the fact that newly created histograms go to memory in the //PAWC directory (i.e. the
/PAWC/ common). As an example suppose that the current directory is //LUN1, and an operation is performed on
two histograms. These histograms are first copied to memory //PAWC, the operation is performed and the result is
only available in //PAWC,

6.3. HBOOK batch as the first step of the analysis 79

MAINFRAME WORKSTATION

Batch Job

HBOOK

ZEBRA
Tapes

Raw Data

DST

Interactive Data
Analysis with PAW

KUIP
HPLOT

HBOOK

HIGZ
ZEBRA

SIGMA

COMIS

MINUITMany
Tapes

RZ Files

High quality
graphics output

Interactive access
via RLOGIN

or file transfer
using ZFTP

Figure 6.2: Schematic presentation of the various steps in the data analysis chain

PAW > CDIR //LUN1 | Set current directory to //LUN1

PAW > ADD 10 20 30 | Add histograms 10 and 20 into 30

| Histogram 30 is created in //PAWC

PAW > Histo/Plot //PAWC/30 | Show the result of the sum

PAW > CD //PAWC | Set the current directory to memory

PAW > Histo/plot 30 | Show the result once more

Similarly when histograms or Ntuples are plotted (e.g. by the HISTO/PLOT command), they are copied to memory
possibly replacing an old copy of the same ID. As long as the copy in memory is not changed, each time the ID
is read from the external file. This is because in a real time environment, e.g. using global sections on VMS or
modules with OS9, the data base on the external medium can be changed by concurrent processes. However if
the HBOOK data structure, associated with the histogram or Ntuple in memory is altered (e.g. by a MAX, IDOPT,

FIT command), then it becomes the default for subsequent operations. If one wants the original copy one first
must delete the copy from memory or explicitly use the pathname for the external file.

PAW > Histo/file 1 his.dat | The file contains ID=10

PAW > Histo/Plot 10 | ID=10 read from file and plotted

PAW > H/plot 10 | ID=10 read again from file and plotted

PAW > H/fit 10 ! G | Read from file, make a Gaussian fit on //PAWC/10

PAW > H/plot 10 | ID=10 read from memory since it changed

PAW > H/del 10 | Delete histogram 10 from memory

PAW > H/plot 10 | ID=10 read again from file and plotted

6.3 HBOOK batch as the first step of the analysis

Although it is possible to define histograms interactively in a PAW session, and then read the (many thousands
of) events, in general for large data samples the relevant variables are extracted from the Data Summary Files or
DSTs and stored in histograms or an Ntuple. The histogram needs already that a certain choice has to be made as
to the range of values for the plotted parameter, because the binning, or the coarseness, of the distribution has to be
specified when the histogram is defined (booked). Also only one- and two-dimensional histograms are possible,
hence the correlations between various parameters can be difficult to study. Hence it seems in many cases more
appropriate to store the value of the important parameters for each event in an Ntuple. This approach preserves

80 Chapter 6. HBOOK

the correlation between the parameters and allows selection criteria to be applied on the (reduced) data sample at
a later stage.

In general, the time consuming job of analysing all events available on tape is run on a mainframe or CPU server,
and the important event parameters are stored in a Ntuple to allow further detailed study. For convenience the
Ntuple can be output to disk for each run, and then at a later stage the Ntuples can be merged in order to allow a
global interactive analysis of the complete data sample.

A typical batch job in which data are analysed offline and some characteristics are stored in HBOOK is like shown
below.

PROGRAM HTEST

PARAMETER (NWPAWC=20000)

COMMON/PAWC/H(NWPAWC)

EXTERNAL HTFUN1,HTFUN2

*.--

CALL HLIMIT(NWPAWC)

* Book histograms and declare functions

CALL HBFUN1(100,’Test of HRNDM1’,100,0.,1.,HTFUN1)

CALL HBOOK1(110,’Filled according to HTFUN1’,100,0.,1.,1000.)

CALL HBFUN2(200,’Test of HRNDM2’,100,0.,1.,40,0.,1.,HTFUN2)

CALL HSCALE(200,0.)

CALL HBOOK2(210,’Fill according to HTFUN2’,100,0.,1.,40,0.,1.,30.)

* Fill histograms

DO 10 I=1,10000

X=HRNDM1(100)

CALL HFILL(110,X,0.,1.)

CALL HRNDM2(200,X,Y)

CALL HFILL(210,X,Y,1.)

10 CONTINUE

* Save all histograms on file HTEST.HBOOK

CALL HRPUT(0,’HTEST.HBOOK’,’N’)

CALL HDELET(100)

CALL HDELET(200)

CALL HPRINT(0)

END

FUNCTION HTFUN2(X,Y)

* Two-dimensional gaussian

HTFUN2=HTFUN1(X)*HTFUN1(Y)

END

FUNCTION HTFUN1(X)

* Constants for gaussians

DATA C1,C2/1.,0.5/

DATA XM1,XM2/0.3,0.7/

DATA XS1,XS2/0.07,0.12/

* Calculate the gaussians

A1=-0.5*((X-XM1)/XS1)**2

A2=-0.5*((X-XM2)/XS2)**2

X1=C1

X2=C2

IF(ABS(A1).GT.0.0001)X1=C1*EXP(A1)

IF(ABS(A2).GT.0.0001)X2=C2*EXP(A2)

* Return function value

HTFUN1=X1+X2

END

After opening the RZ HBOOK file, HBOOK is initialised by a call to HLIMIT, which declares a length of 20000
words for the length of the /PAWC/ dynamic store. Then the one- and two- dimensional histograms 110 and 210
are filled respectively according to the functions HTFUN1 and HTFUN2. The output generated by the program is
shown below

Filled according to HTFUN1

HBOOK ID = 110 DATE 02/09/89 NO = 2

340 -
330 I -
320 I I
310 I I
300 I-I-
290 --I I
280 -I I-
270 I I
260 I I
250 -I I-
240 I I
230 -I I
220 I I-
210 -I I
200 I I -
190 I I-I
180 -I I
170 I I -
160 I I - -I- -
150 I I- I --I I- -I -
140 I I- -I--I I-II-I-
130 --I I- -I I
120 I I - -I I
110 I I I-I I--
100 I I- -I I
90 -I I- -I I----
80 -I I --I I-
70 I I -I I
60 -I I-- - I I- -
50 -I I-- ----I-I I-I-
40 I I-I I---
30 --I I--
20 --I I --
10 -------I I-II--

CHANNELS 100 0 1
10 0 1 2 3 4 5 6 7 8 9 0
1 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

CONTENTS 100 111222222323222211111 1111111111111111111111
10 1 12224578227034888392975189442985544344445467789101235335456543453430088887545443322111
1. 22345055038484428230601947383077660674994445157562761227948358021717653142735611669210337304276

LOW-EDGE 1. 111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999
*10** 1 0 0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

* ENTRIES = 10000 * ALL CHANNELS = 0.1000E+05 * UNDERFLOW = 0.0000E+00 * OVERFLOW = 0.0000E+00
* BIN WID = 0.1000E-01 * MEAN VALUE = 0.4846E+00 * R . M . S = 0.2199E+00

Fill according to HTFUN2

HBOOK ID = 210 DATE 02/09/89 NO = 4

CHANNELS 100 0 1
10 0 1 2 3 4 5 6 7 8 9 0
1 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
**

OVE * * OVE
.975 * * 40
.95 * ++ 2 2 2++ +3 + ++ + + 2+ 3 2 + 2++++ + 2 + * 39
.925 * + + 2 ++ 32+++ +22 22+ +++ + + + + 22+2+++ +2++ + + + * 38
.9 * 223 +3+ +3 3++333223 +2 2 + + ++2+ + 232+322 2+++ +24+ + * 37
.875 * + ++ +2++++ 342533 443224++2 2 + + ++23 + +42+3222233+++3+++2 22+ ++ + + + * 36
.85 * ++ + 5+35+3333483475 65+2+ + ++ + +33+3 +2 +2335222+235 522 24+ ++ 2 * 35
.825 * ++ 2+2 558335876736583+ 2 +2+ + + 3 224+533623+35252+54 32+452++3 332 +++++ * 34
.8 * ++ + 532 656562546C8A88936324332+ +2+23 +332+2236433657234455556+4635+222 +23 +3 + * 33
.775 * +2 33 375B7274C6A66A782+323++2+23 +5++3+5222256768365258276374+86334+ 32 +++ + * 32
.75 * + 2+ 2 45523786A79FB98B6AD4855224+ + ++23323+5755552468283746644543 443324 5223++ 2 * 31
.725 * + ++4+22+637A785B8BBBA6B4656922++ 2 23 24 2+5464+435552843286C6246623636+3+ 2 3 2 3+2 * 30
.7 * + 22 +2 735ABCA89G8C8A6DA5765+3+322 2+2++52234445475+355864768724+B74632+23 +3 3+ + * 29
.675 * 23 +4+3364HBBAFCFCBB98945C7933++ 2 5+3 +4225243752 75787896C367+475443+32242422 2 + * 28
.65 * + + ++5+3795498GAC96CB9A79E6645 34 3+3 ++24537234424532777657445+4746235+2+3++ 4+2 2 * 27
.625 * + 3 647774A9CE67G99BAB6B233233 4+ 2 322 42 44364+657735+735736733+4+23234 +++++2 + * 26
.6 * + ++3+342233874B8C966896565+5242+5 +2+++++2+5225+42544535456A265357253+2222+ 2+2++ + +2 * 25
.575 * ++ + +5 74535525677984573453422 +2 ++ 2 +++4+2 3526525235+4243342+32+ 23 2+ * 24
.55 * ++ +226+584568349865+433 +2222 + ++ +4444352326542332823+444332 +2 2 + + * 23
.525 * ++++2+65436+3A753535+22+++2+++ ++ + ++2 +2 ++4++2+ 224224+32 2+ ++++ 2 + * 22
.5 * 22 4+23+6425 84543+++42 +2 +++2 2 + 2+2+ 3+ 24++2334223+ 223 +2 + + * 21
.475 * + +5334+7333+22 ++2+ + 3+ 2 +4 +32 2 222+2 + 33++ 222 + +3++ + * 20
.45 * + 433244397 2++23232+ 24 +2 ++ ++2+ 2+ +2+33 ++4 +3 ++2+3 + + * 19
.425 * + ++ 2+ 22+24636432646+5+322 4 +++ + 2++ ++ +22+533+3++3+ +432 +322++2+ 2+ ++ + * 18
.4 * +++3237549588A9725H724545++33+33 + + 2 24 4 +A4633 39 25636343322+82++ ++ + +2+ + * 17
.375 * +++3+374879CCCADLD48996CE54365232 +2+2342347+563264636547B47925542444434+2+322 2+ +2 * 16
.35 * +++ +4637549EC87D8IHDICI9B754655432++23233+2554368886H68B9667889677A635C+4+223333+22 + * 15
.325 * + ++++ 2445949CHHDFNHJRHIHKLDD5DC3545422233 24564875549A8E7899B4F4BC3CA7E597842+67242+++++ * 14
.3 * ++++++2667889EDFEHULQHI*IKFIFA878666336+6+48526B79777BCCEBBAEEED58E96997A4674763463++++ 2+ * 13
.275 * + ++++ 3546898BEMPNIURPH*NOECDC8958E442+3542+68554B37466AAGCEEACAC7A476599962365 343++2 +2 * 12
.25 * + 2344658A9DAJPLDENQGDHJEEBAA93 +3225322+4259A576784DA9B98B56A85CD859797A5843523223+ 22 * 11
.225 * 3 256778BA6CEJGIEAICGCHA4A242+43+++52427545466927A78866BB66795655763454656 2 3 +++ * 10
.2 * +2++4357A69BC88AAFAA5665432+434 +++ ++++343233668554584442CA7664745+4++34+++2 + +++ * 9
.175 * + 3 3436344766755264526++3 2+ + ++ +42 22 2+32345++353562 34 33+++4 +3 +++ + * 8
.15 * 2+ + +3+44+262542+4225 232 ++++ 222 + 2+ +23+242 32+222 2++342 22 22+ 2 + * 7
.125 * + +2 +++22+32+ 3+++2 + +42 + 2+ + + 2+ + + ++ * 6
.1 * + + + +2+ ++ + +2+ + ++ +++ + * 5
.075 * + 2 + + + + * 4
.05 * + * 3
.025 * + * 2

* * 1
UND * * UND

**
LOW-EDGE 0 0000000000111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999

0 0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

* I I
* ENTRIES = 10000 PLOT ---------I---------I---------
* SATURATION AT= 31 I 9991 I
* SCALE .,+,2,3,.,., A,B, STATISTICS ---------I---------I---------
* STEP = 1 * MINIMUM=0 I I

6.3.1 Adding some data to the RZ file

The second run using program HTEST1 shows how to add some data to the HBOOK RZ file created in the job
HTEST. After opening the file in question in update mode (’U’ option) with the name EXAM2, a new directory
NTUPLE is created, known as //EXAM2/NTUPLE as seen in the output of HLDIR command at the end of the output.
A one- and a two-dimensional histogram and a Ntuple with identifiers of respectively 10, 20 and 30 are booked.
Each Ntuple element or “event” is characterised by three variables (labelled ’X’, ’Y’ and ’Z’). The Ntuple data,
when the initial size of 1000 words is exhausted, will be written to the directory specified in the call to HBOOKN,
i.e. //EXAM2/NTUPLE, and the data in memory are replaced with those newly read. A one- and a two-dimensional

6.4. Using PAW to analyse data 81

projection of X and X Y are then made onto histograms 10 and 20 respectively, before they are printed and written
on the HBOOK RZ file. At the end the current and parent directories are listed. The contents of the latter shows
that the data written in the first job (HTEST) are indeed still present in the file under the top directory //EXAM2.
The call to RZSTAT shows usage statistics about the RZ file.

Example of adding data to a HBOOK RZ file
PROGRAM HTEST1

PARAMETER (NWPAWC=20000)

COMMON/PAWC/H(NWPAWC)

DIMENSION X(3)

CHARACTER*8 CHTAGS(3)

DATA CHTAGS/’ X ’,’ Y ’,’ Z ’/

*.--

CALL HLIMIT(NWPAWC)

* Reopen data base

CALL HROPEN(1,’EXAM2’,’HTEST.HBOOK’,0,’U’)

CALL HMDIR(’NTUPLE’,’S’)

CALL HBOOK1(10,’TEST1’,100,-3.,3.,0.)

CALL HBOOK2(20,’TEST2’,30,-3.,3.,30,-3.,3.,250.)

CALL HBOOKN(30,’N-TUPLE’,3,’//EXAM2/NTUPLE’,1000,CHTAGS)

*

DO 10 I=1,10000

CALL RANNOR(A,B)

X(1)=A

X(2)=B

X(3)=A*A+B*B

CALL HFN(30,X)

10 CONTINUE

*

CALL HPROJ1(10,30,0,0,1,999999,1)

CALL HPROJ2(20,30,0,0,1,999999,1,2)

CALL HPRINT(0)

CALL HROUT(0,ICYCLE,’ ’)

CALL HLDIR(’ ’,’ ’)

CALL HCDIR(’´,’ ’)

CALL HLDIR(’ ’,’ ’)

CALL RZSTAT(’ ’,999,’ ’)

CALL HREND(’EXAM2’)

END

6.4 Using PAW to analyse data

After transferring the HBOOK RZ file, which was created in the batch job as explained in the previous section,
we start a PAW session to analyse the data which were generated. The PAW session below shows that the file
HTEST.HBOOK is first opened via a call to HISTO/FILE. The data on the file are now accessible as the top di-
rectory //LUN1. When listing with the LDIR command the contents of the top directory //LUN1 and its NTUPLE
subdirectory, the same information (histograms and Ntuples) is found as in the batch job (figure 6.3)

6.4.1 Plot histogram data

The analysis of the data can now start and we begin by looking at the histograms in the top directory. Figure 6.4
shows the commands entered and the corresponding output plot. They should be compared with the lineprinter
output in Section 6.3.

6.5 Ntuples: A closer look

We now turn our attention to the NTUPLE directory to show the functionality and use of Ntuples. After making
NTUPLE the current directory the available HBOOK objects are listed. The structure of the Ntuple with identifier
30 is PRINTed. The contents of the various Ntuple elements (“events”) can be viewed by the NTUPLE/SCAN

command. As with most Ntuple commands a selection criterion can be given to treat only given “selected”
subsamples of the Ntuple (two examples are seen with the further NTUPLE/SCAN commands (see figure 6.5).

6.5.1 Ntuple plotting, variables and selection mechanisms

The general format of the command NTUPLE/PLOT to project and plot a Ntuple as a (1-Dim or 2-Dim) histogram
with automatic binning, possibly using a selection algorithm is:

NTUPLE/PLOT idn [uwfunc nevent ifirst nupd chopt idh]

IDN Ntuple Identifier and variable(s) (see table 6.1)

UWFUNC Selection function (see table 6.2) - Default no function

82 Chapter 6. HBOOK

TEST1

HBOOK ID = 10 DATE 02/09/89 NO = 1

280
270 - -
260 I I -
250 - I I I
240 - I I-I- I -
230 I-I--I I I-I-
220 -I I I I-
210 I I I I-
200 I I-I I-
190 - - --I I --
180 I-I-I I-II--
170 I I
160 I I--
150 - -I I --
140 -I-I I II
130 -I I-II-
120 -I I-
110 --I I--
100 --I I
90 I I
80 I I----
70 --I I-
60 -I I--
50 ---I I--
40 -----I I--
30 I I-----
20 - ----I I---
10 --------I-I I--------

CHANNELS 100 0 1
10 0 1 2 3 4 5 6 7 8 9 0
1 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

CONTENTS 100 11111111111111122222222221222222111111111111111
10 1 1111333334446669000123434878888132522637496233109788775524421007777655443322222111
1. 1266487877127932587516069303434644322909949809367004036056844525243975324963516782565365312194856211

LOW-EDGE --
1. 3222222222222222211111111111111111 111111111111111112222222222222222
0 0988776554432211099887665543322100998776654433211000112334456677899001223345566788990112234455677889
0 0482604826048260482604826048260482604826048260482606284062840628406284062840628406284062840628406284

* ENTRIES = 10000 * ALL CHANNELS = 0.9969E+04 * UNDERFLOW = 0.1200E+02 * OVERFLOW = 0.1900E+02
* BIN WID = 0.6000E-01 * MEAN VALUE =-0.3907E-02 * R . M . S = 0.9857E+00

TEST2

HBOOK ID = 20 DATE 02/09/89 NO = 2

CHANNELS 10 U 0 1 2 3 O
1 N 123456789012345678901234567890 V

OVE * + ++ +232++2+ +++ * OVE
2.8 * ++ 2 +2 + 2 + * 30
2.6 * 2 2+ +34+++ ++ + * 29
2.4 * 2+ 3322343+ 3++ + * 28
2.2 * + 2 247236663524+23++ + * 27
2 * + 2+23769597A75 6+2+ 2 * 26
1.8 * + 5598576EBCDAA53357 2+ + * 25
1.6 * ++3278CC9JFO8F98C86643+2+ * 24
1.4 * 344686AAGJJMEMIDFG964232+ + * 23
1.2 * ++++44BBJGMQOPWNICCGI97322++ + * 22
1 * 2+545BGOMTSX*VYTJMCFA755++2 * 21
.8 * 2+4799DHSRUX****VXRQJC57635+ * 20
.6 * + +25CBEKLZ********MXGGCI4322 3 * 19
.4 * 2 4+779BN*U*********YOIFB862 * 18
.2 * 2 ++266CCLR************OIHA464+2 4 * 17

* + 3238ECX*T***********YKPC772 + * 16
- .2 * + +423D6LDS**X********ZUMGC543+ 2 * 15
- .4 * + 2347CAHSSX*********UMK75D2 3 + * 14
- .6 * 2334AAKML*V**********IIH9773++ + * 13
- .8 * +22565CLJL*X******Z*TL9H948+ + * 12
- 1 * 2 2 32666EMLN****Q*ULLQMABB342+ 2 * 11
- 1.2 * + 22377BDIUS*P***TTUNBDA545+2 * 10
- 1.4 * + + 2 +689E7KKNWUNRIHJCEA472+++ + * 9
- 1.6 * 2+3+74BCMJIGOIKEIAAD6643++ 2 * 8
- 1.8 * + + +2222856AA8HGJACB6786+2+2++ * 7
- 2 * + 2 +273598EDC5977634++ * 6
- 2.2 * + + ++2+274977548883+++2 +++ * 5
- 2.4 * + +3367558445+442+ + * 4
- 2.6 * +2 + 2224+6++7234 + + * 3
- 2.8 * + 33+3+322++ + * 2
- 3 * ++ ++ 22 2 +4+2 2 * 1

UND * + + 23 +2+++ + * UND

LOW-EDGE ---------------
1. 32222211111 1111122222
0 086420864208642024680246802468

* I 19 I
* ENTRIES = 10000 PLOT -------I--------I-------
* SATURATION AT= 255 12 I 9936 I 19
* SCALE .,+,2,3,.,., A,B, STATISTICS -------I--------I-------
* STEP = 1 * MINIMUM=0 I 14 I

**

* NTUPLE ID= 30 ENTRIES= 10000 N-TUPLE *

**

* Var numb * Name * Lower * Upper *

**

* 1 * X * -.422027E+01 * 0.386411E+01 *

* 2 * Y * -.411076E+01 * 0.378366E+01 *

* 3 * Z * 0.485187E-04 * 0.179518E+02 *

**

===> Directory : //EXAM2/NTUPLE

30 (N) N-TUPLE

10 (1) TEST1

20 (2) TEST2

===> Directory : //EXAM2

100 (1) Test of HRNDM1

110 (1) Filled according to HTFUN1

200 (2) Test of HRNDM2

210 (2) Fill according to HTFUN2

NREC NWORDS QUOTA(%) FILE(%) DIR. NAME

34 34064 0.85 0.85 //EXAM2/NTUPLE

41 40431 1.02 1.02 //EXAM2

PAW > histo/file 1 htest.hbook | open the HBOOK RZ file

PAW > ldir | list current directory

************** Directory ===> //LUN1 <===

Created 890902/1955 Modified 890902/1958

===> List of subdirectories

NTUPLE Created 890902/1958 at record 9

===> List of objects

HBOOK-ID CYCLE DATE/TIME NDATA OFFSET REC1 REC2

100 1 890902/1955 153 1 3

110 1 890902/1955 88 154 3

200 1 890902/1955 4335 242 3 4 ==> 7

210 1 890902/1955 767 481 7 8

NUMBER OF RECORDS = 7 NUMBER OF MEGAWORDS = 0 + 6367 WORDS

PER CENT OF DIRECTORY QUOTA USED = 0.175

PER CENT OF FILE USED = 0.175

BLOCKING FACTOR = 74.540

PAW > ldir ntuple | list directory in NTUPLE

************** Directory ===> //LUN1/NTUPLE <===

Created 890902/1958 Modified 890902/1958

===> List of objects

HBOOK-ID CYCLE DATE/TIME NDATA OFFSET REC1 REC2

30 2 890902/1958 1082 215 41 42

1 890902/1958 1082 725 39 40

10 1 890902/1958 151 783 40

20 1 890902/1958 305 934 40 41

NUMBER OF RECORDS = 34 NUMBER OF MEGAWORDS = 0 + 34064 WORDS

PER CENT OF DIRECTORY QUOTA USED = 0.851

PER CENT OF FILE USED = 0.850

BLOCKING FACTOR = 94.899

Figure 6.3: Adding and reading data on a HBOOK RZ direct access file

6.5. Ntuples: A closer look 83

Plotting histogram data

PAW > zon 1 2 | Divide picture into 2 vertically

PAW > set htyp -3 | Set hatch style for histogram

PAW > hi/pl 110 | Plot 1-dimensional histogram 110

PAW > hi/pl 210 | Plot 2-dimensional histogram 210

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Filled according to HTFUN1

Fill according to HTFUN2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 6.4: Plot of one- and two-dimensional histograms

NEVENT Number of events to be processed (default is 999999)

IFIRST First event to be processed (default is 1)

NUPD Frequency with which to update histogram (default is 1000000)

OPTION Options

IDH Identifier of histogram to fill

With most Ntuple operations a “selection function” UWFUNC of a form described in table 6.2 can be used, i.e. it can
take the form of a simple or composed expression or an external FORTRAN function, executed by COMIS [1],
a cut or a mask. The selection function also acts as a weighting factor.

6.5.2 Masks

The mask facility allows the user to specify up to 32 selection criteria associated with a Ntuple. These criteria
are defined like cuts, but their value for each event are written to an external direct access file, from which the
information can be readily retrieved at a later stage, without recalculating the condition value in question. In the

84 Chapter 6. HBOOK

PAW > cd ntuple | move to NTUPLE directory

PAW > hi/li | list HBOOK objects

===> Directory : //LUN1/NTUPLE

30 (N) N-TUPLE
10 (1) TEST1

20 (2) TEST2

PAW > nt/print 30 | print summary for Ntuple 30

**

* NTUPLE ID= 30 ENTRIES= 10000 N-TUPLE *
**

* Var numb * Name * Lower * Upper *
**
* 1 * X * -.422027E+01 * 0.386411E+01 *

* 2 * Y * -.411077E+01 * 0.378365E+01 *
* 3 * Z * 0.485188E-04 * 0.179518E+02 *

**

PAW > nt/scan 30 | scan the first elements
+-------+--------------+--------------+--------------+
| Event | X | Y | Z |

+-------+--------------+--------------+--------------+
| 1 | -1.06459 | -1.82194 | 4.45282 |

2	-1.15619	0.106067	1.34802
3	0.923492	0.943671	1.74335
4	-0.145332	-0.57672	0.353727

| 5 | -1.18289 | 1.50525 | 3.66501 |
| 6 | -0.658942 | 1.17934 | 1.82504 |

| 7 | -0.071134 | 0.216755 | 0.0520428 |
| 8 | -1.45944 | 0.869828 | 2.88655 |

9	2.2881	-0.103207	5.24604
10	-0.70103	-0.238115	0.548141
11	1.27792	-0.633723	2.03468

| 12 | 0.046591 | 0.45629 | 0.210371 |
| 13 | -0.966939 | 0.441924 | 1.13027 |

14	0.299147	1.72798	3.07542
15	1.35417	0.425711	2.015
16	2.51372	-1.17377	7.69653

| 17 | 0.974036 | -0.677181 | 1.40732 |
| 18 | 0.299531 | -1.10509 | 1.31094 |

| 19 | 0.407014 | 0.236156 | 0.22143 |
+-------+--------------+--------------+--------------+

More...? (<CR>/N/G) n

PAW > nt/sc 30 z>16 | example of a condition on the Z variable

+-------+--------------+--------------+--------------+
| Event | X | Y | Z |

+-------+--------------+--------------+--------------+
| 1945 | -0.08474 | 4.00098 | 16.015 |

| 7664 | 0.81875 | 3.9523 | 16.291 |
+-------+--------------+--------------+--------------+
==> 2 events satisfied the imposed cuts

PAW > nt/sc 30 abs(x)>4.or.abs(y)>4 | example of a more complex selection criterion

+-------+--------------+--------------+--------------+
| Event | X | Y | Z |
+-------+--------------+--------------+--------------+

| 1945 | -0.08474 | 4.00098 | 16.015 |
+-------+--------------+--------------+--------------+

==> 1 event satisfied the imposed cuts

Figure 6.5: Print and scan Ntuple elements

example session below first a new mask file MNAME.MASK is defined. Next we define event selection criteria and
store their result at various bit positions in the mask vector MNAME.

Defining cuts and masks

PAW > NT/CUT $4 Z>X**2 | Define cut 4

PAW > MASK/FILE MNAME N

PAW > NT/PLOT 30.X X**2+Y**2>2>>MNAME(1)

PAW > NT/PLOT 30.X $4.AND.Y>1>>MNAME(2)

PAW > NT/PLOT 30.Y SIN(Z).GT.SIN(Y)>>MNAME(3)

6.5. Ntuples: A closer look 85

Format Explanation Example

IDN.CHNAME The variable named "CHNAME" 30.x variable x

IDN.expression Expression is any numerical expression of
Ntuple variables. It may include a call to a
COMIS function.

30.X**2+Y**2 30.X*COMIS.F

IDN.B%A Scatter-plot of variable B versus A for each
event.

30.Y%X Y versus X

IDN.expr1%expr2 expr1 and expr2 can be any numerical ex-
pression of the Ntuple variables. They can be
COMIS functions.

30.SQRT(X**2+Y**2)%SIN(Z)

30.COMIS1.F%COS(Z)

Any combination of the above 30.3%COMIS2.F*SIN(X)

Table 6.1: Syntax for specifying Ntuple variables

Format Explanation Example

0 or missing No selection is applied (weight is 1). NT/PLOT 30.X

Combination
of cuts

A CUT or combination of CUTs, each created
by the command NTUPLE/CUTS

NT/PLOT 30.X $1 (use cut $1)
NT/PLOT 30.X $1.AND.$2

NT/PLOT 30.X .NOT.($1.AND.$3).OR.$2

Combination
of masks

A MASK or combination of MASKs,
each created by the command
NTUPLE/MASK/FILE

Assuming there is a mask vector MSK:
NT/PLOT 30.X MSK(4) (bit 4)
NT/PLOT 30.X MSK(1).OR.MSK(6)

Logical ex-
pression

Any logical combination of conditions be-
tween Ntuple variables, cuts and masks.

NT/PLOT 30.X X>3.14.AND.(Y<Z+5.)

NT/PLOT 30.X $1.AND.MASK(3).OR.Z<10

Numerical ex-
pression

Any numerical combination of constants and
Ntuple variables. In this case the value of the
expression will be applied as a weight to the
element being plotted.

NT/PLOT 30.X Y weight X by Y
NT/PLOT 30.X X**2+Y**2 weight X by
X2+Y2

Selection
function

Name of a selection function in a text file of
the form fun.f (Unix), FUN.FOR (VAX). The
function value is applied as a weight

NTUPLE/PLOT 30.X SELECT.F

For each event the plotted value of X will be
multiplied by the value of the selection function
SELECT calculated for that event.

Any combination of the above NT/PL 30.Y%F1.F*SIN(X) $1.OR.F2.F

Table 6.2: Syntax of a selection function used with a Ntuple

PAW > MASK/LIST MNAME | Print mask definitions

MNAME Events: 10000 (file MNAME.mask, read/write)

select Description

bit 1: 3577 X**2+Y**2>2

bit 2: 1567 $4.AND.Y>1

bit 3: 7050 SIN(Z).GT.SIN(Y)

PAW > MASK/CLOSE MNAME | close MNAME.MASK file

Of course doing this kind of gymnastics makes sense only if a time consuming selection mechanism is used and
only a few events are selected. In a subsequent run the mask file can then be read to display the information much
more quickly.

86 Chapter 6. HBOOK

Using a mask file of a previous run

PAW > MASK/FILE MNAME | open the mask file for read

PAW > NT/PLOT 30.X MNAME(1) | plot using bit 1

PAW > NT/PLOT 30.X MNAME(2) | plot using bit 2

PAW > NT/PLOT 30.Y MNAME(3) | plot using bit 3

PAW > MASK/CLOSE MNAME | close MNAME.MASK file

Cuts

A cut is identified by an integer (between 0 and 100) preceded by a $ sign and is a logical expression of Ntuple
elements, other cuts, masks or functions.

Example of cuts

PAW > NT/CUT $1 4<X | variable

PAW > NT/CUT $2 0.4<X<0.8.AND.Y<SQRT(Z) | ditto

PAW > NT/CUT $3 FUN.F | external function

PAW > NT/CUT $4 FUN.F.AND.Z>X**2 | ditto plus variable

PAW > NT/CUT $5 ($1.AND.$2).OR.$4 | combination of cuts

PAW > NT/CUT $6 $1.AND.Z<0 | cut and variable

PAW > NT/CUT $7 X | event weight

PAW > NT/CUT $8 SQRT(Y) | ditto

PAW > NT/CUT $9 MASK(23).AND.$8 | mask and cut

Cut definitions can be written to a file and later re-read.

PAW > NT/CUT $0 W cuts.dat | write all cuts to file

PAW > NT/CUT $4 R cuts.dat | read cut 4 from file

PAW > NT/CUT $4 P | print cut 4

$4 = FUN.F.AND.Z>X**2

Graphical cut

One can also define a cut on the screen in a graphical way, by pointing out the upper and lower limits (1-
dimensional case) or an area (2-dimensional case) by using the mouse or arrow keys (see figure 6.6).

Using graphical cuts

PAW > gcut 1 30.x%y | graphical cut 1

PAW > zon 1 2 | define picture layout

PAW > title ’Graphical cuts’ | title for picture

PAW > 2d 211 ’X versus Y’ 50 -2.5 2.5 50 -2.5 2.5 0. | user binning

PAW > 1d 212 ’X - Before and after cut’ 60 -3. 3. 0. | ditto

PAW > 1d 213 ’Y - Before and after cut’ 60 -3. 3. 0. | ditto

PAW > nt/pl 30.x%y idh=211 | plot y versus x in histogram 211

PAW > cut $1 d | draw graphical cut 1

PAW > zon 2 2 3 s | redefine the picture layout

PAW > nt/pl 30.x idh=212 | plot x BEFORE cut in histogram 212

PAW > set htyp -3 | use hatch for plot after cut

PAW > nt/pl 30.x $1 option=s idh=212 | plot x AFTER cut on same plot

PAW > set htyp 0 | no hatch for plot without cut

PAW > nt/pl 30.y idh=213 | plot y BEFORE cut in histogram 213

PAW > set htyp -3 | use hatch for plot after cut

PAW > nt/pl 30.y $1 option=s idh=213 | plot y AFTER cut on same plot

COMIS selection function

In the definition of a selection criterion an external function (in the sense that it has not been compiled and linked
together with PAW) can be used. This function is interpreted by the COMIS [1] package. The CERNLIB functions
which are callable from within such a function are given in the online help of the command CALL.
The command NTUPLE/UWFUNC allows a selection function for a Ntuple to be prepared more easily. It generates
a function with a name specified by the user and with code making available the variables corresponding to the
given Ntuple identifier via a COMMON block. As an example consider the Ntuple number 30 used previously.

6.5. Ntuples: A closer look 87

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

50

100

150

200

250

300

350

400

450

-3 -2 -1 0 1 2 3

X versus Y

Graphical cuts

X - Before and after cut

Graphical cuts

Y - Before and after cut

Graphical cuts

0

50

100

150

200

250

300

350

400

450

-3 -2 -1 0 1 2 3

Figure 6.6: Graphical definition of cuts

Specifying a user selection function

PAW > NTUPLE/UWFUNC 30 SELECT.F EPT | Generate and edit SELECT.F

REAL FUNCTION SELECT(XDUMMY)

REAL X , Y , Z

COMMON/PAWIDN/IDNEVT,OBS(13),

+ X , Y , Z

DIMENSION XDUMMY(3)

CHARACTER*8 CHTAGS(3)

DATA CHTAGS/’ X ’,’ Y ’,’ Z ’/

*

SELECT=1.

PRINT 1000,IDNEVT

DO 10 I=1, 3

PRINT 2000,I,CHTAGS(I),XDUMMY(I)

10 CONTINUE

*

1000 FORMAT(8H IDNEVT=,I5)

2000 FORMAT(5X,I3,5X,A,1H=,G14.7)

END

The user can add further FORTRAN code with the command EDIT. Remember that the value of the function can
be used for weighting each event.

88 Chapter 6. HBOOK

Plotting Ntuples

PAW > ZONE 1 2 | 2 histograms one above the other

PAW > OPTION STAT | Write statistics on plot

PAW > NT/PLOT 30.Z | plot variable Z of Ntuple 30

PAW > 1d 300 ’Z recalculated and user binning’ 100 0. 10.

PAW > NT/PLOT 30.X**2+Y**2 IDH=300 | Recalculate variable Z + plot with user binning

0

200

400

600

800

1000

0 2.5 5 7.5 10 12.5 15 17.5

Z

ID
Entries
Mean
RMS

 1000000
 10000
 2.014
 2.003

Z recalculated and user binning

ID
Entries
Mean
RMS

 300
 10000
 1.939
 1.811

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10

Figure 6.7: Read and plot Ntuple elements

6.5.3 Examples

To put into practice the syntax explained above let us consider figure 6.7. We first plot variable Z with the binning
automatically calculated by HBOOK. Then we define a histogram with identifier 300 into which we want HBOOK
to plot the squared sums of the elements X and Y. This corresponds to the definition of the Z variable as can be seen
in the FORTRAN listing in figure 6.3. As the MEAN and RMS are only calculated on the events within the histogram
boundaries, they differ slightly between the top and bottom plot in figure 6.7.

6.6 Fitting with PAW/HBOOK/MINUIT

Minuit[5]2 is conceived as a tool to find the minimum value of a multi-parameter function and analyze the shape
of the function around the minimum. The principal application is foreseen for statistical analysis, working on

2The following information about Minuit has been extracted from the Minuit documentation.

6.6. Fitting with PAW/HBOOK/MINUIT 89

More complex Ntuple presentations

PAW > zone 2 2 | Divide plot in 4 zones

PAW > option STAT | Select option to write statistics on plot

PAW > set HTYP -3 | Define histogram hatch type

PAW > 1d 401 ’NT/PL - X’ 100. -2.5 2.5 | Book 1 dim histogram

PAW > nt/pl 30.1 idh=401 | Plot variable 1 (x) using histogram 401

PAW > 1d 402 ’NT/PL E option - Y’ 100. -2.5 2.5 | 1 dim histogram (different title)

PAW > set MTYP 21 | Select market type for points on plot

PAW > nt/pl 30.y option=E idh=402 | Plot y variable with Error bar option

PAW > 1d 403 ’NT/PL B option - X’ 40. -2.5 2.5 | 1 dim histogram (different title + binning)

PAW > set BARW 0.4 | Define bar width for bar chart

PAW > set BARO 0.3 | Define bar origin for bar chart

PAW > csel NB 0.33 | Print selection criterion on plot

PAW > set HCOL 1001 | Histogram colour black

PAW > nt/pl 30.x y>0 option=B idh=403 | Plot x variable as bar chart

PAW > 1d 404 ’NT/PL PL option - Y’ 100. -2.5 2.5 | 1 dim histogram (different title)

PAW > max 404 160 | Fix maximum for plotting hist 404

PAW > nt/pl 30.y sqrt(z)>1 -404 option=pl | Plot y variable with PL option

0

40

80

120

160

200

240

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

40

80

120

160

200

240

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

40

80

120

160

200

240

280

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

NT/PL - X

ID
Entries

Mean
RMS

 401
 10000

-0.1638E-02
 0.9580

NT/PL E option - Y

ID
Entries

Mean
RMS

 402
 10000

-0.2674E-03
 0.9546

NT/PL B option - X

ID
Entries

Mean
RMS

 403
 5012

-0.7792E-02
 0.9643

NT/PL PL option - Y

ID
Entries

Mean
RMS

 404
 6090

-0.5530E-02
 1.166

0

20

40

60

80

100

120

140

160

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 6.8: Selection functions and different data presentations

90 Chapter 6. HBOOK

chisquare or log-likelihood functions, to compute the best-fit parameter values and uncertainties, including cor-
relations between the parameters. It is especially suited to handle difficult problems, including those which may
require guidance in order to find the correct solution.

6.6.1 Basic concepts of MINUIT.

The MINUIT package acts on a multiparameter FORTRAN function to which one must give the generic name FCN.
In the PAW/HBOOK implementation, the function FCN is called HFCNH when the command Histo/Fit (PAW)
or the routine HFITH are invoked. It is called HFCNV when the command Vector/Fit or the routine HFITV are
invoked. The value of FCN will in general depend on one or more variable parameters.

To take a simple example, suppose the problem is to fit a polynomial through a set of data points with the command
Vector/Fit. Routine HFCNV called by HFITV calculates the chisquare between a polynomial and the data; the
variable parameters of HFCNV would be the coefficients of the polynomials. Routine HFITV will request MINUIT
to minimize HFCNV with respect to the parameters, that is, find those values of the coefficients which give the
lowest value of chisquare.

6.6.2 Basic concepts - The transformation for parameters with limits.

For variable parameters with limits, MINUIT uses the following transformation:

Pint = arcsin

(

2
Pext − a
b − a

− 1

)

Pext = a + b − a
2 (sin Pint + 1)

so that the internal value Pint can take on any value, while the external value Pext can take on values only between
the lower limit a and the upper limit b. Since the transformation is necessarily non-linear, it would transform a
nice linear problem into a nasty non-linear one, which is the reason why limits should be avoided if not necessary.
In addition, the transformation does require some computer time, so it slows down the computation a little bit, and
more importantly, it introduces additional numerical inaccuracy into the problem in addition to what is introduced
in the numerical calculation of the FCN value. The effects of non-linearity and numerical roundoff both become
more important as the external value gets closer to one of the limits (expressed as the distance to nearest limit
divided by distance between limits). The user must therefore be aware of the fact that, for example, if he puts
limits of (0, 1010) on a parameter, then the values 0.0 and 1.0 will be indistinguishable to the accuracy of most
machines.

The transformation also affects the parameter error matrix, of course, so MINUIT does a transformation of the
error matrix (and the “parabolic” parameter errors) when there are parameter limits. Users should however realize
that the transformation is only a linear approximation, and that it cannot give a meaningful result if one or more
parameters is very close to a limit, where ∂Pext/∂Pint ≈ 0. Therefore, it is recommended that:

– Limits on variable parameters should be used only when needed in order to prevent the parameter from
taking on unphysical values.

– When a satisfactory minimum has been found using limits, the limits should then be removed if possible, in
order to perform or re-perform the error analysis without limits.

6.6.3 How to get the right answer from MINUIT.

MINUIT offers the user a choice of several minimization algorithms. The MIGRAD (Other algorithms are avail-
able with Interactive MINUIT, as described on Page 96) algorithm is in general the best minimizer for nearly all
functions. It is a variable-metric method with inexact line search, a stable metric updating scheme, and checks for
positive-definiteness. Its main weakness is that it depends heavily on knowledge of the first derivatives, and fails
miserably if they are very inaccurate. If first derivatives are a problem, they can be calculated analytically inside
the user function and communicated to PAW via the routine HDERIV.

If parameter limits are needed, in spite of the side effects, then the user should be aware of the following techniques
to alleviate problems caused by limits:

6.6. Fitting with PAW/HBOOK/MINUIT 91

Getting the right minimum with limits.

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the existence of
limits has probably not prevented MINUIT from finding the right minimum. On the other hand, if one or more
parameters is near its limit at the minimum, this may be because the true minimum is indeed at a limit, or it may
be because the minimizer has become “blocked” at a limit. This may normally happen only if the parameter is so
close to a limit (internal value at an odd multiple of ±π

2 that MINUIT prints a warning to this effect when it prints
the parameter values.

The minimizer can become blocked at a limit, because at a limit the derivative seen by the minimizer ∂F/∂Pint is
zero no matter what the real derivative ∂F/∂Pext is.

∂F

∂Pint

=
∂F

∂Pext

∂Pext

∂Pint

=
∂F

∂Pext

= 0

Getting the right parameter errors with limits.

In the best case, where the minimum is far from any limits, MINUIT will correctly transform the error matrix,
and the parameter errors it reports should be accurate and very close to those you would have got without limits.
In other cases (which should be more common, since otherwise you wouldn’t need limits), the very meaning of
parameter errors becomes problematic. Mathematically, since the limit is an absolute constraint on the parameter,
a parameter at its limit has no error, at least in one direction. The error matrix, which can assign only symmetric
errors, then becomes essentially meaningless.

6.6.4 Interpretation of Parameter Errors:

There are two kinds of problems that can arise: the reliability of MINUIT’s error estimates, and their statistical
interpretation, assuming they are accurate.

Statistical interpretation:

For discussion of basic concepts, such as the meaning of the elements of the error matrix, or setting of exact
confidence levels, see [9, 10, 11].

Reliability of MINUIT error estimates.

MINUIT always carries around its own current estimates of the parameter errors, which it will print out on request,
no matter how accurate they are at any given point in the execution. For example, at initialization, these estimates
are just the starting step sizes as specified by the user. After a MIGRAD or HESSE step, the errors are usually quite
accurate, unless there has been a problem. MINUIT, when it prints out error values, also gives some indication of
how reliable it thinks they are. For example, those marked CURRENT GUESS ERROR are only working values not
to be believed, and APPROXIMATE ERROR means that they have been calculated but there is reason to believe that
they may not be accurate.

If no mitigating adjective is given, then at least MINUIT believes the errors are accurate, although there is always
a small chance that MINUIT has been fooled. Some visible signs that MINUIT may have been fooled are:

– Warning messages produced during the minimization or error analysis.

– Failure to find new minimum.

– Value of EDM too big (estimated Distance to Minimum).

– Correlation coefficients exactly equal to zero, unless some parameters are known to be uncorrelated with the
others.

– Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally difficult
problem, and one which has been badly parameterized so that individual errors are not very meaningful
because they are so highly correlated.

– Parameter at limit. This condition, signaled by a MINUIT warning message, may make both the function
minimum and parameter errors unreliable. See the discussion above “Getting the right parameter errors
with limits”.

92 Chapter 6. HBOOK

The best way to be absolutely sure of the errors, is to use “independent” calculations and compare them, or compare
the calculated errors with a picture of the function. Theoretically, the covariance matrix for a “physical” function
must be positive-definite at the minimum, although it may not be so for all points far away from the minimum, even
for a well-determined physical problem. Therefore, if MIGRAD reports that it has found a non-positive-definite
covariance matrix, this may be a sign of one or more of the following:

A non-physical region: On its way to the minimum, MIGRAD may have traversed a region which has unphysi-
cal behavior, which is of course not a serious problem as long as it recovers and leaves such a region.

An underdetermined problem: If the matrix is not positive-definite even at the minimum, this may mean that
the solution is not well-defined, for example that there are more unknowns than there are data points, or that the
parameterization of the fit contains a linear dependence. If this is the case, then MINUIT (or any other program)
cannot solve your problem uniquely, and the error matrix will necessarily be largely meaningless, so the user must
remove the underdeterminedness by reformulating the parameterization. MINUIT cannot do this itself.

Numerical inaccuracies: It is possible that the apparent lack of positive-definiteness is in fact only due to ex-
cessive roundoff errors in numerical calculations in the user function or not enough precision. This is unlikely in
general, but becomes more likely if the number of free parameters is very large, or if the parameters are badly
scaled (not all of the same order of magnitude), and correlations are also large. In any case, whether the non-
positive-definiteness is real or only numerical is largely irrelevant, since in both cases the error matrix will be
unreliable and the minimum suspicious.

An ill-posed problem: For questions of parameter dependence, see the discussion above on positive-definiteness.

Possible other mathematical problems are the following:

Excessive numerical roundoff: Be especially careful of exponential and factorial functions which get big very
quickly and lose accuracy.

Starting too far from the solution: The function may have unphysical local minima, especially at infinity in
some variables.

6.6.5 Fitting histograms

The general syntax of the command to fit histograms is:

HISTOGRAM/FIT id func [chopt np par step pmin pmax errpar]

Only the parameters, which are of more general use, are described in detail. For an up to date description of this
command have a look in the online help or in the reference manual.

ID A histogram identifier (1-dim or 2-dim)
A bin range may be specified, e.g. Histo/Fit 10(25:56) ...

FUNC Name of a function to be fitted to the histogram.
This function can be of various forms:

1 The name of a file which contains the user defined function to be minimized. Function name and
file name must be the same. For example file FUNC.FOR is:

FUNCTION FUNC(X) or FUNC(X,Y) for a 2-Dim histogram

COMMON/PAWPAR/PAR(2)

FUNC=PAR(1)*X +PAR(2)*EXP(-X)

END

2 One of the keywords below (1-dim histograms only), which will use the parameterization de-
scribed at the right for the fit.

G Func=par(1)*exp(-0.5*((x-par(2))/par(3))**2)

E Func=exp(par(1)+par(2)*x)

Pn Func=par(1)+par(2)*x+par(3)*x**2...+par(n+1)*x**n, 0<n<20

6.6. Fitting with PAW/HBOOK/MINUIT 93

3 A combination of the keywords above with the 2 operators + or *.

Note that in this case, the order of parameters in PAR must correspond to the order of the basic
functions. Blanks are not allowed in the expression.

CHOPT All options of the HISTO/PLOT command plus the following additional ones:

0 Do not plot the result of the fit. By default the fitted function is drawn unless the option “N” below
is specified.

B Some or all parameters are bounded. In this case vectors STEP,PMIN,PMAX must be specified.
Default is: All parameters vary freely.

D The user is assumed to compute derivatives analytically using routine HDERIV. By default, deriva-
tives are computed numerically.

L Use Log Likelihood method. Default is χ2 method.
M Invokes interactive Minuit (See on Page 96)
N Do not st ore the result of the fit bin by bin with the histogram. By default the function is calculated

at the centre of each bin and the fit results stored with the histogram data structure.
Q Quiet mode. No output printed about the fit.
V Verbose mode. Results are printed after each iteration. By default only final results are printed.
W Sets weights equal to 1.

NP Number of parameters in fit (0 ≤ NP ≤ 34)

PAR Vector containing the fit parameters.
Before the fit: Vector containing the initial values
After the fit: Vector containing the fitted values.

STEP Vector with step size for fit parameters

PMIN Vector with lower bounds for fit parameters

PMAX Vector with upper bounds for fit parameters

ERRPAR Vector with errors on the fitted parameters

When using predefined functions (case 2 for the FUNC parameter) initial values need not be specified when NP=0.
In this case the parameter vector PAR, if specified, is only filled with the fitted parameters on output.

6.6.6 A simple fit with a gaussian

Example of simple fit with gaussian in PAW

PAW > opt stat | Select option to show histogram statistics on plot

PAW > opt fit | Select option to show fitted parameters on plot

PAW > hi/fit 10 G | Fit histogram 10 with a single gaussian

**

* *

* Function minimization by SUBROUTINE HFITGA *

* Variable-metric method *

* ID = 10 CHOPT = T *

* *

**

Convergence when estimated distance to minimum (EDM) .LT. 0.10E-03

FCN= 96.97320 FROM MIGRAD STATUS=CONVERGED CALLS= 549 EDM= 0.26E-03

STRATEGY= 1 ERROR DEF= 1.0000

INT EXT PARAMETER STEP FIRST

NO. NO. NAME VALUE ERROR SIZE DERIVATIVE

1 1 Constant 239.83 2.8178 0.00000 0.57627E-02

2 2 Mean -0.53038E-02 0.77729E-04 0.00000 22.025

3 3 Sigma 0.98766 0.70224E-02 0.00000 -0.88534

CHISQUARE = 0.1021E+01 NPFIT = 98

94 Chapter 6. HBOOK

TEST1

ID
Entries
Mean
RMS

 10
 10000

-0.3923E-02
 0.9857
 1.021

Constant 239.8
Mean -0.5304E-02
Sigma 0.9877

0

40

80

120

160

200

240

280

-3 -2 -1 0 1 2 3

Figure 6.9: Example of a simple fit of a one-dimensional distribution

Fit parts of histogram separately

PAW > opt NSTA | Turn off option showing statistics on plot

PAW > ve/cr par(6) | Create a vector with 6 elements

PAW > set fit 111 | Show fitted parameters + errors on plot

PAW > hi/fit 110(1:50) G ! 0 par | Fit first half with a gaussian and plot

**

* *

* Function minimization by SUBROUTINE HFITGA *

* Variable-metric method *

* ID = 110 CHOPT = TR *

* *

**

Convergence when estimated distance to minimum (EDM) .LT. 0.10E-03

FCN= 90.66560 FROM MIGRAD STATUS=CONVERGED CALLS= 152 EDM= 0.68E-05

STRATEGY= 1 ERROR DEF= 1.0000

INT EXT PARAMETER STEP FIRST

NO. NO. NAME VALUE ERROR SIZE DERIVATIVE

1 1 Constant 300.28 5.0681 0.13342 0.97075E-04

2 2 Mean 0.30698 0.10511E-02 -0.13885E-04 -0.57797

6.6. Fitting with PAW/HBOOK/MINUIT 95

Parameter Input value Result of Figure 6.10 Result of Figure 6.11

First Gaussian:
Height 1. (normalised) 300.± 5. 308.± 5.

Mean value 0.3 0.307± 0.001 0.303± 0.001

Width (sigma) 0.07 0.074± 0.001 0.070± 0.001

Second Gaussian:
Height 0.5 (normalised) 153.± 3. 154.± 4.

Mean value 0.7 0.702± 0.002 0.703± 0.002

Width (sigma) 0.12 0.120± 0.002 0.119± 0.002

Table 6.3: Results for the fitted parameters of the gaussian distributions as compared to the initial values which the
gaussian distributions were generated in the “batch” job in Section 6.3. The table also includes the result of the
double gaussian fit in section 6.11.

3 3 Sigma 0.73832E-01 0.67896E-03 -0.57602E-04 -4.6407

CHISQUARE = 0.2159E+01 NPFIT = 45

PAW > hi/fit 110(50:99) G 0 0 par(4) | Fit second half with gaussian, do not plot

**

* *

* Function minimization by SUBROUTINE HFITGA *

* Variable-metric method *

* ID = 110 CHOPT = TR *

* *

**

Convergence when estimated distance to minimum (EDM) .LT. 0.10E-03

FCN= 30.16534 FROM MIGRAD STATUS=CONVERGED CALLS= 221 EDM= 0.87E-04

STRATEGY= 1 ERROR DEF= 1.0000

INT EXT PARAMETER STEP FIRST

NO. NO. NAME VALUE ERROR SIZE DERIVATIVE

1 1 Constant 153.27 3.0227 0.65005E-01 0.36877E-02

2 2 Mean 0.70186 0.19599E-02 0.40388E-03 4.8103

3 3 Sigma 0.11965 0.18242E-02 -0.25292E-03 6.9011

CHISQUARE = 0.6418E+00 NPFIT = 50

PAW > hi/plot 110 SFUNC | Plot result of fit on Same plot

PAW > ve/pr par(1:6) | Print the fitted parameters in PAR

PAR (1) = 300.2846

PAR (2) = 0.3069752

PAR (3) = 0.7383241E-01

PAR (4) = 153.2716

PAR (5) = 0.7018576

PAR (6) = 0.1196475

Example of a more complex fit

PAW > * Create vector of 6 elements and give initial values for combined fit of two gaussians

PAW > ve/cr par2(6) r 200 0.3 0.1 100 0.7 0.1 | initial values for the 6 fit parameters

PAW > set fit 111 | display fitted parameters plus errors

PAW > hi/fit 110(2:99) G+G ! 6 par2 | perform the fit (sum of 2 gaussians)

96 Chapter 6. HBOOK

**

* *

* Function minimization by SUBROUTINE HFITH *

* Variable-metric method *

* ID = 110 CHOPT = R *

* *

**

Convergence when estimated distance to minimum (EDM) .LT. 0.10E-03

FCN= 57.41251 FROM MIGRAD STATUS=CONVERGED CALLS= 597 EDM= 0.10E-03

STRATEGY= 1 ERROR DEF= 1.0000

INT EXT PARAMETER STEP FIRST

NO. NO. NAME VALUE ERROR SIZE DERIVATIVE

1 1 P1 307.86 5.3896 1.3393 -0.51814E-03

2 2 P2 0.30265 0.10750E-02 0.18577E-03 3.5622

3 3 P3 0.70029E-01 0.86285E-03 0.19967E-03 11.689

4 4 P4 153.62 3.0170 0.73111 0.30406E-02

5 5 P5 0.70303 0.20652E-02 0.43051E-03 -1.2694

6 6 P6 0.11865 0.18645E-02 0.39360E-03 3.2237

CHISQUARE = 0.6524E+00 NPFIT = 94

6.7 Doing more with Minuit

When the HISTO/FIT or VECTOR/FIT command is invoked, PAW/HBOOK will set a default environment for
Minuit. Control may be given to Minuit if the option “M” is specified in the command. In this case, the user may
enter Minuit control statements.

Overview of available MINUIT commands

CLEar

Resets all parameter names and values to undefined. Must normally be followed by a PARAMETER command or
equivalent, in order to define parameter values.

CONtour par1 par2 [devs][ngrid]

Instructs MINUIT to trace contour lines of the user function with respect to the two parameters whose external
numbers are par1 and par2. Other variable parameters of the function, if any, will have their values fixed at the
current values during the contour tracing. The optional parameter [devs] (default value 2.) gives the number
of standard deviations in each parameter which should lie entirely within the plotting area. Optional parameter
[ngrid] (default value 25 unless page size is too small) determines the resolution of the plot, i.e. the number of
rows and columns of the grid at which the function will be evaluated.

EXIT

End of Interactive MINUIT. Control is returned to PAW.

FIX parno

Causes parameter parno to be removed from the list of variable parameters, and its value will remain constant (at
the current value) during subsequent minimizations, etc., until another command changes its value or its status.

HELP [SET][SHOw]

Causes MINUIT to list the available commands. The list of SET and SHOw commands must be requested sepa-
rately.

6.7.
D

oing
m

ore
w

ith
M

inuit
97

Filled according to HTFUN1

 2.159
Constant 300.3 4.921
Mean 0.3070 0.1052E-02
Sigma 0.7383E-01 0.6180E-03

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Figure 6.10: Example of a fit using sub-ranges bins

Filled according to HTFUN1

 0.6524
P1 307.9 5.346
P2 0.3026 0.1080E-02
P3 0.7002E-01 0.8478E-03
P4 153.6 3.012
P5 0.7030 0.2076E-02
P6 0.1187 0.1835E-02

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Figure 6.11: Example of a fit using a global double gaussian fit

98 Chapter 6. HBOOK

HESse [maxcalls]

Instructs MINUIT to calculate, by finite differences, the Hessian or error matrix. That is, it calculates the full matrix
of second derivatives of the function with respect to the currently variable parameters, and inverts it, printing out
the resulting error matrix. The optional argument [maxcalls] specifies the (approximate) maximum number of
function calls after which the calculation will be stopped.

IMProve [maxcalls]

If a previous minimization has converged, and the current values of the parameters therefore correspond to a local
minimum of the function, this command requests a search for additional distinct local minima. The optional
argument [maxcalls] specifies the (approximate) maximum number of function calls after which the calculation
will be stopped.

MIGrad [maxcalls][tolerance]

Causes minimization of the function by the method of Migrad, the most efficient and complete single method,
recommended for general functions (see also MINImize). The minimization produces as a by-product the error
matrix of the parameters, which is usually reliable unless warning messages are produced. The optional argument
[maxcalls] specifies the (approximate) maximum number of function calls after which the calculation will be
stopped even if it has not yet converged. The optional argument [tolerance] specifies required tolerance on the
function value at the minimum. The default tolerance is 0.1. Minimization will stop when the estimated vertical
distance to the minimum (EDM) is less than 0.001*[tolerance]*UP (see SET ERR).

MINImize [maxcalls][tolerance]

Causes minimization of the function by the method of Migrad, as does the MIGrad command, but switches to the
SIMplex method if Migrad fails to converge. Arguments are as for MIGrad.

MINOs [maxcalls][parno][parno]...

Causes a Minos error analysis to be performed on the parameters whose numbers [parno] are specified. If none
are specified, Minos errors are calculated for all variable parameters. Minos errors may be expensive to calculate,
but are very reliable since they take account of non-linearities in the problem as well as parameter correlations,
and are in general asymmetric. The optional argument [maxcalls] specifies the (approximate) maximum number
of function calls per parameter requested, after which the calculation will be stopped for that parameter.

RELease parno

If parno is the number of a previously variable parameter which has been fixed by a command: FIX parno, then
that parameter will return to variable status. Otherwise a warning message is printed and the command is ignored.
Note that this command operates only on parameters which were at one time variable and have been FIXed. It
cannot make constant parameters variable; that must be done by redefining the parameter with a PARAMETER
command.

REStore [code]

If no [code] is specified, this command restores all previously FIXed parameters to variable status. If [code]=1,
then only the last parameter FIXed is restored to variable status.

SCAn [parno][numpts][from][to]

Scans the value of the user function by varying parameter number [parno], leaving all other parameters fixed at
the current value. If [parno] is not specified, all variable parameters are scanned in sequence. The number of
points [numpts] in the scan is 40 by default, and cannot exceed 100. The range of the scan is by default 2 standard
deviations on each side of the current best value, but can be specified as from [from] to [to]. After each scan, if
a new minimum is found, the best parameter values are retained as start values for future scans or minimizations.
The curve resulting from each scan is plotted on the output unit in order to show the approximate behavior of the
function. This command is not intended for minimization, but is sometimes useful for debugging the user function
or finding a reasonable starting point.

6.7. Doing more with Minuit 99

SEEk [maxcalls][devs]

Causes a Monte Carlo minimization of the function, by choosing random values of the variable parameters, chosen
uniformly over a hypercube centered at the current best value. The region size is by default 3 standard deviations
on each side, but can be changed by specifying the value of [devs].

SET ERRordef up

Sets the value of up (default value= 1.), defining parameter errors. MINUIT defines parameter errors as the change
in parameter value required to change the function value by up. Normally, for chisquared fits up=1, and for
negative log likelihood, up=0.5.

SET LIMits [parno][lolim][uplim]

Allows the user to change the limits on one or all parameters. If no arguments are specified, all limits are removed
from all parameters. If [parno] alone is specified, limits are removed from parameter [parno]. If all arguments
are specified, then parameter [parno] will be bounded between [lolim] and [uplim]. Limits can be specified in
either order, MINUIT will take the smaller as [lolim] and the larger as [uplim]. However, if [lolim] is equal to
[uplim], an error condition results.

SET PARameter parno value

Sets the value of parameter parno to value. The parameter in question may be variable, fixed, or constant, but
must be defined.

SET PRIntout level

Sets the print level, determining how much output MINUIT will produce. The allowed values and their meanings
are displayed after a SHOw PRInt command. Possible values for level are:

-1 No output except from SHOW commands

0 Minimum output (no starting values or intermediate results)

1 Default value, normal output

2 Additional output giving intermediate results.

3 Maximum output, showing progress of minimizations.

SET STRategy level

Sets the strategy to be used in calculating first and second derivatives and in certain minimization methods. In
general, low values of level mean fewer function calls and high values mean more reliable minimization. Currently
allowed values are 0, 1 (default), and 2.

SHOw XXXX

All SET XXXX commands have a corresponding SHOw XXXX command. In addition, the SHOw commands
listed starting here have no corresponding SET command for obvious reasons. The full list of SHOw commands
is printed in response to the command HELP SHOw.

SHOw CORrelations

Calculates and prints the parameter correlations from the error matrix.

SHOw COVariance

Prints the (external) covariance (error) matrix.

SIMplex [maxcalls][tolerance]

Performs a function minimization using the simplex method of Nelder and Mead. Minimization terminates either
when the function has been called (approximately) [maxcalls] times, or when the estimated vertical distance to
minimum (EDM) is less than [tolerance]. The default value of [tolerance] is 0.1*UP (see SET ERR).

Chapter 7: Graphics (HIGZ and HPLOT)

7.1 HPLOT, HIGZ and local graphics package

Graphics input/output in PAW is handled by the two packages HPLOT (Histograms PLOTting) and HIGZ (High
level Interface to Graphics and Zebra). HIGZ is the basic graphics system of PAW interfacing an basic graphics
package while HPLOT, sitting on top of HIGZ, is used for plotting HBOOK objects (Histograms, Ntuples, etc.).
The figure below shows the hierarchy between HPLOT, HIGZ and the basic graphics package (X Windows, etc...).

Graphics could be produced in PAW either directly by HIGZ commands or by HPLOT commands. In both cases,
all the graphics is under the control of HIGZ. Two distinct modes are available in HIGZ: one is purely graphics (the
G mode) interfacing the basic graphics package, and the second (the Z mode) allows the management of the HIGZ
structures (pictures). As an example, the simple PAW command HISTOGRAM/PLOT is handled at the different levels
as follows:

PAW Level HISTOGRAM/PLOT ID

HPLOT Level Takes care of ZONE, SET, OPTION, etc.

HIGZ Level Windows and Viewport, Axis, Boxes, Histogram, Text and Attributes

Basic graphics Line, Text, Attributes, etc.

7.2 The metafiles

Metafiles are text files used as device independent sources of graphics output for printers of different type. The
most widely use metafile in PAW is the PostScript metafile. This type of metafile can be sent directly to a PostScript
printer The PostScript metafile type (second parameter of the comman METAFILE have the following format:

-[Format][Nx][Ny][Type]

Where:

Format Is an integer between 0 and 99 which defines the format of the paper. For example if Format=3 the
paper is in the standard A3 format. Format=4 and Format=0 are the same and define an A4 page.
The A0 format is selected by Format=99. The US format Letter is selected by Format=100. The US
format Legal is selected by Format=200. The US format Ledger is selected by Format=300.

Nx, Ny Specify respectively the number of zones on the x and y axis. Nx and Ny are integers between 1 and 9.

Type Can be equal to:

1 Portrait mode with a small margin at the bottom of the page.
2 Landscape mode with a small margin at the bottom of the page.
4 Portrait mode with a large margin at the bottom of the page.
5 Landscape mode with a large margin at the bottom of the page.

The large margin is useful for some PostScript printers (very often for the colour printers) as they
need more space to grip the paper for mechanical reasons.
Note that some PostScript colour printers can also use the so called ”special A4” format permitting
the full usage of the A4 area; in this case larger margins are not necessary and Type=1 or 2 can
be used.

3 Encapsulated PostScript. This Type permits the generation of files which can be included in other
documents, for example in LATEX files. Note that with this Type, Nx and Ny must always be equal
to 1, and Format has no meaning. The size of the picture must be specified by the user via the
SIZE command. Therefore the workstation type for Encapsulated PostScript is -113. For example
if the name of an Encapsulated PostScript file is example.eps, the inclusion of this file into a
LATEX file will be possible via (in the LATEX file):

\begin{figure}

\includegraphics{example.eps}

\caption{Example of Encapsulated PostScript in LaTeX.}

\label{EXAMPLE}

\end{figure}

100

7.3. The HIGZ pictures 101

PAW

HPLOT

HIGZ

G Z

Basic Graphics Package

Figure 7.1: HPLOT and HIGZ in PAW

Note that all the figures in this manual are included in this way.

With Type=1,2,4 and 5 the pictures are centered on the page, and the usable area on paper is proportional to the
dimensions of A4 format.
Examples:
-111 or -4111 defines an A4 page not divided. -6322 define an A6 landscape page divided in 3 columns and 2
rows.

1 2 3

4 5 6

The first picture will be drawn in the area 1. The next image will appear in the next area in the order defined above.
If a page is filled, a new page is used with the same grid. Note that empty pages are not printed in order to save
paper.
Ignoring formats smaller than A12, the total number of possible different PostScript workstation types is: 4× 9×
9 × 13 + 1 = 4213 !
The command GRAPHICS/METAFILE LUN METAFL is designed to produce metafiles. LUN is the logical unit num-
ber of an open FORTRAN file and METAFL the metafile type. For example, the following four commands will
produce a HIGZ/PostScript metafile with the name "PAW.PS" containing the graphics representation of histogram
number 10:

PAW > FORTRAN/FILE 66 PAW.PS

PAW > GRAPHICS/META 66 -111

PAW > HISTO/PLOT 10

PAW > FORTRAN/CLOSE 66

7.3 The HIGZ pictures

The HIGZ pictures have four main goals:

• HIGZ graphics primitives and attributes can be stored in a ZEBRA structure in memory in order to display
them later.

102 Chapter 7. Graphics (HIGZ and HPLOT)

• They can be stored on direct access files (in a very compact way), in order to build a picture data base.

• They can be modified with the graphics editor.

• They are structured i.e. they can contains so called “graphics objects” which are used to retrieve objects
names and type in the “direct graphics mode” of PAW++.

7.3.1 Pictures in memory

The general command to manage pictures in memory is: PICTURE/IZPICT. This command has two parameters:

PNAME Picture name:

CH Character string specifying picture name (must begin with a letter)

N Picture number as displayed by PICT/LIST.

* All pictures in memory.

’ ’ A blank indicates the current picture.

CHOPT Option value:

AL Give a full listing of the pictures in memory.

C Picture PNAME becomes the current picture.

D Display the picture PNAME.

F First picture in memory becomes the current picture.

L List pictures in memory.

M Make a new picture in memory with the name PNAME.

N Next picture in memory becomes the current picture.

P Print the contents of the picture PNAME.

S Scratch picture PNAME from memory.

In addition, simpler and more mnemonic commands are available:

PAW > PICT/CREATE PNAME | Create a picture in memory

PAW > PICT/LIST | List pictures in memory

1: PNAME <-- Current Picture

The last created picture in memory is called the current picture. All graphics primitives (line, text, histogram,
etc.) produced by PAW commands will be stored in this picture if it is active, i.e. if mode Z is on.

PAW > SWITCH Z | Switch Z mode on

PAW > PICT/LIST

1: PNAME <-- Current Picture (Active)

Note that the command PICTURE/CREATEwill switch automatically Z mode on.

PAW > PICT/PLOT PNAME

will display picture PNAME. If picture PNAME is not in memory and if the current working directory (as given by
CDIR) is a picture file, PAW will try to take this picture from the file before displaying it.

HIGZ pictures can be created automatically by HPLOT via the command:

PAW > OPTION ZFL

If this command has been typed, each new plot produced by HPLOT will result in a HIGZ picture created in
memory. The following example shows how for each HIST/PLOT ID command a new HIGZ picture is created
with an automatic naming:

7.3. The HIGZ pictures 103

PAW > HIST/PLOT 10

PAW > HIST/PLOT 110

PAW > HIST/PLOT 20

PAW > PICT/LIST

1: PICT1

2: PICT2

3: PICT3 <-- Current Picture (Active)

A similar command is given by:

PAW > OPTION ZFL1

which works exactly like OPTION ZFL except that only the last created picture is kept in memory. For example, if
we had typed OPTION ZFL1 instead of OPTION ZFL in the example above, the result would be:

PAW > PICT/LIST

1: PICT3 <-- Current Picture (Active)

The following example is a useful macro showing how to use the HIGZ pictures (via OPTION ZFL1) and the
metafiles in order to produce a hard copy of the graphics screen:

Macro showing how to convert the current picture in PostScript

MACRO POST

FORTRAN/FILE 66 PAW.PS | Open the FORTRAN file PAW.PS on unit 66

META -66 -111 | PAW.PS is an A4 PostScript file

PICT/PLOT ’ ’ | Convert the current picture in PostScript

CLOSE 66 | Close PAW.PS

SHELL PRINT PAW.PS | Send PAW.PS to the local printer

RETURN

Typing EXEC POST, the current HPLOT picture on the screen will be sent to the printer using the SHELL command
which issues a system-dependent “print” command to the local operating system (e.g. lp or lpr on Unix).
The command PICTURE/PRINT do the same thing:

PAW > PICT/PRINT PAW.PS

This command transform the current picture into a printable file. The file type is defined according to the extension
of the file name i.e.

• FILE = filename.ps A PostScript file is generated (-111)

• FILE = filename.eps A Encapsulated PostScript file is generated (-113)

• FILE = filename.tex A LaTex file is generated (-778)

With this command the metafile type is predefined. It is not possible to change it like in the macro POST previously
described. If FILE=HIGZPRINTER or FILE=’ ’ the PostScript file paw.ps (-111) is generated and the operating
system command defined by the environment variable HIGZPRINTER is executed. The environment variable
HIGZPRINTER could be defined as follow:

setenv HIGZPRINTER ’xprint -p513-pub paw.ps’

Note that if the environment variable HIGZPRINTER is not defined the file paw.ps is created but not printed.
Other available commands working on pictures in memory are:

PAW > PICT/RENAME PNAME PNAME2

PAW > PICT/COPY PNAME PNAME2

PAW > PICT/DELETE PNAME

• PNAME can be the complete name, the picture number in memory or ’ ’.

• PNAME2 is the complete picture name.

104 Chapter 7. Graphics (HIGZ and HPLOT)

7.3.2 Pictures on direct access files

HIGZ pictures are stored on direct-access files and hence access times to pictures are fast. Moreover, due to the
fact that HIGZ uses high level primitives to describe the picture’s structural tree, a storage compaction factor as
compared to the equivalent GKS metafiles of between 10 and 100 is routinely obtained.

As HIGZ is interfaced to various basic graphics packages, a picture file can be created on one system (e.g.
DECGKS, X11, GL etc.) and transported to another machine to be interpreted with a different graphics pack-
age (e.g GKSGRAL, GDDM, DI3000 etc.).

All available commands to handle pictures with ZEBRA files are shown below. Note that in the example the picture
names could be “*” (all pictures in memory), “ ” (current picture) or a number (picture number in memory).

Handling pictures with ZEBRA

PAW > * Open an existing picture file PICT.DAT on LUN 4 in Update mode

PAW > PICT/FILE 4 PICT.DAT ! U | Open the existing file PICT.DAT

PAW > LDIR | List the content of the file PICT.DAT

************** Directory ===> //LUN4 <===

Created 890512/1110 Modified 890622/1732

===> List of objects

PICTURE NAME CYCLE

UNIX 1

ZEBRA 1

CERN 1

MARKER 1

PAW > IZIN CERN | Put picture "CERN" in memory

PAW > PICT/LIST | List pictures in memory

1: CERN

PAW > IZOUT CERN | Store picture "CERN" in PICT.DAT

PAW > LDIR | List the content PICT.DAT

************** Directory ===> //LUN4 <===

Created 890512/1110 Modified 890622/1732

===> List of objects

PICTURE NAME CYCLE

UNIX 1

ZEBRA 1

CERN 1

2

MARKER 1

PAW > PURGE | Purge the file PICTURES

PAW > SCRATCH ZEBRA | Delete the picture ZEBRA from PICT.DAT

PAW > LDIR | List the content of PICT.DAT

************** Directory ===> //LUN4 <===

Created 890512/1110 Modified 890622/1732

===> List of objects

PICTURE NAME CYCLE

UNIX 1

CERN 2

MARKER 1

7.4. Setting attributes 105

7.3.3 Automatic storage pictures in memory

After typing the command:

PAW > SET AURZ 1

the AURZ mode is on and all the subsequent created pictures are stored automatically in the last picture file opened
via the command PICTURE/FILE.

Example of the use of pictures in memory

PAW > PICT/FILE 4 PICT.DAT ! N | Open a new picture file PICT.DAT

PAW > HIST/FILE 3 HEXAM.DAT | Open an existing histogram RZ file

PAW > LDIR | List the contain of HEXAM.DAT

************** Directory ===> //LUN3 <===

Created 880104/1414 Modified 880104/1414

===> List of objects

HBOOK-ID CYCLE DATE/TIME NDATA OFFSET REC1 REC2

10 1 880104/1414 75 725 32

20 1 880104/1414 1815 800 32 33

30 1 880104/1414 1066 567 34 35

PAW > OPT ZFL | Each new plot will result in a HIGZ picture

PAW > SET AURZ 1 | Each new HIGZ picture is stored in PICT.DAT

PAW > HIST/PLOT 0 | All histograms in HEXAM.DAT are plotted

PAW > CDIR //LUN4 | Set the current working directory on PICT.DAT

PAW > LDIR | List the content of PICT.DAT

************** Directory ===> //LUN4 <===

Created 890928/1024 Modified 890928/1024

===> List of objects

PICTURE NAME CYCLE

PICT1 1

PICT2 1

PICT3 1

Note that if the command PICTURE/FILE is invoked with the option ’A’, the AURZ mode is automatically enable.

7.3.4 HIGZ pictures generated in a HPLOT program

HIGZ pictures can be generated in a batch HPLOT program and later visualized in an interactive session with PAW.
The HIGZ picture file, like any HBOOK file, can be exchanged between computers using the FTP in binary mode.
As the size of the picture data base (see page 101), and hence the associated disk storage requirements, is much
smaller than the size of the metafile generated by the basic graphics package, transfer times are drastically reduced.
The example below show how to interactively visualize (with PAW) HIGZ pictures produced by HPLOT. In the
same way we can visualize and edit pictures generated by any HIGZ based application (GEANT, event scanning
programs, etc.)

7.4 Setting attributes

Attributes are parameters like: colour, character font, etc. which could be changed interactively in PAW via the
commands PICTURE/IGSET, GRAPHICS/SET and GRAPHICS/OPTION. Each attribute is linked to one or more
objects (lines, histogram, etc.). The aim of this section is to give a complete description of the attributes available
in PAW and to clarify the differences between IGSET, which changes attributes at the HIGZ level, and SET and
OPTION, which act at the HPLOT level.

106 Chapter 7. Graphics (HIGZ and HPLOT)

Store HPLOT pictures with HIGZ
PROGRAM HPICT

*.==========>

*. HPLOT Program to demonstrate how to store HPLOT

*. pictures onto direct access HIGZ picture file

*..=========>

COMMON/PAWC/H(20000)

DIMENSION SIG(2)

CHARACTER*20 TITLE

*.___

*.

CALL HLIMIT(20000)

* -- Create histograms

DO 10 ID=1,10

WRITE(TITLE,1000)ID

1000 FORMAT(’Test number’,I3)

CALL HBOOK1(ID,TITLE,100,-3.,3.,0.)

10 CONTINUE

* -- Fill histograms

DO 30 ID=1,10

DO 20 I=1,1000

CALL RANNOR(A,B)

CALL HFILL(ID,A,0.,1.)

20 CONTINUE

CALL HFITGA(ID,COEFF,AV,SIGM,CHI2,2,SIG)

30 CONTINUE

* -- Initialize HPLOT. Set various graphics options.

CALL HPLINT(0)

CALL HPLZON(1,2,1,’ ’)

CALL HPLOPT(’ZFL’,1)

CALL HPLOPT(’FIT’,1)

CALL HPLOPT(’STAT’,1)

CALL HPLSET(’STAT’,1.)

CALL HPLSET(’HTYP’,244.)

CALL HPLSET(’FWID’,5.)

CALL HPLSET(’VFON’,-40.)

CALL HPLSET(’TFON’,-60.)

CALL HPLSET(’PWID’,4.)

CALL HPLSET(’BCOL’,1.01)

CALL HPLSET(’CSIZ’,0.25)

CALL HPLSET(’CFON’,-10.)

*

* Open a picture file called "hpict.dat".

* Option ’A’ means "Automatic saving of pictures"

* Option ’N’ means "New file"

* (option ’U’ instead of ’N’ updates an existing file)

*

CALL IZOPEN(1,’Pictures’,’hpict.dat’,’AN’,1024,ISTAT)

*

* Select HIGZ option to store graphics in ZEBRA memory only

* No calls to the local graphics package.

*

CALL IGZSET(’Z’)

* -- Plot all histograms

CALL HPLOT(0,’ ’,’ ’,0)

CALL HPLEND

*

END

Using the picture in Paw
PAW > PICT/FILE 20 HPICT.DAT

PAW > LDIR

Directory ===> //LUN20 <===

Created 891006/1026 Modified 891006/1026

===> List of objects

PICTURE NAME CYCLE

PICT1 1

PICT2 1

PICT3 1

PICT4 1

PICT5 1

PAW > META 10 -111

PAW > PICT/PLOT PICT2

PAW > CLOSE 10

PAW > * Print metafile

PAW > * (see pages 101 and following)
PAW > SHELL print PAW.METAFILE

PAW > EXIT

0

4

8

12

16

20

24

28

32

-3 -2 -1 0 1 2 3

0

5

10

15

20

25

30

35

40

-3 -2 -1 0 1 2 3

Test number 3

ID 3
 0.6923

Constant 23.65
Mean -0.1082E-01
Sigma 0.9680

Test number 4

ID 4
 0.8654

Constant 22.03
Mean -0.9535E-02
Sigma 1.023

Figure 7.2: Visualising a HIGZ picture produced in a batch HPLOT program

IGSET [CHOPT VAL]

This command is used to set the value of attributes related to primitives and macroprimitives. The first parameter
is the mnemonic name of the attribute, the second is the value to be assigned.

CHOPT Character variable specifying the name of the attribute to be set. This a character string of 4 characters.

VAL Value of the attribute. A value of 0 or no value specified, indicates that the attribute value must be reset
to its default value.

Examples of IGSET commands

PAW > IGSET MTYP 20 | Change marker type to 20.

| This new marker is used by all subsequent

| commands using the current marker type.

PAW > IGSET LWID | Set the line width to its default value.

PAW > IGSET | Display actual and default values of all HIGZ attributes

PAW > IGSET * | Set ALL HIGZ attributes to their default values

Note that the command SET calls IGSET if it is called with a IGSET option.

7.4. Setting attributes 107

OPTION [CHOPT]

The OPTION command has one optional parameter:

CHOPT Option name (four characters). Special values are:

’*’ Set all HPLOT options to their default values

’ ’ Display actual and default values of all HPLOT options

SET [CHOPT VAL]

Sets an HPLOT parameter; see table 7.3 and figures 7.3, 7.4, 7.5 and 7.6 for details.

CHOPT Character variable of length 4 identifying the parameter to be redefined (must be given in uppercase).
Special values are:

’*’ All parameters are set to their default values.

’SHOW’ A list of all parameters and their values is printed.

VAR New value for the parameter specified. Special values are:

0. The corresponding parameters is set to its default value.

Table 7.1: Parameters and default values for IGSET

NAME default Explanation

’AURZ’ 0. If 1. the last current picture is automatically saved on disk when a new picture is
created.

’AWLN’ 0.0 Axis wire length. Default is length=0 (no grid)

’BARO’ 0.25 Offset of the left edge of the bar with respect to the left margin of the bin for a bar
chart (expressed as a fraction of the bin width).

’BARW’ 0.50 Width of the bar in a bar chart (expressed as a fraction of the bin width).

’BASL’ 0.01 Basic segment length in NDC space (0-1) by (0-1) for dashed lines

’BORD’ 0. Border flag. If = 1., a border is drawn in boxes, pie charts,. . . .

’CHHE’ 0.01 CHaracter HEight.

’CSHI’ 0.02 Distance between each shifted drawing of a character (in percentage of character
height) for characters drawn by TEXT

’FACI’ 1. Fill Area Colour Index.

’FAIS’ 0. Fill Area Interior Style (0.,1.,2.,3.).

’FASI’ 1. Fill Area Style Index.

’LAOF’ 0.013 LAbels OFfset.

’LASI’ 0.018 LAbels SIze (in World coordinates).

’LTYP’ 1. Line TYPe.

’LWID’ 1.00 Line WIDth.

’MSCF’ 1.00 Marker SCale Factor.

’MTYP’ 1. Marker TYPe.

’PASS’ 1. Text width (given by number of PASSes) of characters drawn by TEXT. The width is
simulated by shifting the “pen” slightly at each pass.

’PICT’ 1. Starting number for automatic pictures naming.

’PLCI’ 1. PolyLine Colour Index.

’PMCI’ 1. PolyMarker Colour Index.

’TANG’ 0.00 Text ANGle (for calculating Character up vector).

’TMSI’ 0.019 Tick Marks SIze (in world coordinates)

’TXAL’ 0. 10*(horizontal alignment)+(vertical alignment).

108 Chapter 7. Graphics (HIGZ and HPLOT)

Table 7.1: Parameters and default values for IGSET (continued)

NAME default Explanation

’TXCI’ 1. TeXt Colour Index.

’TXFP’ 10. 10*(TeXt Font) + (TeXt Precision).

(0: hard, 1: string, 2: soft)

’*’ All attributes are set to their default values.

’SHOW’ The current and default values of the parameters controlled by IGSET are displayed.

Table 7.2: Parameters and default values for OPTION

Default Alternative Effect

’ ’ ’A0’,

’A1’,...

Picture size. Predefined options are: A0, A1, A2, A3, A4, A5, A6

’NOPG’ ’*P’,’**P’,
’***P’

Suppresses (’NOPG’) or adds a 1, 2 or 3 digit page numbers to a plot (Each ’*’

stands for a digit). The page numbers are incremented automatically

’NEAH’ ’EAH’ Plots Errors bars And Histogram, if both are present

’VERT’ ’HORI’ Vertical or horizontal orientation of paper

’NAST’ ’AST’ Functions are drawn with (’AST ’) or without (’NAST’) asterisks in each channel.

’NCHA’ ’CHA’ Scatter plot are plotted with dots randomised within each bin (’NCHA’) or by
printing a single character in the middle of the bin (’CHA ’)

’SOFT’ ’HARD’ Use SOFTware or HARDware characters

’TAB ’ ’NTAB’ tables (HTABLE) are plotted as tables (’TAB ’) or as scatter plots (’NTAB’)

’HTIT’ ’UTIT’ Option for printing titles. ’HTIT’ means use the hbook titles, while ’UTIT’ sig-
nals the use of user titles

’LINX’ ’LOGX’ The scale for the X axis is linear or logarithmic.

’LINY’ ’LOGY’ The scale for the Y axis is linear or logarithmic.

Note that if in hbook the HIDOPT option ’LOGY’ or HLOGAR was selected for a
particular ID and if neither options ’LINY’ nor ’LOGY’ are selected then the scale
will be logarithmic. If HLOGAR or HIDOPTwith option ’LOGY’ was called and the
option ’LINY’ is selected then the scale will be linear

’LINZ’ ’LOGZ’ The scale for the Z axis is linear or logarithmic (for lego plots or surfaces).

’BOX ’ ’NBOX’ By default a rectangular box is drawn around a picture. ’NBOX’ suppresses this
box

’NTIC’ ’TIC’ Cross-wires are drawn (’TIC ’) or not drawn (’NTIC’) after each plot

’NSTA’ ’STA’ Statistics information are printed (’STA ’) or not printed (’NSTA’) on the picture

’NFIT’ ’FIT’ Fit parameters are printed (’FIT ’) or not printed (’NFIT’) on the picture

’NSQR’ ’SQR’ The size of the histogram boxes is set to the largest square (SQR)

’NZFL’ ’ZFL’ The picture is stored (’ZFL ’) or not stored (’NZFL’) in a ZEBRA data base The
procedure to create a higz picture is given below.

’NZFL’ ’ZFL1’ ’ZFL1’ has the same effect as ’ZFL ’, but only the picture last created is kept in
memory.

’NPTO’ ’PTO’ “Please Turn Over”. With ’PTO ’ a carriage return is requested between each
new plot.

’NBAR’ ’BAR’ 1-dimensional histograms are plotted as “Bar charts” (’BAR ’) or as contours
(’NBAR’)

’DVXR’ ’DVXI’ Real (’DVXR’) or integer (’DVXI’) labels are computed for the X axis

’DVYR’ ’DVYI’ Real (’DVYR’) or integer (’DVYI’) labels are computed for the Y axis

’GRID’ ’NGRI’ Grid on X and Y axis

’NDAT’ ’NDAT’ The date is printed or not on each plot

7.4. Setting attributes 109

Table 7.2: Overview of the HPLOPT options (continued)

Default Alternative Effect

’NFIL’ ’NFIL’ The file name is printed or not on each plot

Table 7.3: Parameters and default values in SET

CHOPT VAR (default) Explanation

ASIZ 0.28 cm axis label size

BARO 0.25 bar offset for “bar charts”

BARW 0.5 bar width for “bar charts”

BCOL 1 zone fill area colour index

BTYP 0 zone fill area style index

BWID 1 box line width

CFON 2 comment font (10*font+precision)

CSHI 0.03 character shift between two pass

CSIZ 0.28 cm comment size

DASH 0.15 length of basic dashed segment for dashed lines

DATE 2 date position

DMOD 1 line style for histogram contour (see HPLOT)

ERRX 0.50 error on X (% of bin width)

FCOL 1 function fill area COLor

FILE 1 file name position

FIT 101 fit values to be plotted

FPGN 1 first PaGe Number

FTYP 0 function fill area TYPe

FWID 1 function line width

GFON 2 global title font (10*font+precision)

GRID 3 grid line type

GSIZ 0.28 cm global title size

HCOL 1 histogram fill area colour index

HMAX 0.90 histogram maximum for scale (in percent)

HTYP 0 histogram fill area style index

HWID 1 histogram line width

KSIZ 0.28 cm Hershey character size (cf. KEY)

LFON 2 axis labels font (10*font+precision)

NDVX 10510.00 number of divisions for X axis

NDVY 10510.00 number of divisions for Y axis

NDVZ 10510.00 number of divisions for Z axis

PASS 1. number of pass for software characters

PCOL 1 picture fill area colour index

PSIZ 0.28 cm page number size

PTYP 0 picture fill area style index

PWID 1 picture line width

SMGR 0. stat margin right (in percent)

SMGU 0. stat margin up (in percent)

SSIZ 0.28 cm asterisk size (for functions)

STAT 1111 stat values to be plotted

110 Chapter 7. Graphics (HIGZ and HPLOT)

Table 7.3: Parameters and default values in SET (continued)

CHOPT VAR (default) Explanation

TFON 2 general comments font (10*font+precision)

TSIZ 0.28 cm histogram title size

VFON 2 axis values font (10*font+precision)

VSIZ 0.28 cm axis values size

XCOL 1 X axis COLor

XLAB 1.40 cm distance Y axis to labels

XMGL 2.00 cm X margin left

XMGR 2.00 cm X margin right

XSIZ 20.0 cm length of picture along X

XTIC 0.30 cm X axis tick mark length

XVAL 0.40 cm distance between the Y axis and the axis values

XWID 1 X ticks width

XWIN 2.00 cm X space between zones

YCOL 1 Y axis COLor

YGTI 1.50 cm Y position of global title

YHTI 1.20 cm Y position of histogram title

YLAB 0.80 cm distance X axis to labels

YMGL 2.00 cm Y margin low

YMGU 2.00 cm Y margin up

YNPG 0.60 cm Y position for the page number

YSIZ 20.0 cm length of picture along Y

YTIC 0.30 cm Y axis tick mark length

YVAL 0.20 cm distance between the X axis and the axis values

YWID 1 Y ticks width

YWIN 2.00 cm Y space between zones

2SIZ 0.28 cm scatter plot and table character. size

7.5 More on labels

By default, labels used by AXIS and PIE are numeric labels. The command GRAPHICS/PRIMITIVES/LABELS (or
LABELS for short), allows the user to define up to nine alphanumeric set of labels (numbered from 1 to 9). These
labels can then be used in subsequent commands using PIE or AXIS primitives of HIGZ.

The LABELS command has three parameters:

LABNUM An integer between 1 and 9. It identifies the labels set.

NLABS The number of items to be placed on the labels (up to 50).

CHLABS NLABS character strings specifying the label items.

The label sets thus defined can be used for axes on all plots produced by PAW (HPLOT histograms, graphs, vectors
drawing, etc.) via the SET NDVX (NDVY) command. These commands have the following structure:

Example of NXDV specification

SET NDVX i e.g. SET NDVX 512

or
SET NDVX i.jk e.g. SET NDVX 10.25

7.5. More on labels 111

HISTOGRAM TITLE

HBOOK GLOBAL TITLE

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

HISTOGRAM TITLE

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

HISTOGRAM TITLE

0

25

50

75

100

125

150

175

200

0.1 0.2 0.3 0.4 0.5 0.6

ID

Entries
Mean

RMS

 2

 5000
 .4982

 .2205

GeV/C

E
xa

m
pl

e
of

 ti
tl

e
al

on
g

Y

YTIC

XTIC

XVAL

YVAL

XSIZ

XMGL XWIN XMGR

XLAB

SMGU

Y
S

IZ

Y
M

G
U

Y
W

IN

Y
M

G
L

Y
H

T
I

T
S

IZ

Y
LA

B

V
S

IZ

A
S

IZ

S
M

G
R

G
S

IZ

Y
G

T
I

HMAX

CSIZ

BARW

BARO

ERRX

Figure 7.3: A graphical view of the SET parameters

112 Chapter 7. Graphics (HIGZ and HPLOT)

In the first case the number i contains 100 times the number of secondary divisions plus the number of primary
divisions. (e.g. 512 means 12 primary and 5 secondary division. By adding 10000 times N3 to i a third level of
divisions is available.

In the second case the number in front of the dot (i) indicates the total number of divisions, the first digit following
the dot (j) the label identifier (LABNUM) (if this number is equal to 0 numeric labels are drawn). The second digit
after the (k) dot indicates the position where the labels have to be drawn (i.e. the text justification parameter,
in this case 5, indicating horizontally written text centered on the interval). Study figures 7.4 and 7.5 for details.
These two figures show that the labels can be centered on the tick marks (1 to 4) or on the divisions (5 to 8). If the
labels are centered on the tick marks, note that the number of items in the command LABELS must be equal to the
number of tick marks (which is equal to the number of divisions plus one), otherwise the last alphanumeric label
on the axis will be undefined.

By default, the number of primary divisions given by SET NDVX n, SET NDVY n or SET NDVZ n is optimized to
have a reasonable labelling. The number of primary divisions is also optimized according the number of zones
(command ZONE) i.e : along the X direction the number of primary divisions is divided by the_number_of_X

_zones along the Y direction the number of primary divisions in divided by (the_number_of_Y_zones)/2.

If the number of divisions has to be exactly equal to the number given by SET NDVX n, SET NDVY n or SET NDVZ

n, a negative value must be used i.e.:

Forcing an exact number of divisions

SET NDVX -i e.g. SET NDVX -512

or

SET NDVX -i.jk e.g. SET NDVX -10.25

For example to label each subsequent X-axis with the names of the months of the year centered in the middle of
each bin one can use:

Example of alphanumeric labels on an axis

PAW > LABEL 1 12 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

PAW > SET NDVX -12.15

7.6 Colour, line width, and fill area in HPLOT

The aspect of HPLOT pictures can be modified via the xWID, xTYP and xCOL attributes, where x can be H, B, P, or
F, defined as follows:

B zone Box

F Function

H Histogram

P Page

The values given to the parameters PTYP, BTYP, HTYP, and FTYP are the HIGZ fill area interior styles. Interior style
provided by the basic graphics package (i.e. GKS) can be used (cf the corresponding documentation) but in order
to have the same result on all devices, numbers greater than 100 (HIGZ styles: 7.7) should be used. Figure 7.6
shows how to use the xTYP parameter.

The parameters PCOL, BCOL, HCOL and FCOL are equivalent to PTYP, BTYP, HTYP, and FTYP respectively, but instead
of changing the hatch style, they change the colour of the same areas. It is possible to specify both the border and
the inside color for the Histogram, Box Page, and Function (HCOL, BCOL, PCOL, FCOL).

7.6. Colour, line width, and fill area in HPLOT 113

NDVX
If NDVX=12.10 the default value is taken (12.15) If NDVX=9.00 the default value is taken (9.01)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

12.11

J
A
N

F
E
B

M
A
R

A
P
R

M
A
Y

J
U
N

J
U
L

A
U
G

S
E
P

O
C
T

N
O
V

D
E
C

12.12

JA
N

F
E

B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

12.13

JA
N

F
E

B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

12.14

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

12.15

J
A
N

F
E
B

M
A
R

A
P
R

M
A
Y

J
U
N

J
U
L

A
U
G

S
E
P

O
C
T

N
O
V

D
E
C

12.16

JA
N

F
E

B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

12.17

JA
N

F
E

B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

12.18

0 1 2 3 4 5 6 7 8 9

-9.01

0 1 2 3 4 5 6 7 8 9

-9.02

0 1 2 3 4 5 6 7 8 9

-9.03

0 1 2 3 4 5 6 7 8 9

-9.04

0 1 2 3 4 5 6 7 8

-9.05

0 1 2 3 4 5 6 7 8

-9.06

0 1 2 3 4 5 6 7 8

-9.07

0 1 2 3 4 5 6 7 8

-9.08

Figure 7.4: Example of labelling for horizontal axes

NDVY
If NDVY=12.10 the default value is taken (12.16)

January

February

March

April

May

June

July

August

September

October

November

December

12.11

Left

January

February

March

April

May

June

July

August

September

October

November

December

12.12

Center

January

February

March

April

May

June

July

August

September

October

November

December

12.13

Right

January

February

March

April

May

June

July

August

September

October

November

December

12.14

Left

January

February

March

April

May

June

July

August

September

October

November

December

12.15

Center

January

February

March

April

May

June

July

August

September

October

November

December

12.16

Right

Figure 7.5: Example of labelling for vertical axes

114 Chapter 7. Graphics (HIGZ and HPLOT)

Example of HCOL specification

Ex:

+---- 1 The Histogram is filled

| 0 Only the border is drawn

|+--- Border color (here 2) if the histogram is filled

||++- Inside color (here 3) if the histogram is filled

|||| Border color if the histogram is not filled

||||

VVVV

SET HCOL 1203

The same mechanism is also available for FCOL, BCOL and PCOL.

If PCOL, BCOL, HCOL or FCOL are between 1 and 99, then only the contour of the corresponding area is changed. If
they are between 1001 and 1099, then the surface is filled with the colour determined by the corresponding fill area
colour index (1 to 99). If they are between 1199 and 1999, then the surface is filled with the colour determined by
the corresponding fill area colour index (1 to 99) and the border is drawn with the corresponding line color index
(1 to 9).

If one of the *COL is greater than 1000 the corresponding value of the Fill Area Interior Style (for HTYP, BTYP,
PTYP or FTYP) is automatically set to 1 (solid).

In addition, BCOL has two digits after the dot. The first one specifies the colour of the zone box shadowing and the
second the colour of the statistic box shadowing.

7.7 Information about histograms

Four options are available to plot additional informations on HPLOT pictures: DATE, FILE, STAT and FIT.

PAW > OPTION DATE | Plot date and hour on current HPLOT picture

PAW > OPTION FILE | Plot file name of current histogram

PAW > OPTION STAT | Plot statistics of current histogram

PAW > OPTION FIT | Plot Fit parameters of current histogram

For each of these OPTION commands a corresponding SET parameter is available:

PAW > SET DATE i | Default is 2

PAW > SET FILE i | Default is 1

where i defines the position of the date or file name:

i = 1 : Top left corner of page/current histogram.

i = 2 : Top right corner

i = 3 : Bottom left corner

i = 4 : Bottom right corner

For example the command:

PAW > SET DATE 3

sets the position of the date to the bottom left corner of the HPLOT pictures.

PAW > SET STAT i | Default is 1111

where i corresponds to binary status bits AOURMEI as follows:

A=1 Draw the contents of all channels

O=1 Draw number of overflows

U=1 Draw number of underflows

7.7. Information about histograms 115

R=1 Draw R.M.S.

M=1 Draw mean value

E=1 Draw number of entries

I=1 Draw histogram identifier

For example the command:

PAW > SET STAT 10

sets the statistics informations to be only the number of entries.

PAW > SET FIT i | Default is 101

where i corresponds to binary status bits CEP as follows:

C=1 Draw χ2

E=1 Draw errors

P=1 Draw fit parameters

For example to draw only the result of the χ2 fit one would use:

PAW > SET FIT 100

For all these OPTIONs, the character size is specified with the command SET CSIZ and the character font used
with SET CFON.

Fill area style, marker and line type

The Fill Area Interior Style, The Fill Area Style Index, the Marker TYPe and the Line TYPe are set respectively
using the IGSET parameters FAIS, FASI, MTYP and LTYPE.

Example

PAW > IGSET FAIS 3 | Fill area are hatched

PAW > IGSET FASI 244 | with the style index

PAW > IGSET MTYP 25 | Marker type is an empty square

PAW > IGSET LTYP 15 | Line type is dotted

HIGZ provides some portable fill area styles index coded using three digits ijk as follows:

i: Distance between each hatch in mm

j: Angle between 90 and 180 degrees

k: Angle between 0 and 90 degrees

These numbers are coded according to table 7.4 and examples are shown in figure 7.7.

Example

PAW > IGSET FAIS 3 | Fill area interior style is hatched

PAW > IGSET FASI 190 | Hatch type is 190

These commands will yield hatching with two sets of lines at 90◦ and 0◦ spaced 1 mm apart.

11
6

C
ha

pt
er

7.
G

ra
ph

ic
s

(H
IG

Z
an

d
H

P
L

O
T

)

0

20

40

60

80

100

120

140

160

0 0.25 0.5 0.75 1

-0.2

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6 8 10 12

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

Examples of PTYP,BTYP,HTYP and FTYPExamples of PTYP,BTYP,HTYP and FTYPExamples of PTYP,BTYP,HTYP and FTYP

BTYP=0

HTYP=0

BTYP=0

FTYP=-3

BTYP=-3
HTYP=244

PTYP=0

Figure 7.6: Usage of fill area types in HPLOT

144

244

344

444

544

644

744

844

944

305 350

315 351

325 352

335 353

345 354

365 356

375 357

385 358

395 359

Figure 7.7: HIGZ portable hatch styles

7.7. Information about histograms 117

20

21

22

23

24

25

26

27

28

29

30

31

Marker Type Marker

Figure 7.8: HIGZ portable marker types

Line Index Line Type

12

13

14

15

Figure 7.9: HIGZ portable line types

Colour Index : 0 Colour Index : 1

Colour Index : 2 Colour Index : 3

Colour Index : 4 Colour Index : 5

Colour Index : 6 Colour Index : 7

Figure 7.10: PostScript grey level simulation of the basic colours

118 Chapter 7. Graphics (HIGZ and HPLOT)

i Distance j Angle k Angle

0 180◦ 0 0◦

1 0.75mm 1 170◦ 1 10◦

2 1.50mm 2 160◦ 2 20◦

3 2.25mm 3 150◦ 3 30◦

4 3.00mm 4 135◦ 4 45◦

5 3.75mm 5 not drawn 5 not drawn

6 4.50mm 6 120◦ 6 60◦

7 5.25mm 7 110◦ 7 70◦

8 6.00mm 8 100◦ 8 80◦

9 6.75mm 9 90◦ 9 90◦

Table 7.4: Codification for the HIGZ portable fill area interior styles

7.8 Text drawing

In PAW, text output can be produced in two ways:

1. Automaticaly with commands like GRAPH or HISTO/PLOT in which a lot of text is drawn: the axis labels,
the histogram title, the global title, the statistics etc. . The attributes (font, colour or size) and the placement
of these texts are controled with the command SET. In the rest of the chapter, the text produce automaticaly
will be called HPLOT text

2. Directly with the commands ITX and TEXT. The attributes of ITX are controlled with the command IGSET

whereas the attributes of TEXT are given with the command parameters.

Text placement

The text placement specify where the text must be drawn. For the HPLOT text, the text position is always in
centimeters whereas for ITX or TEXT the current coordinate system is used.

HPLOT text

The possible text placements for HPLOT text are described in the following example:

PAW > SET XVAL 0.40 | distance between the Y axis and the axis values

PAW > SET YVAL 0.20 | distance between the X axis and the axis values

PAW > SET YLAB 0.80 | distance X axis to labels

PAW > SET XLAB 1.40 | distance Y axis to labels

PAW > SET YGTI 1.50 | Y position of global title

PAW > SET YHTI 1.20 | Y position of histogram title

PAW > SET YNPG 0.60 | Y position for the page number

PAW > HISTO/PLOT 10 | the histogram 10 is drawn with previous settings

See figure 7.3 for more details.

ITX

In the command ITX the text position is defined with two mandatory parameters (X and Y):

PAW > SELNT 1 | cm coordinates

PAW > ITX 5 5 ’Hello’ | ’Hello’ is drawn at the position (5,5)

7.8. Text drawing 119

TEXT

In the command TEXT the text position is defined with two mandatory parameters (X and Y):

PAW > SELNT 1 | cm coordinates

PAW > TEXT 5 5 ’Hello’ 1 | ’Hello’ is drawn at the position (5,5)

Text size

For all the texts drawn with PAW commands, the text size is always specified in centimeters.

HPLOT text

The possible text sizes for HPLOT text are described in the following example:

PAW > SET ASIZ 0.28 | axis label size

PAW > SET CSIZ 0.28 | comment size

PAW > SET GSIZ 0.28 | global title size

PAW > SET KSIZ 0.28 | Hershey character size

PAW > SET 2SIZ 0.28 | scatter plot and table character. size

PAW > SET TSIZ 0.28 | histogram title size

PAW > SET VSIZ 0.28 | axis values size

PAW > HISTO/PLOT 10 | the histogram 10 is drawn with previous settings

See figure 7.3 for more details.

ITX

The text character heigh attribute for use by future invocations of ITX is set using the CHHE parameter as follows:

PAW > IGSET CHHE 1 | set the character heigh to 1 cm.

PAW > ITX 5 5 ’Hello’ | the size of ’Hello’ is 1 cm.

TEXT

In the command TEXT the text size is a mandatory parameter (SIZE).

PAW > TEXT 5 5 ’Hello’ 1 | the size of ’Hello’ is 1 cm.

Text orientation

The text orientation is an angle (in degrees) between the X axis and the text axis. By default this angle is equal to
0.

HPLOT text

Text orientation cannot be changed with some SET parameters for the HPLOT text. It is always automaticaly
computed. For example in the command ATITLE, which draws the axis titles, the title on the Y axis is automaticaly
drawn with an angle of 90 degrees.

ITX

The text orientation attribute for use by future invocations of ITX is set using the TANG parameter as follows:

PAW > IGSET TANG 90 | set the text angle to 90 degrees.

PAW > ITX 5 5 ’Hello’ | ’Hello’ is drawn with an angle of 90 degrees.

TEXT

In the command TEXT the text orientation is an optional parameter (ANGLE).

PAW > TEXT 5 5 ’Hello’ ! 90 | ’Hello’ is drawn with an angle of 90 degrees

120 Chapter 7. Graphics (HIGZ and HPLOT)

Horizontal alignment Vertical alignment

0 or 1: Left (Normal)

2: Centre

3: Right

0: Bottom (Normal)

1 or 2: Top

3: Centre

Figure 7.11: Text alignment

Text alignment

The text alignment controls the placement of the character string with respect to the specified text position.

HPLOT text

Text alignment cannot be changed for the HPLOT text. It is automaticaly computed.

ITX

The text alignment attributes for use by future invocations of ITX are set using the TXAL parameter as follows:

PAW > IGSET TXAL (10*(horizontal alignment) + (vertical alignment))

The horizontal and vertical alignments parameters must be in the range 0-3. The horizontal alignment specifies
which end of the string (or its geometric center) is aligned with the specified point given in ITX. The vertical
alignment controls whether the top of tall characters (or the bottom of capital letters) line up with the specified
point (see figure 7.11).

ITXALH horizontal alignment

0 normal (usually same as 1)

1 left end of string at specified point

2 center of string at specified point

3 right end of string at specified point

ITXALH vertical alignment

0 normal

1 top of tallest chars plus any built in spacing

2 top of tallest chars

3 halfway between 2 and 4

PAW > IGSET TXAL 23 | The horizontal and vertical alignments are centered

PAW > ITX 5 5 ’Hello’ | ’Hello’ is drawn center adjusted

TEXT

In the command TEXT the text alignment is an optional parameter (CHOPT). Only the horizontal alignment can be
changed among three possible values: Left, Center or Right.

PAW > TEXT 5 5 ’Hello’ 1 ! L | ’Hello’ is drawn left adjusted (default)

PAW > TEXT 5 5 ’Hello’ 1 ! C | ’Hello’ is drawn center adjusted

PAW > TEXT 5 5 ’Hello’ 1 ! R | ’Hello’ is drawn right adjusted

7.8. Text drawing 121

Text colour

The text colour is define via a colour index in the colour table.

HPLOT text

PAW > SET XCOL 2 | X axis color

PAW > SET YCOL 3 | Y axis color

PAW > HISTO/PLOT 10 | the histogram 10 is drawn with previous settings

ITX

The text colour attribute for use by future invocations of ITX is set using the TXCI parameter as follows:

PAW > IGSET TXCI 3 | set the text colour to green.

PAW > ITX 5 5 ’Hello’ | ’Hello’ is drawn in green.

TEXT

The text colour attribute for use by future invocations of TEXT is set using the TXCI parameter as follows:

PAW > IGSET TXCI 2 | set the text colour to red.

PAW > TEXT 5 5 ’Hello’ ! | ’Hello’ is drawn in red.

Text font and precision

Text font selects the desired character font e.g. a roman font, a sans-serif font, etc. Text precision specifies how
closely the graphics package implementation must follow the current size and orientation attributes. String (0)
precision is most liberal (hardware), stroke (2) precision is most strict. Character precision is in the middle (1).
The value of text font is dependent upon the basic graphics package used. However, font number 0, with precision
2 is always available, independently from the basic graphics package used.Hardware characters are available with
all the basic graphics packages. With X11, a large variety of font is available. They are the same as the PostScript
fonts (see figure 7.15).

HPLOT text

PAW > SET CFON -60 | comment font is Helvetica Bold

PAW > SET GFON -20 | global title font is Times Bold

PAW > SET LFON -60 | axis labels font is Helvetica Bold

PAW > SET TFON -20 | general comments is Times Bold

PAW > SET VFON -60 | axis values font is Helvetica Bold

PAW > HISTO/PLOT 10 | the histogram 10 is drawn with previous settings

Note that SET *FON ffp set all the HPLOT text font to the same value ffp.

ITX

Text font and precision attributes for use by later invocations of ITX are set with TXFP as follows:

PAW > IGSET TXFP (10*(Text font) + (text precision))

TEXT

This command draws a software character text, independently from the basic graphics package used by HIGZ. It
can produce over 300 different graphic signs. The way in which software characters are defined is via a string of
valid characters, intermixed by other characters, acting as “escape” characters (e.g. a change of alphabet, upper or
lower case). The string is interpreted by TEXT and the resulting characters are defined according to the figure 7.12,
which shows the list of available software characters. This command allows the user to mix different types of
characters (roman, greek, special, upper and lower case, sub and superscript). There are a total of 10 control
characters.

122 Chapter 7. Graphics (HIGZ and HPLOT)

List of escape characters and their meaning

< go to lower case > go to upper case (default)

[go to greek (Roman = default)] end of greek

” go to special symbols # end of special symbols

↑ go to superscript ? go to subscript

! go to normal level of script & backspace one character

$ termination character (optional)

Note that characters can be also entered directly in lower case or upper case instead of using the control characters
< and >.

The boldface characters may be simulated by setting the attributes ’PASS’ and ’CSHI’ with IGSET. The meaning
of these attributes is the following: Every stroke used to display the character is repeated PASS times, at a distance
(in percentage of the character height) given by CSHI.

PostScript text fonts

PostScript files the text can be generated with PostScript fonts. The figure 7.15 shows all the PostScript fonts
available on most PostScript printers. Note that the fonts -15 to -24 are the same than -1 to -14, but they are
drawn in hollow mode.

The correspondence between ASCII and ZapfDingbats font is given on figures 7.16 and 7.17. TEXT control
characters are taken into account. In addition the character ∼ switches to the ZapfDingbats character set.

List of escape characters and their meaning

< go to lower case (optional) > go to upper case (optional)

[go to greek (Roman = default)] end of greek

” go to special symbols # end of special symbols

∼ go to ZapfDingbats # end of ZapfDingbats

↑ go to superscript ? go to subscript

! go to normal level of script & backspace one character

$ termination character (optional)

The PostScript fonts can be used with precision 0 or precision 1. On the screen, a PostScript font used with
precision 1 appears like the TEXT characters, with precision 0 its appears as hardware character (X11 fonts). In
both cases the PostScript file is the same.

Note that characters can also be entered directly in lower or upper case instead of using the escape characters <
and >. Examples of PostScript text and math are shown in Figures 7.13 and 7.14.

7.8. Text drawing 123

Upper
Roman

Lower
Roman

Upper
Greek

Lower
Greek

Upper
Special

Lower
Special

Figure 7.12: Characters available in IGTEXT

124 Chapter 7. Graphics (HIGZ and HPLOT)

PAW > IGSET LWID 6
PAW > BOX 0 16 0 5

PAW > IGSET CHHE 0.5
PAW > IGSET TXAL 3
PAW > IGSET TXFP -130

PAW > ITX 3 4 ’K\355nstler in den gr\345\373ten st\311dten
PAW > ITX 3 3 ’\253\265 l’’\372uvre on conna\333t l’’artisan\273

PAW > ITX 3 2 ’\(proverbe fran\321ais\
PAW > ITX 3 1 ’\252\241Ma\337ana\41 \322ag&\306!das&\313!\272, dit l’’\323l\325ve.

Künstler in den größten Städten
«À l’œuvre on connaît l’artisan»
(proverbe français).
“¡Mañana! Çag˘daş”, dit l’élève.

Figure 7.13: Example of PostScript text (result of input above)

PAW > IGSET LWID 6
PAW > BOX 0 16 0 5
PAW > IGSET CHHE 0.5

PAW > IGSET TXAL 23
PAW > IGSET TXFP -130

PAW > ITX 8 4 ’e^+!e^-! "5# Z^o! "5# ll&^-!, qq&^\261!’
PAW > ITX 8 3 ’| a&^[\256]! \267 b&^[\256]! | = [\345] a^i?&jk!+b^kj?&i’
PAW > ITX 8 2 ’i ("d#?[m!y]&^\261![g^m]! + m [y]&^\261!) = 0" r# (~r# + m^2!) [y] = 0’

PAW > ITX 8 1 ’L?em! = e J^[m]?&em! A?[m]! , J^[m]?&em!=l&^\261![g?m]!l , M^j?&i! = [\345&?a]! A?[a! t^a]j?&i! ’

e+e- → Zo → ll
-
, qq

–

| a
→

 • b
→

 | = ∑ ai
jk+bkj

i

i (∂µψ
–

γµ + m ψ
–

) = 0 ⇔ (❒ + m2) ψ = 0
Lem = e Jµ

em Aµ , Jµ
em=l

–
 γµl , Mj

i = ∑
α

 Aα ταj
i

Figure 7.14: Example of PostScript text and maths (result of input above)

7.8. Text drawing 125

Font/Prec PostScript Font Style

ABCDEFghijlk0123456789 Times-Italic-1/0

ABCDEFghijlk0123456789 Times-Bold-2/0

ABCDEFghijlk0123456789 Times-BoldItalic-3/0

ABCDEFghijlk0123456789 Helvetica-4/0

ABCDEFghijlk0123456789 Helvetica-Oblique-5/0

ABCDEFghijlk0123456789 Helvetica-Bold-6/0

ABCDEFghijlk0123456789 Helvetica-BoldOblique-7/0

ABCDEFghijlk0123456789 Courier-8/0

ABCDEFghijlk0123456789 Courier-Oblique-9/0

ABCDEFghijlk0123456789 Courier-Bold-10/0

ABCDEFghijlk0123456789 Courier-BoldOblique-11/0

ΑΒΗ∆ΕΦγχιιλκ0123456789 Symbol-12/0

ABCDEFghijlk0123456789 Times-Roman-13/0

✡✢✣✤✥✦❇❈❉❊●❋✐✑✒✓✔✕✖✗✘✙ ZapfDingbats-14/0

Times-Italic-15/0

Times-Bold-16/0

Times-BoldItalic-17/0

Helvetica-18/0

Helvetica-Oblique-19/0

Helvetica-Bold-20/0

Helvetica-BoldOblique-21/0

Symbol-22/0

Times-Roman-23/0

ZapfDingbats-24/0

Figure 7.15: PostScript text fonts.

126 Chapter 7. Graphics (HIGZ and HPLOT)

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Lower Lower LowerLower

Input Roman Greek Special Zapf
Lower Lower LowerLower

Input Roman Greek Special Zapf
Lower Lower LowerLower

Input Roman Greek Special Zapf
Lower Lower LowerLower

Input Roman Greek Special Zapf
Lower Lower LowerLower

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 .
 ,
 +
 -
 *
 /
 =
 (
)
 {
 }

 \47
 \74
 \76
 \133
 \135
 \42
 \43
 \136
 \77
 \41
 \46
 \44
 \176

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 .
 ,
 +
 -
 *
 /
 =
 (
)
 {
 }

 ’
 <
 >
 [
]
 "
 #
 ^
 ?
 !
 &
 $
 ~

Α
Β
Η
∆
Ε
Φ
Γ
Χ
Ι
Ι
Κ
Λ
Μ
Ν
Ο
Π
Θ
Ρ
Σ
Τ
Υ
Χ
Ω
Ξ
Ψ
Ζ
0
1
2
3
4
5
6
7
8
9
.
,
+
−
∗
/
=
(
)
{
}

∋
<
>
[
]
∀
#
⊥
?
!
&
∃
∼

±
|
∃
∀
!
#
>
?
∫
:
;
<
[
]
≥
{
}
√
♠
♥
♦
♣
≤
×
%
∞
⊗
⊕
∅
◊
•

→
↑
←
↓
↔
.
,
+
∠
〈
÷
≠
≡
″
{
}

∋
<
>
[
]
∀
#
⊥
?
!
&
∃
∼

✡
✢
✣
✤
✥
✦
✧
★
✩
✪
✫
✬
✭
✮
✯
✰
✱
✲
✳
✴
✵
✶
✷
✸
✹
✺
✐
✑
✒
✓
✔
✕
✖
✗
✘
✙
✎
✌
☞
✍
☛
✏
✝
✈
✉
❛
❝

✇
✜
✞
✻
✽
✂
✃
✾
✟
✁
✆
✄
❞

 a
 b
 c
 d
 e
 f
 g
 h
 i
 j
 k
 l
 m
 n
 o
 p
 q
 r
 s
 t
 u
 v
 w
 x
 y
 z

 :
 ;

 \
 _
 |

 %
 \47
 \74
 \76
 \133
 \135
 \42
 \43
 \136
 \77
 \41
 \46
 \44
 \176

 a
 b
 c
 d
 e
 f
 g
 h
 i
 j
 k
 l

 m
 n
 o
 p
 q
 r
 s
 t
 u
 v
 w
 x
 y
 z

 :
 ;

 \
 _
 |

 %
 ’
 <
 >
 [
]
 "
 #
 ^
 ?
 !
 &
 $
 ~

α
β
η
δ
ε
φ
γ
χ
ι
ι
κ
λ
µ
ν
ο
π
θ
ρ
σ
τ
υ
χ
ω
ξ
ψ
ζ

:
;

∴
_
|

%
∋
<
>
[
]
∀
#
⊥
?
!
&
∃
∼

≈
≅
⊥
∂
ƒ
∩
∪
⊃
⊇
⊄
⊂
⊆
∈
∉
∇
∧
∨
⇔
⇐
⇑
⇒
⇓
&
ϖ
∼
ℵ

:
;

∴
_
|

%
∋
<
>
[
]
∀
#
⊥
?
!
&
∃
∼

❁
❂
❃
❄
❅
❆
❇
❈
❉
❊
❋
●
❍
■
❏
❐
❑
❒
▲
▼
◆
❖
◗
❘
❙
❚

✚
✛

✼
✿
❜
☎
✇
✜
✞
✻
✽
✂
✃
✾
✟
✁
✆
✄
❞

Figure 7.16: PostScript characters (1).

7.8. Text drawing 127

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Upper Upper UpperUpper

Input Roman Greek Special Zapf
Lower Lower LowerLower

Input Roman Greek Special Zapf
Lower Lower LowerLower

Input Roman Greek Special Zapf
Lower Lower LowerLower

Input Roman Greek Special Zapf
Lower Lower LowerLower

Input Roman Greek Special Zapf
Lower Lower LowerLower

 \241 \321
 \242 \322
 \243 \323
 \244 \324
 \245 \325
 \246 \326
 \247 \327
 \250 \330
 \251 \331
 \252 \332
 \253 \333
 \254 \334
 \255 \335
 \256 \336
 \257 \337
 \260 \340
 \261 \341
 \262 \342
 \263 \343
 \264 \344
 \265 \345
 \266 \346
 \267 \347
 \270 \350
 \271 \351
 \272 \352
 \273 \353
 \274 \354
 \275 \355
 \276 \356
 \277 \357
 \300 \360
 \301 \361
 \302 \362
 \303 \363
 \304 \364
 \305 \365
 \306 \366
 \307 \367
 \310 \370
 \311 \371
 \312 \372
 \313 \373
 \314 \374
 \315 \375
 \316 \376
 \317 \377

 \315 \375
 \316 \376
 \317 \377

 ¡ ç
 ¢ Ç
 £ é
 ⁄ É
 ¥ è
 ƒ È
 § ê
 ¤ Ê
 ' ë
 “ Ë
 « î
 ‹ Î
 › ï
 fi Ï
 fl ñ
 à Ñ
 – Æ
 † ô
 ‡ ª
 · Ô
 À ö
 ¶ Ö
 • û
 ‚ Ł
 „ Ø
 ” Œ
 » º
 … Û
 ‰ ü
 â Ü
 ¿ å
 Â ð
 ` æ
 ´ Å
 ˆ ÿ
 ˜ Ÿ
 ¯ ı
 ˘ á
 ˙ Á
 ¨ ł
 ä ø
 ˚ œ
 ¸ ß
 Ä ù
 ˝ Ù
 ˛ þ
 ˇ ÿ

ϒ ∇
′
≤
⁄

∞ ∏
ƒ √
♣ ⋅
♦ ¬
♥ ∧
♠ ∨
↔ ⇔
← ⇐
↑ ⇑
→ ⇒
↓ ⇓
° ◊
± 〈
″
≥
×
∝ ∑
∂
•
÷
≠
≡
≈
…

↵
ℵ ð
ℑ 〉
ℜ ∫
℘ ⌠
⊗
⊕ ⌡
∅
∩
∪
⊃
⊇
⊄
⊂
⊆
∈
∉ ÿ

ϒ ∇
′
≤
⁄

∞ ∏
ƒ √
♣ ⋅
♦ ¬
♥ ∧
♠ ∨
↔ ⇔
← ⇐
↑ ⇑
→ ⇒
↓ ⇓
° ◊
± 〈
″
≥
×
∝ ∑
∂
•
÷
≠
≡
≈
…

↵
ℵ ð
ℑ 〉
ℜ ∫
℘ ⌠
⊗
⊕ ⌡
∅
∩
∪
⊃
⊇
⊄
⊂
⊆
∈
∉ ÿ

❡ ➑
❢ ➒
❣ ➓
❤ ➔
❥ →
❦ ↔
❧ ↕
♣ ➘
♦ ➙
♥ ➚
♠ ➛
① ➜
② ➝
③ ➞
④ ➟
⑤ ➠
⑥ ➡
⑦ ➢
⑧ ➣
⑨ ➤
⑩ ➥
❶ ➦
❷ ➧
❸ ➨
❹ ➩
❺ ➪
❻ ➫
❼ ➬
❽ ➭
❾ ➮
❿ ➯
➀ ð
➁ ➱
➂ ➲
➃ ➳
➄ ➴
➅ ➵
➆ ➶
➇ ➷
➈ ➸
➉ ➹
➊ ➺
➋ ➻
➌ ➼
➍ ➽
➎ ➾
➏ ÿ

 \241 \321
 \242 \322
 \243 \323
 \244 \324
 \245 \325
 \246 \326
 \247 \327
 \250 \330
 \251 \331
 \252 \332
 \253 \333
 \254 \334
 \255 \335
 \256 \336
 \257 \337
 \260 \340
 \261 \341
 \262 \342
 \263 \343
 \264 \344
 \265 \345
 \266 \346
 \267 \347
 \270 \350
 \271 \351
 \272 \352
 \273 \353
 \274 \354
 \275 \355
 \276 \356
 \277 \357
 \300 \360
 \301 \361
 \302 \362
 \303 \363
 \304 \364
 \305 \365
 \306 \366
 \307 \367
 \310 \370
 \311 \371
 \312 \372
 \313 \373
 \314 \374
 \315 \375
 \316 \376
 \317 \377

 ¡ ç
 ¢ Ç
 £ é
 ⁄ É
 ¥ è
 ƒ È
 § ê
 ¤ Ê
 ' ë
 “ Ë
 « î
 ‹ Î
 › ï
 fi Ï
 fl ñ
 à Ñ
 – Æ
 † ô
 ‡ ª
 · Ô
 À ö
 ¶ Ö
 • û
 ‚ Ł
 „ Ø
 ” Œ
 » º
 … Û
 ‰ ü
 â Ü
 ¿ å
 Â ð
 ` æ
 ´ Å
 ˆ ÿ
 ˜ Ÿ
 ¯ ı
 ˘ á
 ˙ Á
 ¨ ł
 ä ø
 ˚ œ
 ¸ ß
 Ä ù
 ˝ Ù
 ˛ þ
 ˇ ÿ

ϒ ∇
′
≤
⁄

∞ ∏
ƒ √
♣ ⋅
♦ ¬
♥ ∧
♠ ∨
↔ ⇔
← ⇐
↑ ⇑
→ ⇒
↓ ⇓
° ◊
± 〈
″
≥
×
∝ ∑
∂
•
÷
≠
≡
≈
…

↵
ℵ ð
ℑ 〉
ℜ ∫
℘ ⌠
⊗
⊕ ⌡
∅
∩
∪
⊃
⊇
⊄
⊂
⊆
∈
∉ ÿ

ϒ ∇
′
≤
⁄

∞ ∏
ƒ √
♣ ⋅
♦ ¬
♥ ∧
♠ ∨
↔ ⇔
← ⇐
↑ ⇑
→ ⇒
↓ ⇓
° ◊
± 〈
″
≥
×
∝ ∑
∂
•
÷
≠
≡
≈
…

↵
ℵ ð
ℑ 〉
ℜ ∫
℘ ⌠
⊗
⊕ ⌡
∅
∩
∪
⊃
⊇
⊄
⊂
⊆
∈
∉ ÿ

❡ ➑
❢ ➒
❣ ➓
❤ ➔
❥ →
❦ ↔
❧ ↕
♣ ➘
♦ ➙
♥ ➚
♠ ➛
① ➜
② ➝
③ ➞
④ ➟
⑤ ➠
⑥ ➡
⑦ ➢
⑧ ➣
⑨ ➤
⑩ ➥
❶ ➦
❷ ➧
❸ ➨
❹ ➩
❺ ➪
❻ ➫
❼ ➬
❽ ➭
❾ ➮
❿ ➯
➀ ð
➁ ➱
➂ ➲
➃ ➳
➄ ➴
➅ ➵
➆ ➶
➇ ➷
➈ ➸
➉ ➹
➊ ➺
➋ ➻
➌ ➼
➍ ➽
➎ ➾
➏ ÿ

Figure 7.17: PostScript characters (2).

128 Chapter 7. Graphics (HIGZ and HPLOT)

Primitives

Windows

Pictures

Files

Software text

Text

Fill area

Polyline

Polymarker

Axis

Arc

Box

Paving-block

Frame box

Arrow

Change Att.

Delete

Move

Front

Grid

Exit

PrimitivesPrimitives

Redr.Att. Undo

Create new primitives

Modify existing primitives

Draw a grid

Exit the graphics editor

Box

Box interior style

Box style index

Box color index

Border

Hatch

-3

Green

Yes

Attributes menus

Undo the last commands
Redraw the picture

Invoke the attributes menu

Editing space

To work on primitives
To work on Normalization Transf.
To work on pictures
To work on pictures files

Figure 7.18: The HIGZ graphics editor

7.9 The HIGZ graphics editor

The HIGZ pictures in memory can be modified interactively with the HIGZ graphics editor. The command
PICT/MODIFY invokes the HIGZ editor (see figure 7.18 for more details):

PAW > PICT/MODIFY PNAME

PNAME can be the complete name, the picture number in memory or ’ ’.

Chapter 8: Distributed PAW

8.1 Access to remote files from a PAW session

When running PAW, it is often necessary to access files (e.g. HBOOK files) which reside on a different computer.
The ZFTP program described above can be used if a very frequent access to the file is required. A more convenient
mechanism is the possibility to access the files directly. On many systems, one may now use NFS [12] for this
purpose. Under some circumstances, for example if the HBOOK file is not in exchange mode and it is to be
accessed from a computer running a different operating system, an alternate approach is required. To fill this gap
the PAW server is provided. This works using a conventional Client/Server model. The client (PAW) typically
runs on a workstation. When the PAW command RLOGIN is invoked, a PAW server is automatically started on
the remote machine, normally a mainframe or data server.

Once the RLOGIN REMOTE command has been executed, the PAW Current Directory is set to //REMOTE. The
PAW client can now instruct the PAW server to attach a file using the RSHELL command (e.g. rshell file

pawtest.dat). If an histogram with HBOOK ID=10 is on the remote file, than the PAW command Histo/Plot

10 will plot this histogram on the local workstation. The histogram resides on //PAWC like other histograms
coming from local files.

The RSHELL command may be used to communicate with the PAW server. The expression typed following RSHELL
is passed to the server. The current implementation of the PAW server recognizes the commands:

rshell file filename Server connects filename

rshell cdir //lun11 Server changes current directory

rshell ld Server lists current directory

rshell ld // Server lists all connected files

rshell message Server pass message to operating system

Access to remote files from a workstation

PAW > rlogin CERNVM | connect to CERNVM

PAW > rshell file HRZTEST.DAT | PAW server connects HRZTEST DAT A to //LUN11

PAW > histo/plot 10 | plot histogram 10 from CERNVM

PAW > histo/fit 20 G | fit histo 20 with a gaussian and plot it

PAW > rlogin VXCRNA | connect to VXCRNA

PAW > rshell file DISK$DL:[PAW]HEXAM.DAT;3 | PAW server on VXCRNA connects file to //LUN11

PAW > histo/plot 110 | plot histogram 110 from VXCRNA

PAW > rshell file HRZTEST.DAT | PAW server on VXCRNA connects file to //LUN12

PAW > histo/plot 110 s | plot histogram 110 from HRZTEST.DAT

| on VXCRNA on the existing picture

PAW > rshell ld // | list all files connected on VXCRNA

PAW > cdir //CERNVM | Change current PAW directory to CERNVM

PAW > histo/plot 110 | plot histogram 110 from CERNVM

PAW > histo/plot //VXCRNA/110 | plot histogram 110 from VXCRNA

PAW > cdir //PAWC | current directory to local memory

PAW > histo/list | list all histograms in //PAWC

PAW > Histo/delete 0 | delete all histograms in memory

PAW > hrin //VXCRNA/0 | read all histograms from VXCRNA

| file HRZTEST.DAT to //PAWC

PAW > cdir //CERNVM | change directory to CERNVM

PAW > rshell file NEW.DAT.D 1024 N | creates a new file on the D disk

PAW > hrout 0 | write all histograms from //PAWC

| to CERNVM file NEW DAT D

129

130 Chapter 8. Distributed PAW

8.2 Using PAW as a presenter on VMS systems (global section)

In addition to the facilities described in the previous section, the standard version of PAW may be used as an online
presenter on VMS systems using the mechanism of global sections. It is possible for two processes to reference
the same histograms using global sections. For example, the first process may be a histogram producer (e.g. a
monitoring task) and the second process PAW. As the histograms are being gradually filled by the first task, PAW
can view them, and even reset them. To use the global sections, it is also necessary to ”page align” the common
which is in the global section. This is achieved in the ”link step” when making the process (see example). The
relevant statements are SYS$INPUT/OPTIONS to tell the linker that some options follow the link statement, and
PSECT=PAWC,PAGEwhich is the option to page align the /PAWC/ common.

PROGRAM PRODUCE

PARAMETER MAXPAGES=100

COMMON/PAWC/IPAWC(128*MAXPAGES)

CHARACTER*8 GNAME

INTEGER*4 HCREATEG

*

GNAME=’GTEST’

WAIT_TIME=1.

NUMEVT=1000

*............... Create Global section

NPAGES=HCREATEG(GNAME,IPAWC,128*MAXPAGES)

IF(NPAGES.GT.0) THEN

PRINT 1000,GNAME

1000 FORMAT(’ Global Section: ’,A,’ created’)

ELSE

IERROR=-NPAGES

PRINT 2000,IERROR

2000 FORMAT(’ Global Section Error’, I6)

GO TO 99

ENDIF

CALL HLIMIT(128*NPAGES)

*............... Book histos.

CALL HBOOK1(10,’Test1$’,50,-4.,4.,0.)

CALL HBOOK1(20,’Test2$’,50,-4.,4.,0.)

*............... Fill histos.

DO 20 I=1,NUMEVT

DO 10 J=1,100

CALL RANNOR(A,B)

CALL HFILL(10,A,0.,1.)

CALL HFILL(20,B,0.,1.)

10 CONTINUE

CALL LIB$WAIT(WAIT_TIME)

20 CONTINUE

*

99 STOP

END

$ fort produce

$ link produce,SYS$INPUT/OPTIONS,-

cern$library:packlib/lib,kernlib/lib

PSECT=PAWC,PAGE

PAW > edit produce

macro produce ntimes=100

nt=[ntimes]

zone 1 2

histo/plot 10 K

histo/plot 20 K

loop:

histo/plot 10 U

histo/plot 20 U

wait ’ ’ 1

nt=[nt] -1

if nt>0 goto loop

return

PAW > global GTEST

PAW > exec produce ntimes=20

Test1

0

40

80

120

160

200

240

280

320

-4 -3 -2 -1 0 1 2 3 4

Test2

0

40

80

120

160

200

240

280

-4 -3 -2 -1 0 1 2 3 4

8.3. Using PAW as a presenter on OS9 systems 131

8.3 Using PAW as a presenter on OS9 systems

The technique described in previous sections may also be used to access HBOOK histograms being filled by a
monitoring task on OS9 systems from a standard PAW session running on a machine with the TCP/IP software.

INDIRECT PAWC

PROGRAM PRODUCE

*

* Monitoring task MT1 in processor OP2.

*

PARAMETER NWPAW=10000

COMMON/PAWC/IPAWC(NWPAW)

*

CALL HLIMIT(NWPAW)

*

* Book histos.

*

CALL HBOOK1(10,’TEST1$’,50,-3.,3.,0.)

CALL HBOOK1(20,’TEST2$’,50,-3.,3.,0.)

*

* Fill histos.

*

NUMEVT=10000

DO 20 I=1,NUMEVT

DO 10 J=1,100

CALL RANNOR(A,B)

CALL HFILL(10,A,0.,1.)

CALL HFILL(20,B,0.,1.)

10 CONTINUE

20 CONTINUE

*

99 STOP

END

PAW Client

running on

a computer

with TCP/IP

PAW >

(Apollos, SUNs)

(IBM, Central VAX)

(many clients)

PAW Server

running on

one OS9 node

MT1, MT2

OP1 OP2

OP3 OP4

MT1 MT1, MT2, MT3

MT1, MT2 MT1

TCP/IP

Ethernet

(one server per client)

(shared code)

OS9NET

OP1, OP2.. : OS9 processors

MT1, MT2.. : Monitoring tasks

Example of how to access OS9 modules from PAW

PAW > rlogin O-OPAL01 | connect to an OS9 machine

PAW > rshell module OP2/MT1 | PAW server connects to OP2/MT1

| (Processor OP2, Monitoring Task MT1)

PAW > histo/plot 10 | plot histogram 10

PAW > hrin 0 | read all histograms into //PAWC

PAW > Histo/File 1 local.dat 1024 N | create a new file local.dat

| on the client machine

PAW > hrout 0 | save all histograms from //PAWC

| to the local file

PAW > rshell module OP3/MT2 | PAW server connects to another

| OS9 monitoring task

PAW > Output 56 os9.listing | Change output file on client

PAW > rshell ldir | list all histograms in MT2

| on file os9.listing

PAW > Output -56 | Change output file to default (unit 6)

| file os9.listing is closed

Chapter 9: PAW++: A guided tour

PAW++ is a powerful OSF/Motif based Graphical User Interface to the popular Physics Analysis Workstation PAW.
The graphical user interface makes the full and rich command set of PAW available to even the naive user. Simple
point and click operations are enough to execute commands that were previously accessable only to expert users.
Figure 9.1 compares the functionalities of basic PAW with PAW++.

Basic PAW and PAW++

Basic PAW

PAW++

Command line interface and macros via KUIP.

Histogram Presenter.

Operations on histograms, fits,etc.

Arrays: Manipulation and Drawing.

Plotting of mathematical expressions.

Basic, and high level graphics.

Ntuple selection and histograming.

Fortran Interpreter: COMIS.

MOTIF interface.

Class/Object Browsers.

Direct Graphics Manipulation.

Ntuple viewer.

Histogram style panel.

Figure 9.1: PAW and PAW++ compared

At present PAW++ is available on Unix workstations and VAX/VMS.

PAW++ has, in addition to the conventional command line and macro types of interface, the following dialogue
modes:

Pull Down menus They are useful to understand the command structure of the PAW system.

Command panels They give a “panel representation” of the commands.

Object Browser This is in many ways similar to the well-known browsers in the PC/MAC utilities or the
visual tools on some workstations.

132

133

Direct graphics One can click in the graphics area and identify automatically which object has been
selected. A pop-up menu appears with a list of possible actions on this object. For
example, by clicking with the right mouse button on a histogram, one can make directly
a gaussian fit, a smoothing etc. Pop-up menus are available by clicking on the Graphics
Window to automatically produce PostScript, Encapsulated PostScript, LATEX files or
print the picture on your local printer.

Histogram Style Panel Buttons are available to change histogram attributes, colours, line styles, fonts, and axes
representation. 2-D histograms can be rotated interactively. Zooming and rebinning can
be performed interactively in real time.

Ntuple Viewer Just click on the Ntuple column name to histogram the column.

The new system is largely self-explanatory. Only a subset of PAW has been converted to this new user interface,
but work is currently in progress to offer many new facilities in future releases.

On all system on which CERNLIB is installed, it is enough to type paw++ to enter the system.

PAW++ starts up with three windows on the screen:

The “PAW++ Executive Window” includes a menu bar, a Transcript Pad, a current working directory indicator
and an Input Pad.

The “PAW++ Graphics 1” window displays the graphics output from HIGZ/X11. Objects, e.g. his-
tograms, displayed in the Graphics Window can be manipulated by point-
ing at them, pressing the right mouse button and selecting an operation from
the popup menu. Pointing at the edge of the Graphics Window (between
displayed object and window border) brings up a general popup menu. Up
to 4 additional Graphics Window can be opened by selecting “Open New
Window” from this menu.

The “PAW++ Main Browser” displays all browsable classes and connected hbook files. Up to 4 additional
browsers can be opened via the “View” menu of the “PAW++ Executive
Window” or via the “Clone” button on the browsers. For more information
on the browsers see the “Help” menus.

Figures 9.2 on page 134 and 9.3 on page 135 give a detailed overview of the various windows of PAW++.

134 Chapter 9. PAW++: A guided tour

– The upper left corner is the PAW++ Executive Window, with its Input Pad at the bottom and the Transcript Pad at the
top.

– The PAW++ Browser, where the various entities (pictures, 1-D and 2-D histograms and Ntuples) are all defined with
their own symbol, is shown bottom left. A “pop-up” menu has been activated for the chosen 1-D histogram. Several
actions like Plot, Smooth, Fit etc... can be performed via this menu.

– The Graphics Window is seen top right. A 1-D view of the data points and two 2-D views (a Surface-plot and a colored
contour plot) are shown. On the 1-D view, two 1-D histograms are superimposed. The results of a “smoothing” type of
fit to the data points is also drawn. Information about the data and the fit can be found in the inserted window.

– The Histogram Style Panel at the lower right allows graphics attributes of the histogram to be controlled.

Figure 9.2: PAW++ windows explained (I)

135

– The upper left corner shows the Ntuple Viewer. The left window shows the name of the various variables, characterizing
the selected Ntuple. Other windows and press-buttons specify which combinations of the various variables and which
events have to be treated (plotted, scanned, . . .).

– The lower left contains the PAW++ Browser, with this time an Ntuple selected. A double on a Ntuple icon open auto-
matically the Ntuple Viewer on the active Ntuple.

– The Graphics Window is seen top right and shows a 3-D view of the combination of three variables, whose cuts are
specified with the Cut Editor (see below).

– Direct graphics interactions with Ntuple data are possible. Just by clicking on a point in the Graphics Window, the
event description is displayed in the PAW++ Locate window.

– The Cut Editor panel, shown at the lower right, allows various combinations of cuts to be specified and applied.

Figure 9.3: PAW++ windows explained (II)

136 Chapter 9. PAW++: A guided tour

9.1 The Executive Window

➀ ➁ ➂ ➃ ➄

➊ ➋ ➌ ➍➍

This window allows to type commands on the keyboard like in the normal PAW system. In fact this window is the
kxterm program provide with the KUIP package.

This terminal emulator combines the best features from the (now defunct) Apollo DM pads (like: Input Pad
and Transcript Pad, automatic file backup of Transcript Pad, string search in pads, etc.) and the Korn shell
emacs-style command line editing and command line recall mechanism.

Commands are typed in the Input Pad ➊ behind the application prompt. Via the toggle buttons H ➍ the Input Pad
and/or Transcript Pad can be placed in hold mode. In hold mode one can paste or type a number of commands
into the Input Pad and edit them without sending the commands to the application. Releasing the hold button will
causes kxterm to submit all lines, upto the line containing the cursor, to the application. To submit the lines below
the cursor, just move the cursor down. In this way one can still edit the lines just before they are being submitted
to the application.

➊ In the Input Pad one can type, retrieve and edit command line with the help of a Korn shell emacs-style
command line editing mode. See in appendix the complete list of the editing keys.

➋ The Transcript Pad ➋ shows the executed commands and command output. When in hold mode ➍ the
transcript pad does not scroll to make the new text visible. Mouse operations like “Copy Paste” are allowed
in the transcript pad. It is also possible to search a character string (see the menu bar description).

➌ Every time the current directory is changed, the Current working directory indicator is updated. The
current working directory can be changed by clicking on a item in the PATH window of the Main Browser
or by clicking on a icon directory in the Main Browser itself.

➍ Hold buttons.

➀ Allows manipulation of the Transcript Pad.

➁ Allows character string seach, copy/paste in the Transcript Pad.

➂ Allows to invoke other panel.

➃ Some general settings are available in this menu.

➄ Online help.

9.1. The Executive Window 137

9.1.1 The Executive Window menu bar

In this section, is describe the full functionality of the pull down menu available in the Menu Bar of the Executive
Window.

File

About Kxterm... Displays version information about Kxterm.

About <Application>... Displays version information about the applica-
tion Kxterm is servicing.

Save Transcript Write the contents of the transcript pad to the cur-
rent file. If there is no current file a file selection
box will appear.

Save Transcript As... Write the contents of the transcript pad to a user-
specified file.

Print... Print the contents of the transcript pad (not yet
implemented).

Kill Send a SIGINT signal to the application to cause
it to core dump. This is useful when the appli-
cation is hanging or blocked. Use only in emer-
gency situations.

Exit Exit Kxterm and the application. When this op-
tion is selected or when EXIT is typed in the In-
put Pad, the following panel is displayed:

➊ ➋

➊ The exit is performed.

➋ The exit procedure is canceled.

Edit

Cut Remove the selected text. The selected text is written to the
Cut and Paste buffer. Using the “Paste” function, it can be
written to any X11program. In the transcript pad “Cut” de-
faults to the “Copy” function.

Copy Copy the selected text. The selected text is written to the Cut
and Paste buffer. Using the “Paste” function, it can be written
to any X11program.

Paste Insert text from the Cut and Paste buffer at the cursor location
into the Input Pad.

Search... Search for a text string in the transcript pad.

138 Chapter 9. PAW++: A guided tour

View

Show Input Show in a window all commands entered via the In-
put Pad.

Command Panel

Browser

Style Panel

Options

Clear Transcript Pad Clear all text off of the top of the transcript pad.

Echo Command Echo executed commands in transcript pad.

Timing Report command execution time (real and CPU
time).

Iconify Iconify Kxterm and all windows of the applica-
tion.

Help

On Kxterm The help you are currently reading.

On Edit Keys Help on the emacs-style edit key sequences.

9.2 The Main Browser

The KUIP/Motif Browser interface is a general tool to display and manipulate a tree structure of objects which are
defined either by KUIP itself (commands, files, macros, etc.) or by the application.

The “Clone” button at the bottom creates a new independent browser window. The “Exit” button destroys the
browser window. The Main Browser cannot be destroyed (only iconized).

The middle part of the browser is divided into two windows:

1. The left hand “class window” shows the list of all currently connected classes of objects. Some classes,
e.g. the command tree and the file system, are predefined. Other classes allow to attach new files using the
commands in the “File” menu. Clicking with the left mouse button on one of the items in the class window
displays its content in the other window. Pressing the right mouse button inside the class window shows a
popup menu of possible operations, e.g. creating a new object in the current directory.

2. The right hand “object window” shows the content of the currently selected class directory. The “View”
menu allows the change the way objects are displayed, i.e. to choose the icon size and the amount of
information shown for each object. Objects are selected by clicking on them with the left mouse button.
Pressing the right mouse button pops up a menu of possible operations depending on the object type.

An item in a popup menu is selected by pointing at the corresponding line and releasing the right mouse button.
Double clicking with the left mouse button is equivalent to selecting the first menu item.

Each menu item executes a command sequence where the name of the selected object is filled into the appropriate
place. By default the command is executed immediately whenever possible. The commands executed can be
seen by selecting “Echo Commands” in the “Options” menu of the Executive Window. In case some mandatory
parameters are missing a panel is displayed where the remaining arguments have to be filled in. The command is
executed then by pressing the “OK” or “Execute” button in that panel. (If it is not the last one in the sequence of
commands bound to the menu item the application is blocked until the “OK” or “Cancel” button is pressed.)

The immediate command execution can be inhibited by holding down the CTRL-key BEFORE pressing the right
mouse button. Some popup menus also contain different menu item for immediate and delayed execution, e.g.
“Execute” and “Execute...” for class “Commands”

9.2. The Main Browser 139

The path of the currently selected directory is always displayed below the menu bar. The directory can be changed
by pointing at the tail of the wanted subpath and clicking the left mouse button. Clicking a second time on the
same path segment performs the directory change and updates the object window. To go downwards in the directory
hierarchy double click on the subdirectory displayed in the object window.

➊

➋

➌
➍

➎

➏

➀ ➁ ➂ ➃ ➄

➅ ➆

➊ Current PATH (“PATH window”).

➋ Class window.

➌ Name of file currently selected in the class window.

➍ Name of the object currently selected in the object window.

➎ Number and type of object currenlty in the the object window.

➏ Object window.

➀ File menu.

➁ View menu.

➂ Options menu.

➃ Commands menu.

➄ Help menu.

➅ Clone button.

➆ Exit button.

9.2.1 The objects in the “object window”

This section describes all the PAW++ object available in the Main Browser.

HBOOK files

Double click with the left mouse button on this icon, open the corresponfing HBOOK file with the
command HISTOGRAM/FILE.

140 Chapter 9. PAW++: A guided tour

Select a HBOOK files icon with the left mouse button and press the right mouse button to obtain the following
menu:

Open Open the highlighted HBOOK file in read-only
mode.

Open Update Mode Open the highlighted HBOOK file in update mode.

Note that the HBOOK file name is displayed in the menu title.

1D histograms

Double click with the left mouse button on this icon, produce the plot of the corresponding his-
togram with the command HISTOGRAM/PLOT. The histogram becomes the current histogram for
the Histogram Style Panel.

Select a 1D histograms icon with the left mouse button and press the right mouse button to obtain the following
menu:

Plot Plot the corresponding histogram (default action). The histogram
becomes the current histogram for the Histogram Style Panel.

Fit... Perform the command Histo/Fit on the corresponding his-
togram. The command panel is automatically displayed

Fit Gauss Perfom a gaussian fit on the corresponding histogram.

Fit Exp Perform an exponential fit on the corresponding histogram.

Fit Const Perform a P0 fit on the corresponding histogram.

Fit Linear Perform a P1 fit on the corresponding histogram.

Smooth Smooth the corresponding histogram.

Smooth... Perform the command Smooth on the corresponding histogram.
The command panel is automatically invoked.

Copy Copy corresponding histogram onto an other histogram. The com-
mand panel is automatically invoked.

Reset Reset the corresponding histogram.

Delete Delete the corresponding histogram.

Note that the histogram identifier is displayed in the menu title.

2D histograms

Double click with the left mouse button on this icon, produce the plot of the corresponding his-
togram with the command HISTOGRAM/PLOT. The histogram becomes the current histogram for
the Histogram Style Panel.

Select a 2D histograms icon with the left mouse button and press the right mouse button to obtain the following
menu:

9.2. The Main Browser 141

Plot Plot the corresponding histogram (default action). The histogram
becomes the current histogram for the Histogram Style Panel.

Project X Generate the X projection, perform the projection and plot the result
(commands ProX, Hi/Proj, and Hi/Plot).

Project Y Generate the Y projection, perform the projection and plot the result
(commands ProY, Hi/Proj, and Hi/Plot).

Slice X Generate the X slices, perform the projection and plot the first slice
(commands SliX, Hi/Proj, and Hi/Plot).

Slice Y Generate the Y slices, perform the projection and plot the first slice
(commands SliY, Hi/Proj, and Hi/Plot).

Band X Generate the X bands, perform the projection and plot the first band
(commands BanX, Hi/Proj, and Hi/Plot).

Band Y Generate the Y bands, perform the projection and plot the first band
(commands BanY, Hi/Proj, and Hi/Plot).

Smooth Smooth the corresponding histogram.

Smooth... Perform the command Smooth on the corresponding histogram.
The command panel is automatically invoked.

Copy Copy corresponding histogram onto an other histogram. The com-
mand panel is automatically invoked.

Reset Reset the corresponding histogram.

Delete Delete the corresponding histogram.

Note that the histogram identifier is displayed in the menu title.

Ntuples

Double click with the left mouse button on this icon, open the Ntuple Viewer on the correspond-
ing Ntuple.

Select a Ntuples icon with the left mouse button and press the right mouse button to obtain the following menu:

Open Ntuple Viewer Open Ntuple Viewer on the highlighted Ntuple.

Project... Project the highlighted Ntuple. The Command
panel Ntuple/Proj is automatically invoked.

Print Print the highlighted Ntuple (Command
Ntuple/Print).

Note that the Ntuple identifier is displayed in the menu title.

PAW commands

Double click with the left mouse button on this icon, execute the corresponding PAW command.

Select a PAW commands icon with the left mouse button and press the right mouse button to obtain the following
menu:

142 Chapter 9. PAW++: A guided tour

Execute Execute the command with the default parameters. If a mandatory
parameter is missing, the command panel is automatically invoked.

Execute... Display the command panel.

Help Display the help on the command.

Usage Display the command usge in the Transcript Pad of the Executive
Window.

Manual Equivalent to HELP.

Set Command This command becomes the one executed when a directive typed on
the keyboard is not an existing PAW command.

Deactivate The command is deactivated.

Note that the command name is displayed in the menu title.

Deactivated PAW commands

Double click with the left mouse button on this icon, execute the help on corresponding PAW

command.

Select a Deactivated PAW commands icon with the left mouse button and press the right mouse button to obtain
the following menu:

Help Display the help on the command.

Activate The command is activated.

Note that the deactivated command name is displayed in the menu title.

Up

Double click with the left mouse button on this icon, allow to go one level up in the directory tree.
This icon is alway the first one of the content window.

Select a Up icon with the left mouse button and press the right mouse button to obtain the following menu:

List Allow to go one level up in the directory tree.

Directory

Double click with the left mouse button on this icon, change the current working directory.

Select a Directory icon with the left mouse button and press the right mouse button to obtain the following menu:

List Change the current working directory.

9.2. The Main Browser 143

PostScript files

Double click with the left mouse button on this icon, invoke the ghostview on the corresponding
file.

Select a PostScript files icon with the left mouse button and press the right mouse button to obtain the following
menu:

View Invoke GhostView on the file.

Edit Edit the file.

Print Print the file.

Delete Delete the file.

Read-Write files

Double click with the left mouse button on this icon, invoke the editor on the corresponding file.

Select a Read-Write files icon with the left mouse button and press the right mouse button to obtain the following
menu:

Edit Edit the file.

View Read the file.

Delete Delete the file.

Note that the file name is displayed in the menu title.

Read-only files

Double click with the left mouse button on this icon, invoke the editor in view mode on the
corresponding file.

Select a Read-only files icon with the left mouse button and press the right mouse button to obtain the following
menu:

View Read the file.

Delete Delete the file.

Note that the file name is displayed in the menu title.

No-access files

Double click with the left mouse button on this icon, invoke the shell command chmod on the
corresponding file.

144 Chapter 9. PAW++: A guided tour

Select a No-access files icon with the left mouse button and press the right mouse button to obtain the following
menu:

Chmod Try to change the permissions of the file.

Note that the file name is displayed in the menu title.

Executable files

Double click with the left mouse button on this icon, invoke the command SHELL on the corre-
sponding file.

Select a Executable files icon with the left mouse button and press the right mouse button to obtain the following
menu:

Execute Invoke the command SHELL on the file.

Execute...Open the command panel SHELL with the file name.

Edit Edit the file.

View Read the file.

Delete Delete the file.

Note that the file name is displayed in the menu title.

PAW Macros

Double click with the left mouse button on this icon, execute the corresponding macro.

Select a PAW Macros icon with the left mouse button and press the right mouse button to obtain the following
menu:

Exec Execute the macro.

Exec... Open the command panel EXEC with the macro name. It is useful
to give parameters to the macro.

Edit Edit the macro.

View Read the macro.

Delete Delete the macro.

Note that the macro name is displayed in the menu title.

Pictures

Double click with the left mouse button on this icon, plot the corresponding picture.

Select a Pictures icon with the left mouse button and press the right mouse button to obtain the following menu:

9.2. The Main Browser 145

Plot Plot the highlighted picture.

Do PostScript Produce the PostScript file PNAME.ps, where PNAME is the
name of the highlighted picture.

Create Create a new picture. The command panel Picture/Create
is automatically invoked.

Rename Rename the highlighted picture. The command panel
Picture/Rename is automatically invoked.

Delete Rename the highlighted picture.

Chains

Double click with the left mouse button on this icon, allow to go one level deeper in the chain
tree.

Select a Chains icon with the left mouse button and press the right mouse button to obtain the following menu:

List List the available chains.

Show Tree Show the tree from the highlighted chain.

Delete Chain Delete the highlighted chain.

Last chain level

Last chain element.

Select a Last chain level icon with the left mouse button and press the right mouse button to obtain the following
menu:

List List the available chains.

Delete Chain Entry Delete the highlighted chain element.

ZEBRA Stores

Double click with the left mouse button on this icon, allow to go inside the corresponding ZEBRA

store.

Select a ZEBRA Stores icon with the left mouse button and press the right mouse button to obtain the following
menu:

List Display divisions of the store

Show store DZSTOR Show parameters of the store (CALL DZSTOR)

146 Chapter 9. PAW++: A guided tour

ZEBRA Divisions

Double click with the left mouse button on this icon, allow to go inside the corresponding ZEBRA

division.

Select a ZEBRA Divisions icon with the left mouse button and press the right mouse button to obtain the following
menu:

List Display banks of the division as icons.

Display division Show layout of banks in divisions graphically.

Snap division Show a snapshot of division parameters. (CALL
DZSNAP).

Verify division Verify division (CALL DZVERI).

Collect garbage CALL MZGARB in selected division.

Set filter for banks Allow to display only banks whose hollerith. iden-
tifiers match a wild card selection.

ZEBRA Banks

Double click with the left mouse button on this icon, draw the bank tree from the corresponding
ZEBRA bank.

Select a ZEBRA Banks icon with the left mouse button and press the right mouse button to obtain the following
menu:

Display bank tree Display graphically the structure below the se-
lected bank (see picture banktree.eps).

Show cont documented Display the data of the bank with their descrip-
tion if a documentation data base is provided
(see CERN Q101).

DZ Show contents CALL DZSHOW fore selected bank.

Show system words List contents of the links and system words.

Survey bank tree CALL DZSURV for selected bank.

Put into vector Put data contents of the bank into a KUIP vec-
tor.

Show documentation Display the documentation for the bank (if pro-
vided).

Edit documentation Edit a bank descriptor, if no available yet pro-
vide a template.

Modify data words Self explaining.

Drop bank (tree) Self explaining.

RZ Files

Double click with the left mouse button on this icon, allow to go inside the corresponding ZE-
BRA/RZ file.

Select a RZ Files icon with the left mouse button and press the right mouse button to obtain the following menu:

9.2. The Main Browser 147

Close RZfile Self explaining.

List Display keys.

List directory CALL RZLDIR.

Show key definition self explaining.

Set filter on keys Allow to display only entries whose key words
match a wild card selection.

Show status CALL RZSTAT.

RZ Directories

Double click with the left mouse button on this icon, allow to go inside the corresponding ZE-
BRA/RZ directory.

Select a RZ Directories icon with the left mouse button and press the right mouse button to obtain the following
menu:

List List the highlighted RZ directory.

List directory (RZLDIR) Perform RZLDIR on the highlighted RZ directory.

Show key definition Display the key definition.

Set filter on keys Defines a filter on the keys.

RZ Keys

Double click with the left mouse button on this icon, allow to read into memory the corresponding
ZEBRA/RZ key.

Select a RZ Keys icon with the left mouse button and press the right mouse button to obtain the following menu:

Read key into memory Allow to inspect the data of a key.

Show key definition Self explaining.

Show key words Self explaining.

Set filter on keys See above.

9.2.2 The Main Browser Menu Bar

In this section, is describe the full functionality of the pull down menu available in the Menu Bar of the Main
Browser.

File

Open Hbook file Display the Open Arguments panel (see after).

Close Hbook file Display the Close Arguments panel (see after).

148 Chapter 9. PAW++: A guided tour

➊ ➋ ➌ ➍ ➎ ➏ ➐

➀ ➁ ➂ ➃

➀ Toggle buttons to choose the openning mode.

➁ Filter apply on the file list ➏.

➂ Possible logical units. Only the free units are displayed. The next free unit is highlighted. Any other unit is
invalid.

➃ Possible record length. A record length of 0 means that the system will compute the correct one automati-
cally.

➊ The file is open and this panel is closed.

➋ File name of the opened file.

➌ Apply the filter defined in ➁.

➍ List of the subdirectories available. Double click on a directory name change the current directory.

➎ Cancel the current opened panel and clode it.

➏ List of the file in the current directory matching the filter.

➐ Help

Note that a double click with the left mouse button on a HBOOK file icon in the object window of the Main Browser
open also the HBOOK file. This panel is usefull to specify a filter different form the default filter *.hbook used in
the object window.

9.2. The Main Browser 149

➊ ➋ ➌ ➍

➀ ➁ ➂

➀ List of the currently connected hbook
files.

➁ A simple click with the left mouse but-
ton a file name in the connected files
list, highlight the filename and put it in
the Close file field ➂.

➂ Name of the file to be closed. This
field can be filled directly by tipyng on
the keyboard, or by a simple click with
the left mouse button in the Connected
Files list ➀.

➊ When a file is selected, clicking on this
button or typing <CR> allows to per-
form the action (close the file) and close
the panel.

➋ Close the selcted file and leave the
panel opened.

➌ Cancel the current operation and close
the panel.

➍ Give some help.

View

This pull down menu allows to define the “viewing” for the objects in the “object window” of the Main Browser.

Icons The objects are represented with big icons (default).

Small Icons The objects are represented with small icons.

No Icons Only the object identifier and type are displayed.

Titles Small icons, objects identifiers and titles are displayed.

Select All All the objects are selected.

Filter... Apply a filter on object names.

Icons: icons and the object identifiers
are displayed.

150 Chapter 9. PAW++: A guided tour

Small Icons: small icons and the object
identifiers are displayed.

No Icons : object identifiers and titles
are displayed.

Titles : small icons and the object iden-
tifiers and titles are displayed.

9.2. The Main Browser 151

Options

Raise Window Raise a given window.

Command Argument Panel...Get help on a given command.

Commands

This menu allows to access the tree of the PAW commands. Only the top levels are describe in this section. Note
the tree of the PAW commands can also be accessed via the item “Commands” in the “PATH Window” of the
Main Browser.

Kuip Command Processor commands.

Macro Macro Processor commands.

Vector Vector Processor commands.

Histogram Manipulation of histograms, Ntuples.

Function Operations with Functions. Creation and plotting.

Ntuple Ntuple creation and related operations.

Graphics Interface to the graphics packages HPLOT and HIGZ.

Picture Creation and manipulation of HIGZ pictures.

Fortran Interface to MINUIT, COMIS, SIGMA and FORTRAN Input/Output.

Network To access files on remote computers.

Dzdoc Access Dzdoc

Help

9.2.3 Information Windows

Top

On the top of the Main Browser is displayed the current directory PATH and the content of the current directory
i.e. the number of objects of each type.

Bottom

On the bottom of the Main Browser is displayed the name of the current file (HBOOK files for example) in which
the objects are stored. If the objects are not stored in a file (like the commands), the file name is just blank. Below
the file name, the full name of the currently selected object is displayed.

152 Chapter 9. PAW++: A guided tour

9.2.4 Content Window

In this section are describe the different menu available in the “Content Window”.

Commands

List List the content of the current
menu.

Set Default Set the root for searching com-
mands to /.

Help Display some help.

Files

List List the content of the current
working directory (OS).

Chdir to ... Change directory.

Edit Edit a file.

Help Display some help.

Macro

List List all the macros in the current
working directory.

Edit Edit a macro.

Help Display some help.

9.2. The Main Browser 153

Zebra

List List the ZEBRA file
connected.

Open bank doc Rzfile Open bank doc Rz-
file.

Add doc directory Add doc directory.

Put doc into Rzfile Put doc into Rzfile.

Display bank tree Display bank tree.

Help Display some help.

Hbook

List List all the HBOOK files in the current
working directory.

Help Display some help.

Chains

List List the chains currently
in memory.

Delete All Chains Delete all the chains
from memory.

Help Display some help.

154 Chapter 9. PAW++: A guided tour

This panel allows to navigate in the chain tree. Just clicking
on a chain name change the level from which the chain will be
traversed.

PAWC

List List all the HBOOK objects in memory.

Create 1d Create a 1d histogram.

Create Profile Create a Profile histogram.

Create Var-Bin Create a variable bin size histogram.

Create 2d Create a 2d histogram.

Create N-tuple Create a row wise Ntuple histogram.

Clear Delete histograms from memory.

Help Provide some help.

Hbook Files (//LUNn)

List List all the HBOOK objects in this file.

Copy to //PAWC Copy the highlighted HBOOK object
in memory.

Add to //PAWC Add the highlighted HBOOK object in
memory.

Write from //PAWC... Save the highlighted HBOOK object
on disk.

Create N-tuple Create a row wise Ntuple histogram.

Clear Delete histograms from disk.

Close Close the selected hbook file

Help Provide some help.

9.3. Graphics 155

9.3 Graphics

PAW++ allows direct graphics manip-
ulation of the objects like Histograms
or Ntuples. To perform actions on ob-
ject from the Graphics Window, it is
enough to move the mouse cursor on the
Graphics Window and to click with the
right mouse button on the object. A pull
down menu will be displayed according
to the object picked. In this section are
described the different menus available
in the Graphics Window.

9.3.1 The Graphics Window

When no object is picked in the Graphics Window for instance when the background of the window is picked the
following menu is displayed.

Plot PLot the current picture.

Style Panel... Invoke the Histogram Style Panel.

Double Buffer On Set the double buffer on.

Double Buffer Off Set the double buffer off.

Do PostScript... Generate the Postscipt file paw.ps.

Do Encapsulated PostScript... Generate the Encapsulated Postscipt file
paw.eps.

Do LaTex... Generate the LaTex file paw.tex.

Print Print the current picture.

Open New Window Open a new window.

Close Window Close the current window.

Activate Window Activate the current window.

Deactivate Window Deactivate the current window.

156 Chapter 9. PAW++: A guided tour

9.3.2 Ntuple

An Ntuple picked in Graphics Window with the right mouse button displays the following menu:

Open Ntuple Viewer Open the Ntuple browser.

Project... Project the picked ntuple.

Print Print the picked ntuple

9.3.3 1D-Histogram

When a 1D-Histogram is picked in Graphics Window with the right mouse button, the following menu is dis-
played:

Fit Command...Invoke the fit command.

Fitting panel...Invoke the fit panel.

Fit Gauss Perform a gaussian fit.

Fit Exp Perform a exponential fit.

Fit Const Fit with a constant.

Fit Linear Perform a linear fit.

Smooth Smooth.

Smooth... Invoke the smooth command.

Line Draw the histogram with a line.

Curve Draw the histogram with a curve.

Bar Chart Draw the histogram as a bar chart.

Marker Draw the histogram with markers.

Stars Draw the histogram with stars.

Error Bars Draw the histogram with error bars.

Error Bars (lines) Draw the histogram with error bars ended with tick marks.

Error Rectangles Draw the histogram with error rectangles.

Error: Filled Area Draw the histogram as a filled area.

Error: Smoothed Area Draw the histogram a a smoothed and filled area.

Lego Draw the histogram as a lego plot.

Filled Lego Draw the histogram as a filled lego plot.

Default Default histogram drawing.

9.3. Graphics 157

9.3.4 2D-Histogram

When a 2D-Histogram is picked in Graphics Window with the right mouse button, the following menu is dis-
played:

Project X Fill the X projection and display it.

Project Y Fill the Y projection and display it.

Slice X Define slices on X and display slice 1.

Slice Y Define slices on Y and display slice 1.

Band X Define bands on X ans display band 1.

Band Y Define bands on Y and display band 1.

Smooth Smooth the picked histogram.

Smooth... Display the smooth panel on the picked histogram.

Boxes Boxes plot.

Color Color plot

Hidden Lines Surface Hidden lines surface plot.

Color Level Surface (1) Color level surface plot (1).

Color Level Surface (2) Color level surface plot (2).

Surface and Contour Surface and contour plot.

Gouraud Shaded Surface Gouraud shaded surface plot.

Hidden Lines Lego Hidden lines lego plot.

Filled Lego Filled lego plot.

Color Level Lego Color level lego plot.

Contour Plot Contour plot (line).

Filled Contour Plot Filled contour plot.

Arrow Plot Arrow plot.

Text Text plot.

Default Default (scatter plot or text plot).

9.3.5 X Axis

When a X-Axis is picked in Graphics Window with the right mouse button, the following menu is displayed:

Logarithmic Log scale on.

Linear Linear scale on.

Sort in alphabetical order Reorder the bins.

Sort in reverse alphabetical order Reorder the bins.

Sort by increasing channel contents Reorder the bins.

Sort by decreasing channel contents Reorder the bins.

Number of divisions... Define number of X divi-
sions.

Tick marks length... Tick marks size.

Values Distance... Labels distance.

Character Font... Labels font.

Axis Color... Axis color.

158 Chapter 9. PAW++: A guided tour

9.3.6 Y Axis

When a Y-Axis is picked in Graphics Window with the right mouse button, the following menu is displayed:

Logarithmic Log scale on.

Linear Linear scale on.

Sort in alphabetical order Reorder the bins.

Sort in reverse alphabetical order Reorder the bins.

Sort by increasing channel contents Reorder the bins.

Sort by decreasing channel contents Reorder the bins.

Number of divisions... Define number of Y divi-
sions.

Tick marks length... Tick marks size.

Values Distance... Labels distance.

Character Font... Labels font.

Axis Color... Axis color.

9.3.7 Locate on Histograms

To retrieve interactively on the Graphics Window an histogram identifier a bin number, a (X,Y) position etc... ,
place the mouse cursor on the graphics area and click with the left mouse button on the interesting region. The
information about the picked histogram will appear in the window called PAW++ Locate.

➊ ➋ ➌ ➍

➀ ➁

➊ 1D Histogram
(with LOG
scale).

➋ 2D Histogram.

➌ PAW++ Locate
window.

➍ To release the
Output window.

➀ Info the the 1D
Histogram.

➁ Info the the 2D
Histogram.

9.3. Graphics 159

9.3.8 Locate on Ntuples

Just by clicking with the left mouse button on a Ntuple drawing, one can get the event description in the PAW++
Locate window. If the mouse cursor is moved on the Ntuple drawing with the left mouse button pressed, the event
description will change in real time in PAW++ Locate.

➊ ➋ ➌ ➍

➊ Ntuple drawing.

➋ PAW++ Locate window.

➌ To release the Output window.

➍ event description.

9.3.9 Integrate Histograms

To integrate interactively an histogram, place the mouse cursor on the bin from which the integration will start, and
drag the cursor with the left mouse button pressed to the last bin. The result will appears in real time in a separated
window called PAW++ Locate ➋.

160 Chapter 9. PAW++: A guided tour

➀
➁
➂
➃
➄
➅

➊ ➋ ➌

➊ Integrated area.

➋ Output window. It is
possible to copy (via
the mouse) the text in-
side this window.

➌ To release the Output
window.

➀ Histogram identifier.

➁ First bin for the inte-
gration.

➂ Last bin for the inte-
gration.

➃ Value of the integral.

➄ Normalized integral.

➅ “Mathematical” inte-
gral. Each bin contri-
bution is multiply by
the bin witdh.

9.4 The Histogram Style Panel

The Histogram Style Panel allows to manipulate and present histograms. It works on one histogram only: the
“Current histogram”. To set the current histogram it is enough to plot it for the Main Browser, via a double click
on the icon.

➊ ➋ ➌ ➍ ➎ ➏ ➐

➀ ➁ ➂ ➃
➊ Plot the current his-

togram.

➋ Add informations on
the plots.

➌ Define the graphical
option used to plot the
current histogram.

➍ Reset the default at-
tributes.

➎ Define the coordinate
system used to draw
lego and surface plots.

➏ Define attibutes used
to draw the current
histogram.

➐ Close the Histogram
Style Panel.

➀ File menu.

➁ Options menu.

➂ Current style name.

➃ Current histogram
name and type.

9.4. The Histogram Style Panel 161

9.4.1 The Histogram Style Panel Menu Bar

In this section, is describe the full functionality of the pull down menu available in the Menu Bar of the Histogram
Style Panel.

File

Open Style Allows to choose and execute a “Style Macro”. This
“Style Macro” becomes the “current style”. This field
➂ in the Histogram Style Panel is updated with the
“current style” name. The “Style Macro” have by de-
fault the extension .sty.

Save Style Save the “current style”. When a style is saved, all the
current attribute values are saved in the “Style Macro”.

Save Style As... Save the “current style” with a new name.

Close

Options

Automatic Refresh By default the “Automatic Refresh” is on: each time
the “current picture” is changed, the graphics win-
dow is updated. When this mode is off, the user has
to click on one of the Apply button available.

Overlay Each time a new histogram, vector, or ntuple draw-
ing is produced, a clear window is performed. To
superimpose all the drawing on the same image,
it is enough to put this option on. This option
is the equivalent of the option S in the command
HISTO/PLOT.

9.4.2 Plot Info

This set of toggle buttons allow to add some usefull information on the curren plot. If the Automatic refresh mode
is on, the plot is automatically refresh.

Statistics... Allow to draw (or not) the statistics on the plot (PAW com-
mand OPTION STAT). When the toggle button is set on, a
panel is displayed in order to specify with parameters will
be visible.

Fits... Allow to draw (or not) the fit parameters on the plot (PAW

command OPTION FIT). When the toggle button is set on,
a panel is displayed in order to specify with parameters will
be visible.

File Name... Allow to draw (or not) the file name on the plot (PAW com-
mand OPTION FILE).When the toggle button is set on, a
panel is displayed in order to specify the file name position.

Date... Allow to draw (or not) the date on the plot (PAW command
OPTION DATE).When the toggle button is set on, a panel is
displayed in order to specify the date position

162 Chapter 9. PAW++: A guided tour

Statistics ...

This panel in the equivalent of the PAW command SET STAT. It allows to specify which statistics informations are
displayed on the plot.

Histogram ID The histogram identifier is displayed.

Entries The number of entries is displayed.

Mean value The mean value is displayed.

R.M.S. The R.M.S. is displayed.

Underflows The underflows are displayed.

Overflows The overflows are displayed.

All channels The content of the total number of channel is displayed.

Fits ...

This panel in the equivalent of the PAW command SET FIT. It allows to specify which fit parameters are displayed
on the plot.

Chi Square The chi square is displayed.

Errors The errors are displayed.

Parameters The fit parameters are displayed.

File Name ...

This panel in the equivalent of the PAW command SET FILE. It allows to specify the file name position on the
plot.

Top Left The file name is drawn on the top left of the plot (default).

Top Right The file name is drawn on the top right of the plot

Bottom Left The file name is drawn on the bottom left of the plot

Bottom Right The file name is drawn on the bottom left of the plot

9.4. The Histogram Style Panel 163

Date ...

This panel in the equivalent of the PAW command SET DATE. It allows to specify the date position on the plot.

Top Left The date is drawn on the top left of the plot

Top Right The name is drawn on the top right of the plot (default).

Bottom Left The date is drawn on the bottom left of the plot

Bottom Right The date is drawn on the bottom left of the plot

9.4.3 Style

The various buttons invoke the cor-
responding panel, e.g., Object At-

tributes... invokes the “Object At-
tributes” panel.

9.4.4 General Attributes

The “General Attributes” panel allow to define attributes like marker type, marker size, line type or color definition
for the low level graphics primitives like the lines, the markers the boxes etc...

➊ ➋ ➌

➀ ➁ ➂ ➃

➀ This menu choice allows you to define the current marker type used.

➁ This scale allows you to change the marker scale factor.

➂ This menu choice allows you to define the current line style used.

164 Chapter 9. PAW++: A guided tour

➃ This push button opens the “Define Color” panel (see below).

➊ By default the “automatic refresh” is on and as soon as an attribute is changed, the current picture is updated
with the new attribute value. But when the “automatic refresh” is off, this button becomes active a should
pressed in order to update the current picture with the new attribute value.

➋ This push button allow to reset the default value of all the attributes manageable in this panel.

➌ Close this panel.

Define Color

This panel is invoked when the button number ➃ is pressed in the “General Attributes” panel. This panel allows to
define a color in RGB or HLS modes.

➊ ➌ ➎➋ ➍

➀
➁
➂

➃
➄
➅

➆

➇

➈

➀ Percentage of Blue in the
color define by the Current
Color index ➈.

➁ Percentage of Blue in the
color define by the Current
Color index ➈.

➂ Percentage of Blue in the
color define by the Current
Color index ➈.

➃ Ligth.

➄ Saturation

➅ Hue.

➆ Hue scale.

➇ Maximum number of col-
ors.

➈ Colors index to be changed.

➊ Apply the changes.

➋ Define the color.

➌ Reset the color.

➍ Reset.

➎ Close the panel

9.4. The Histogram Style Panel 165

9.4.5 Object Attributes

The “Object Attributes” panel allows to define the graphics attributes of the HPLOT objects managed by PAWsuch
as: Histograms, Axis etc.. . On the left part of this panel the type of object can be define via a list of toggle buttons.
For example here “Histogram” is selected: all the attributes definable in the panel will be apply on the histograms
(histogram color, histogram line width etc...).

➊ ➋ ➌ ➍

➎

➏

➐

➑

➀

➁

➂

➃

➄

➅

➊ Apply the changes if the “automatic refresh”
is not on.

➋ Change the title of the selected object.

➌ Reset all the attributes.

➍ Close this panel

➎ Change the line width of the selected object.

➏ Reset the attributes of the selected object.

➐ Invoke the “Object Colors” panel.

➑ Invoke the “Object Hatch Style” panel.

The zones affected by the buttons ➀ to ➅, are shown
in the figure below.

Angular density

0

10

20

30

40

50

60

70

80

90

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Angular density

0

10

20

30

40

50

60

70

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

➀ ➁ ➂➂

➃

➃

➄

➄ ➅

➅

166 Chapter 9. PAW++: A guided tour

Object Hatch Style

➊ ➋ ➌ ➍

➀ ➁ ➂

➀ Define the distance between tow
hatches.

➁ Define the angle of the first set of
hatches.

➂ Define the angle of the second set of
hatches.

➊ Apply

➋ Define the hatches type by number.

➌ Reset the default.

➍ Close this panel.

Object Colors

.

➊ ➋ ➌

➍

➀

➁

➂

➃
➀ Surface color.

➁ Contour color.

➂ Statistic box shadow color.

➃ Zone box shadow color.

➊ Apply

➋ Reset the color index.

➌ Close the panel.

➍ Define the color index.

9.4. The Histogram Style Panel 167

9.4.6 Geometry

➊ ➋ ➌ ➍ ➎

➏

➐➐➐

➊ Apply.

➋ Define the attribute value by number.

➌ Reset the default value.

➍ Name of the current attribute changed.

➎ Close the panel.

➏ Vary continuously the attribute selected.

➐ Select the attribute to be modified.

9.4.7 Viewing Angles

➊ ➋ ➌

➀

➁

➂

➀ Apply.

➁ Reset the both angles to 30 de-
grees.

➂ Close the panel.

➊ Rotating cube use to define the
angles.

➋ Allow to specify the theta value.

➌ Allow to specify the phi value.

168 Chapter 9. PAW++: A guided tour

9.4.8 Axis Scaling

➊ ➋ ➌ ➍ ➎ ➏ ➐

➀ ➁ ➂ ➃ ➄

➀ Change the Y first bin value.

➁ Change the Y second bin value.

➂ Change the X first bin value.

➃ Change the X first bin value.

➄ Lock the range between the first ans the last
X bins.

➊ Apply.

➋ Set the minimum Z value.

➌ Set the maximum Z value.

➍ Lock the range between the first ans the last Y bins.

➎ Reset the default values.

➏ Rebin the 1D histograms.

➐ Close the panel.

9.4.9 Zones

This panel is a direct interface to the Zone command.

➊ ➋

➀ ➁

➀ Active zone.

➁ Not active zone.

➊ Reset to one zone.

➋ Close the panel.

9.4. The Histogram Style Panel 169

9.4.10 Axis Settings

This panel allows to define the labelling, number of divisions and axis properties (like LOG scale), of the X, Y and
Z axis. This is a direct interface to the commands SET NDVX, NDVY etc ...

➊ ➋ ➌

➍➍

➎➎

➏➏

➐

➑

➒➒➒

➀

➁
➂
➃ ➀ Activate or desactivate the tick marks opti-

mization.

➁ Activate or desactivate the Log scale.

➂ Activate or desactivate the additionnal tick
marks on the top and right of the plot.

➃ Activate or desactivate the grid drawing.

➊ Apply.

➋ Reset the defaults.

➌ Close the panel

➍ Define the tertiary divisions.

➎ Define the secondary divisions.

➏ Define the primary divisions.

➐ Display the “Labels” panel.

➑ Display the “Orientation” panel.

➒ Select on which axis the whole panel will act.

➊

➋➋➋➋➋➋➋➋➋ ➌➌➌➌➌➌➌➌➌

➍

Axis Labels

The panel defines the type of label used.

➊ Close the panel.

➋ Activate one of the alphanumeric list.

➌ Define an alphanumerique list.

➍ The labelling is numeric.

170 Chapter 9. PAW++: A guided tour

]

➊ ➋

➌ ➍

Label Orientation

Defines the labels orientation.

➊ Reset the default orientation.

➋ Close the panel.

➌ Define the X axis labels orientation.

➍ Define the Y axis labels orientation.

9.4.11 Font

➊ ➋ ➌

➍

Font selector

➊ Apply.

➋ Reset the default font.

➌ Close the panel.

➍ Select the font for the various type of text.

9.4. The Histogram Style Panel 171

The font settings panel allows to define the font and
the precision of a given type of text.

The font may be choosen amoung the standard
X11/PostScript fonts.

9.4.12 Coordinate Systems

Various coordinate systems can be choosen for surface and lego plots.

Cartesian All lego and surfaces will be in cartesian coordinates.

Polar All lego and surfaces will be in polar coordinates.

Cylindrical All lego and surfaces will be in cylindrical coordinates.

Spherical All lego and surfaces will be in spherical coordinates.

Pseudo Rapidity All lego and surfaces will be in pseudo rapidity coordinates.

172 Chapter 9. PAW++: A guided tour

9.4.13 Plot Options

The possible plotting option for 1D histograms available in the Histogram Style Panel are the following:

Default Normal histogram drawing.

Line Draw the histogram with line.

Smooth Curve Draw the histogram as a smooth curve.

Bar Chart Draw the histogram as a bar chart.

Star Draw the histogram with stars.

Error Bars Draw the histogram with error bars.

Error Bars (lines) Draw the histogram with error bars ended with tick
marks.

Error Rectangles Draw the histogram with error rectangles.

Error: Filled Area Draw the histogram as a filled area.

Error: Smoothed Area Draw the histogram a a smoothed and filled area.

Hidden Lines Surface Draw the histogram as a surface.

Color Level Surface (1) Draw the histogram as a surface.

Color Level Surface (2) Draw the histogram as a surface.

Hidden Lines Lego Draw the histogram as a lego.

Filled Lego Draw the histogram as a lego.

Color Level Lego Draw the histogram as a lego.

The possible plotting option for 2D histograms available in the Histogram Style Panel are the following:

Default Scatter plot.

Boxes Boxes plot.

Color Color plot.

Hidden Lines Surfaces Surface plot.

Color Level Surface (1) Surface plot.

Color Level Surface (2) Surface plot.

Surface and Contour Surface plot.

Gouraud Shaded Surface Surface plot.

Hidden Lines Lego Lego plot.

Filled Lego Lego plot.

Color Level Lego Lego plot.

Contour Plot Line contour plot.

Filled Contour PLot Filled contour plot.

Text Text plot.

9.5. Ntuple Viewer 173

9.5 Ntuple Viewer

➊ ➋ ➌ ➍ ➎ ➏ ➐ ➑ ➒

➓

➀ ➁ ➂➂➂ ➃ ➄ ➅ ➆

➇

➈

➀ Field showing the current directory and the name of the Ntuple.

➁ The names of the variables defined for the Ntuple. If you double click on one of the variable names a histogram showing
the values of the variable will be plotted.

➂ The X , Y and Z fields allow you to define which variables will be used by thePlot and Scan buttons. These fields
can be filled in two ways: firstly by typing the name or an expression of a variable; secondly by double-clicking in one
of the X , Y or Z fields. In the latter case the field pointed at is filled with the variable highligted in the list of variables.

➃ Defines the first row used in the Ntuple when thePlot or Project buttons are pressed.

➄ Defines the number of rows used (starting from First Row) when the Plot or Project buttons are pressed.

➅ Defines the histogram identifier used when thePlot or Project buttons are pressed.

➆ Fields showing the number of rows and columns in the Ntuple.

➇ A toggle button allowing you to enable/disable the cuts defined with the Cut Editor.

➈ A toggle button, which, when pressed will produce the next plot on top of an already existing one, i.e. without clearing
the graphics window.

➉ If pressed, 2D plots are drawn with boxes.

➊ Close the Ntuple Viewer.

➋ Invoke the Cut Editor.

➌ When it is pressed, the Ntuple variables types and ranges are also listed.

➍ Produce a plot using all the indications specified on the Ntuple Viewer panel.

➎ Invoke the Ntuple Scanner.

➏ Perform the NTUPLE/LOOP command.

➐ If pressed, the 2D plots produce profile histograms.

➑ Project the selected variables in the histogram specify in ➅.

➒ Help on the Ntuple Viewer.

174 Chapter 9. PAW++: A guided tour

9.6 The Cut Editor

➀ ➁ ➂ ➃

➊ ➋ ➌ ➍

➀ Invoke the File menu.

➁ Invoke the Edit menu.

➂ Invoke the Options menu.

➃ Current cut expression ap-
plied.

➊ Apply the cut.

➋ Apply the cut and replot the graph.

➌ Close the cut editor.

➍ Cut definition panel. The current cut is highlighted with a red line.
A cut can be activated or deactivated with the toggle button on the
left. It can be negated with the push button on the right of the cut
number. A “!” appears on this button when the cut is negated. Cuts
are defined with the help of the two editable fields and menu choices.

9.6.1 The Cut Editor Menu Bar

In this section, is describe the full functionality of the pull down menu available in the Menu Bar of the Cut Editor.

File

Open Open a cut file.

Save Cuts Save the current cuts on disk.

Save Cuts As ... Save the current cuts on disk in a spsicific file.

Close Close the panel.

Edit

Add Cut Before Add a cut line before the current cut line.

Add Cut After Add a cut line after the current cut line.

Add (Before Add a (line before the current cut line.

Add (After Add a (line after the current cut line.

Add) Before Add a) line before the current cut line.

Add) After Add a) line after the current cut line.

Delete item Delete the current cut line.

Delete All items Delete all the cut lines.

9.7. KUIP/Motif Panel Interface 175

Options

Dynamic Mode ... The current cut can be change dynamically.

Indentation ... Indente the cut definitions.

Activate all cuts Activate all cuts

Deactivate All cuts Deactivate all cuts.

9.6.2 Ntuple Scanner

➊ ➋ ➌

➀ ➁ ➂ ➃ ➄ ➅ ➆

9.7 KUIP/Motif Panel Interface

The PANEL Interface allows to define command sequences which are executed when the corresponding button is
pressed (like STYLE GP in PAW/X11). The command sequence

PANEL 0

PANEL 4.06 ’some string’

PANEL 0 D ’This is my first panel’ 500x300+500+600

creates a panel with 4 rows and 6 columns of buttons. The text ’some string’ should be long enough to fit the
longest command Sequence which should be put onto one of the buttons. The command “PANEL 0 D” defines the
title and the window size and coordinates in the form WxH+X+Y.

The panels can be edited interactively:

• Clicking with the right mouse button on an empty panel button the user will be asked to give a definition to
this button.

• Clicking with the left mouse button on a panel button removes its definition.

The PANEL commands needed to recreate a panel can be saved into a macro file by pressing the “Save Panel”
button. Panels can be reloaded either by executing the command PANEL 0 D’ or by pressing the “Command
Panel” button in the View menu of the Executive Window and entering the corresponding file name.

Appendix A: X Window resources

A.1 X resources for PAW++

This is a list of the X resources available to PAW++. Resources control the appearance and behavior of an applica-
tion.

Users can specify their own values for these resources in the standard X11/Motif way (via their own .Xdefaults file
or the system wide /usr/lib/X11/app-defaults/Paw++ file).

Any default values specified by PAW++ are given behind the resource name.

Paw++*background:

Specify the background color for all windows.

Paw++*foreground:

Specify the foreground color for all windows.

Paw++*kxtermGeometry: 550x550+5+10

Geometry of Kxterm, the KUIP terminal emulator (PAW++ Executive Window).

Paw++*kuipGraphics_shell.geometry: 550x550+585+10

Geometry of the Graphics Window(s) (if any).

Paw++*kuipBrowser_shell.geometry: 495x511+161+481

Geometry of the Browser(s).

Paw++*histoStyle_shell.geometry: 599x360+668+631

Geometry of the Style Panel.

Paw++*ntupleBrowser_shell.geometry:

Geometry of the Ntuple Viewer.

Paw++*XmText*fontList: *-prestige-medium-r-normal-*-120-*

Paw++*XmTextField*fontList: *-prestige-medium-r-normal-*-120-*

Font used by all text areas.

Paw++*kxtermFont: *-prestige-medium-r-normal-*-120-*

Font used by Kxterm (PAW++ Executive Window)

Paw++*dirlist*fontList: *-courier-bold-r-normal*-120-*

Font used for the icon labels in the browser.

Paw++*matrix.fontList: *-courier-medium-r-normal*-120-*

Font used for the Ntuple/Scan matrix (accessible via the Ntuple Viewer).

Paw++*helpFont: *-courier-bold-r-normal*-120-*

Font used for help windows.

176

A.1. X resources for PAW++ 177

Paw++*fontList: *-swiss*742-bold-r-normal-*-120-*

Font for the menus, messages and boxes.

Paw++*keyboardFocusPolicy: pointer

If “explicit” focus is determined by a mouse or keyboard command. If “pointer” (default), focus is determined by
the mouse pointer position.

Paw++*doubleClickInterval: 400

The time span (in milliseconds) within which two button clicks must occur to be considered a double click rather
than two single clicks.

Paw++*dirlist*background:

Specify the background color for the iconbox part of the browser.

Paw++*dirlist*<object>*iconForeground:

Specify the foreground color for the icons of type ¡object¿.

Paw++*dirlist*<object>*iconBackground:

Specify the background color for the icons of type ¡object¿.

Paw++*dirlist*<object>*iconLabelForeground: black

Specify the foreground color for the labels of the icons of type ¡object¿.

Paw++*dirlist*<object>*iconLabelBackground: white

Specify the background color for the labels of the icons of type ¡object¿. Currently the following different ¡object¿’s
are defined:

dir -- directory

1d -- 1d histograms

2d -- 2d histograms

ntuple -- Ntuples

pict -- Higz pictures

chain -- Ntuple chains

entry -- Ntuple chain entries

hbook -- Hbook files

The default iconForeground and iconBackground colors for these objects are:

Paw++*dirlist*dir*iconForeground: blue

Paw++*dirlist*1d*iconForeground: DarkGoldenrod3

Paw++*dirlist*2d*iconForeground: DeepPink3

Paw++*dirlist*ntuple*iconForeground: SteelBlue3

Paw++*dirlist*pict*iconForeground: green4

Paw++*dirlist*chain*iconForeground: blue

Paw++*dirlist*entry*iconForeground: OrangeRed

When using a black and white X Server use the following resource settings to make the icons visible:

Paw++*dirlist*<object>*iconForeground: black

Paw++*dirlist*<object>*iconBackground: white

Paw++*dirlist*<object>*iconLabelBackground: black

Paw++*dirlist*<object>*iconLabelForeground: white

178 Appendix A. X Window resources

A.2 X resources for for KUIP/Motif

This is a list of the X resources available to any KUIP/Motif based application (e.g. PAW++). Resources control
the appearance and behavior of an application.

Users can specify their own values for these resources in the standard X11/Motif way (via the .Xdefaults file or a
file in the /usr/lib/X11/app-defaults directory). One just has to prefix the desired resource by the class name of the
application.

To customize PAW++, for instance, all the resources have to be prefixed with Paw++ or they should be stored in the
file /usr/lib/X11/app-defaults/Paw++.

Any default values specified by KUIP are given behind the resource name.

*background:

Specify the background color for all windows.

*foreground:

Specify the foreground color for all windows.

*kxtermGeometry: 550x550+5+10

Geometry of Kxterm, the KUIP terminal emulator (Executive Window).

*kuipGraphics_shell.geometry: 550x550+585+10

Geometry of the graphics window(s) (if any).

*kuipBrowser_shell.geometry: 580x450

Geometry of the browser(s).

*XmText*fontList: *-helvetica-bold-r-normal*-120-*

*XmTextField*fontList: *-helvetica-bold-r-normal*-120-*

Font used by all text areas.

*kxtermFont:

Font used by Kxterm (PAW++ Executive Window)

*dirlist*fontList:

Font used for the icon labels in the browser.

*helpFont: *-courier-bold-r-normal*-120-*

Font used for help windows.

*fontList: *-helvetica-bold-r-normal*-120-*

Font for the menus, messages and boxes.

*keyboardFocusPolicy: explicit

If “explicit” (default), focus is determined by a mouse or keyboard command. If “pointer” focus is determined by
the mouse pointer position.

*doubleClickInterval: 250

A.2. X resources for for KUIP/Motif 179

The time span (in milliseconds) within which two button clicks must occur to be considered a double click rather
than two single clicks.

*dirlist*background:

Specify the background color for the iconbox part of the browser.

dirlist<object>*iconForeground: black

Specify the foreground color for the icons of type ¡object¿.

dirlist<object>*iconBackground: white

Specify the background color for the icons of type ¡object¿.

dirlist<object>*iconLabelForeground: black

Specify the foreground color for the labels of the icons of type ¡object¿.

dirlist<object>*iconLabelBackground: white

Specify the background color for the labels of the icons of type ¡object¿.

*zoomEffect: True

Turn zoom effect on or off when going up and down directories in the browser.

*zoomSpeed: 10

Specify speed of zoom effect in the browser.

Currently the following different ¡object¿’s are defined:

Cmd -- Command

InvCmd -- Deactivated command

Menu -- Menu tree

MacFile -- Macro File

RwFile -- Read-write file

RoFile -- Readonly file

NoFile -- No access file

ExFile -- Executable file

DirFile -- Directory

DirUpFile -- Up directory (..)

When using a black and white X Server use the following resource settings to make the icons visible:

dirlist<object>*iconForeground: black

dirlist<object>*iconBackground: white

dirlist<object>*iconLabelBackground: black

dirlist<object>*iconLabelForeground: white

Appendix B: Editing keys in the Input Pad

"C-b" means holding down the Control key and pressing the b key.

"M-" stands for the Meta key and "A-" for the Alt key.

C-b: backward character

A-b: backward word

M-b: backward word

Shift A-b: backward word, extend selection

Shift M-b: backward word, extend selection

A-[: backward paragraph

M-[: backward paragraph

Shift A-[: backward paragraph, extend selection

Shift M-[: backward paragraph, extend selection

A-<: beginning of file

M-<: beginning of file

C-a: beginning of line

Shift C-a: beginning of line, extend selection

C-osfInsert: copy to clipboard

Shift osfDelete: cut to clipboard

Shift osfInsert: paste from clipboard

Alt->: end of file

M->: end of file

C-e: end of line

Shift C-e: end of line, extend selection

C-f: forward character

A-]: forward paragraph

M-]: forward paragraph

Shift A-]: forward paragraph, extend selection

Shift M-]: forward paragraph, extend selection

C-A-f: forward word

C-M-f: forward word

C-d: kill next character

A-BS: kill previous word

M-BS: kill previous word

C-w: kill region

C-y: yank back last thing killed

C-k: kill to end of line

C-u: kill line

A-DEL: kill to start of line

M-DEL: kill to start of line

C-o: newline and backup

C-j: newline and indent

C-n: get next command, in hold mode: next line

C-osfLeft: page left

C-osfRight: page right

C-p: get previous command, in hold mode: previous line

C-g: process cancel

C-l: redraw display

C-osfDown: next page

C-osfUp: previous page

C-SPC: set mark here

C-c: send kill signal to application

C-h: toggle hold button of pad containing input focus

F8: re-execute last executed command

Shift F8: put last executed command in input pad

Shift-TAB: change input focus

180

Appendix C: The Motif user interface tools

C.1 Scale

A scale can be moved with the scale button, or with the two arrows (top and bottom). It is usualy linked
to some quantity which may vary continuously.

C.2 Buttons

Various kind of buttons are available in Motif: Toggle, Push and Selectionbuttons.

C.2.1 Toggle Buttons

The toggle buttons are usually used for Yes/No choices. In a serie of toggle button,
only one can be push.

C.2.2 Push Buttons

Push buttons are usualy used to perform a specific action. Very often they open an
other panel.

C.2.3 Selection Buttons

Selection buttons are used to select an option or a special mode. They are not linked
together like the toggle buttons and they can be on independently from the state of the
others.

C.3 Paned Window

Paned window separate a window in several part. Each part is resizable but the global
size stay the same: when a part grow an other one reduce.

181

182 Appendix C. The Motif user interface tools

C.4 Window manager buttons

This tools a present on all the Motif windows.

A double click on this button closes the window. a simple click display a pull down
menu. The content of the this menu depends on the window manager used.

These two buttons allows respectively to iconise and to enlarge a window to the max-
imum size possible on the screen.

Bibliography

[1] CERN. COMIS – Compilation and Interpretation System, nProgram Library L210, January 1994.

[2] CN/ASD Group. HBOOK Users Guide (Version 4.21), nProgram Library Y250. CERN, January 1994.

[3] CN/ASD Group. HIGZ/HPLOT Users Guide, nProgram Library Q120 and Y251. CERN, 1993.

[4] CN/ASD Group. KUIP – Kit for a User Interface Package, nProgram library I202. CERN, January 1994.

[5] CN/ASD Group. MINUIT – Users Guide, nProgram Library D506. CERN, 1993.

[6] CN/ASD Group and J. Zoll/ECP. ZEBRA Users Guide, nProgram Library Q100. CERN, 1993.

[7] R. Brun and H. Renshall. HPLOT users guide, nProgram Library Y251. CERN, 1990.

[8] R. Bock et al. HIGZ Users Guide, nProgram Library Q120. CERN, 1991.

[9] F. James. Interpretation of the errors on parameters as given by MINUIT, nSupplement to “CERN Program
Library Long writeup D506”. CERN, 1978.

[10] F. James. Determining the statistical Significance of experimental Results. Technical Report DD/81/02 and
CERN Report 81–03, CERN, 1981.

[11] W. T. Eadie, D. Drijard, F. James, M. Roos, and B. Sadoulet. Statistical Methods in Experimental Physics.
North-Holland, 1971.

[12] Sun Microsystems. Network File System Version 2. Sun Microsystems, 1987.

183

Index
*

IGSET parameter, 108
***P

OPTION parameter, 108
**P

OPTION parameter, 108
*COL

SET parameter, 114
*P

OPTION parameter, 108
[*], 42, 47
[0], 42
[1], 40, 42, 47
[#], 42
[@], 39, 42
, 63
$SIGMA, 67
2SIZ

SET parameter, 110

A0

OPTION parameter, 108
A1

OPTION parameter, 108
A2

OPTION parameter, 108
A3

OPTION parameter, 108
A4

OPTION parameter, 108
A5

OPTION parameter, 108
A6

OPTION parameter, 108
abbreviation, 6, 12
active picture, 102
addressing of vectors, 64
Alias, 24
alias, 6
ALIAS/CREATE, 24–26
alphanumeric

labels, 110
ANY, 69
ANY (SIGMA), 68

Apollo, 10
APPLICATION, 37, 38, 64
application SIGMA, 67
arc

border, 108
ARRAY, 64
array, 64

filling, 67
in SIGMA, 67

ARRAY (SIGMA), 67
ASIZ

SET parameter, 109
AST

OPTION parameter, 108
AST

OPTION parameter, 108
asterisk size (for functions), 110
ATITLE, 119
attribute, 105
AURZ

IGSET parameter, 107
SET parameter, 105

automatic
storage of pictures, 105

automatic naming of pictures, 108
AWLN

IGSET parameter, 107
AXIS, 110
axis

divisions, 110
labels

font and precision, 110
size, 110

labels offset, 108
labels size, 108
tick marks size, 108
values

font and precision, 110
size, 110

backspace, 121, 122
band, 8
BAR

OPTION parameter, 108
bar

chart, 109
histogram

offset, 110
width, 110

BAR

OPTION parameter, 108
BARO

IGSET parameter, 107
SET parameter, 109

BARW

IGSET parameter, 107
SET parameter, 109

bash shell, 3
basic operator in SIGMA, 68
BASL

IGSET parameter, 107
batch, 1, 10
BCOL

SET parameter, 109, 112, 114
book histogram, 8
boolean value in SIGMA, 68

184

INDEX 185

BORD

IGSET parameter, 107
box

around picture, 109
border, 108
fill area

colour, 110
BOX

OPTION parameter, 108
BREAKL, 38, 48
Browsable, 50, 53
Browsable window, 50, 61
Browser, 50
Browser initialization, 53
BTYP

SET parameter, 109, 112, 114
BWID

SET parameter, 109

CASE, 46
CASE, 38
CDF Command Definition File, 6
CDIR, 78, 102
CERN Program Library

NEW, 10
OLD, 10
PRO, 10

CERNLIB, 133
CFON

SET parameter, 109
CHA

OPTION parameter, 108
CHA

OPTION parameter, 108
change directory, 78
character

escape, 121
key size, 110
shift, 110

CHHE

IGSET parameter, 107
SET parameter, 119

chisquare, 7
client, 131
cmd1, 22
cmd2, 22
cmd3, 22
colour, 105, 112, 114
COMIS, 7, 30, 32, 64, 65, 86
command

abbreviation, 6, 12
definition file (CDF), 6
parameter

mandatory, 12
optional, 12

search path, 10

structure, 11
visibility, 17

Command Argument Panel, 50, 52, 56
comment

and statistic size, 110
font and precision, 110

common /PAWC/, 78
components

of PAW, 6
control operator in SIGMA, 68
correlation, 7
create

vector, 64
cross-wires, 109
CSHI

IGSET parameter, 107, 122
SET parameter, 109

CSIZ

SET parameter, 109
current

directory, 78
picture, 102

cut, 4, 8, 81, 86
graphical, 86

Cut Editor, 135, 173, 174

DASH

SET parameter, 109
dash mode for lines, 110
data structure, 77
DATE

OPTION parameter, 114
SET parameter, 109, 114

date, 114
and hour on pictures, 109, 114
position, 110

default setting, 6
DEL, 69
DEL (SIGMA), 70

delta function, 70
DI3000, 7
dialogue

style, 6
dialogue style, 6
DIFF, 70
DIFF, 69
DIFF (SIGMA), 70

directory
change, 78
current, 78
ZEBRA, 5

display, 10
distance

x axis
to labels, 110
to to axis values, 110

186 INDEX

y axis
to labels, 110
to to axis values, 110

divisions, 112
DMOD

SET parameter, 109
DO, 38
Domain, 10
DST, 8, 77, 79

Data Summary Tape, 8
DVXI

OPTION parameter, 108
DVXR

OPTION parameter, 108
DVYI

OPTION parameter, 108
DVYR

OPTION parameter, 108

EAH

OPTION parameter, 108
EDIT, 26, 62, 87
editor, 128
EDM, 98, 99
ELSE, 38
emacs, 3
Encapsulated PostScript, 100
ENDCASE, 46
ENDKUMAC, 37, 38
error

bars, 109
errors on fitted parameters, 91
ERRX

SET parameter, 109
event, 8
exchange input/output, 7
exclamation mark character

place-holder, 12
EXEC, 18, 37–42, 103
Executive Window, 50, 53, 54, 56, 58, 60, 61, 133,

134, 137, 138, 142, 175, 176, 178
EXITM, 30, 38, 39, 49

FACI

IGSET parameter, 107
FAIS

IGSET parameter, 107
SET parameter, 115

FASI

IGSET parameter, 107
SET parameter, 115

FCOL

SET parameter, 109, 112, 114
FILE

OPTION parameter, 114
SET parameter, 109, 114

file name

on pictures, 109, 114
position, 110

fill
area, 112

interior style, 115
style index, 115

histogram, 8
vector, 64

fill area
colour index, 108
interior style, 108
style index, 108

first page number, 110
FIT

OPTION parameter, 108, 114
SET parameter, 115

fit, 7, 8, 88
parameters on pictures, 109, 114
values to be plotted, 110
vector, 66

FIT

OPTION parameter, 108
SET parameter, 109

font, 105
PostScript, 122
text, 121

fonts, 117
FOR, 38
FPGN

SET parameter, 109
FTYP

SET parameter, 109, 112, 114
function, 8, see sstem function27

fill area
colour, 110
type, 110

in SIGMA, 68
line width, 110

FWID

SET parameter, 109

GDDM (IBM), 7
GFON

SET parameter, 109
GKS, 7
GL (Silicon Graphics), 7
global

section, 79, 130
title

font and precision, 110
size, 110

GLOBAL/CREATE, 44
GLOBAL/IMPORT, 44
GMR3D (Apollo), 7
GOTO, 38
GPR (Apollo), 7

INDEX 187

GRAPH, 65, 118
graphical

cut, 86
output, 65

graphics
editor, 128

Graphics Window, 133–135, 155–158
Greek letters, 121, 122
GRID

OPTION parameter, 108
SET parameter, 109

grid, 109
line type, 110

GSIZ

SET parameter, 109

HARD

OPTION parameter, 108
hardware characters, 109
hatch style, 115, 116
HBOOK, 6, 77, 108, 139, 140, 148, 151, 153, 154

Title, 109
HCDIR, 78
HCOL

SET parameter, 109, 112, 114
HDERIV, 90
HELP, 10, 12
HELP, 17
HELP KUIP/FUNCTIONS, 27
HESSE, 91
HFCNH, 90
HFCNV, 90
HFITH, 90
HFITV, 90
HIDOPT, 108
HIFIT, 96
HIGZ, 6, 15, 32, 77, 78, 100, 101, 105, 108, 133

G mode, 100
graphics editor, 128
Z mode, 100, 102

HIST, 66
HIST/PLOT, 102
HISTO/FIL, 25
HISTO/PLOT, 22, 118
HISTOFILE, 81
histogram, 4, 8, 77

1D, 4
2D, 4
booking, 8
fill area

colour, 110
type, 110

filling, 8
line width, 110
maximum for scale, 110
presentation, 112

title size, 110
Histogram Style Panel, 133, 134, 140, 141, 155, 160,

161, 172
HISTOGRAM/PLOT, 100
history file, 6
HLIMIT, 77
HLOGAR, 108
HMAX

SET parameter, 109
HORI

OPTION parameter, 108
host, 10
HOST_EDITOR, 62, 63
HOST_SHELL, 28, 62
HPLOPT, 109
HPLOT, 6, 32, 77, 100, 105, 165
HPLOT/E, 26
HRFILE, 78
HRIN, 78
HROUT, 78
HTABLE, 108
HTIT

OPTION parameter, 108
HTYP

SET parameter, 109, 112, 114
HWID

SET parameter, 109

IF, 38
IGSET (), 105
IGSET

*, 108
AURZ, 107
AWLN, 107
BARO, 107
BARW, 107
BASL, 107
BORD, 107
CHHE, 107
CSHI, 107, 122
FACI, 107
FAIS, 107
FASI, 107
LAOF, 107
LASI, 107
LTYP, 107
LWID, 107
MSCF, 107
MTYP, 107
PASS, 107, 122
PICT, 107
PLCI, 107
PMCI, 107
SHOW, 108
TANG, 107
TMSI, 107

188 INDEX

TXAL, 107
TXCI, 108
TXFP, 108

IGSET, 105, 108, 115, 118, 122
IGSET , 106
initialisation, 11
Input Pad, 53, 54, 60, 133, 134, 136–138, 180
input/output, 7
integer or real divisions on axis, 109
interactive, 1
IQUEST, 28
IQUEST(1), 28, 48
ITX, 118–121
IZPICT, 102

KEY, 109
KSIZ

SET parameter, 109
KUIP, 6, 77, 78, 136, 138, 175, 176, 178

vector, 65

label, 110
text justification, 112

label:, 38
LABELS, 110
LAOF

IGSET parameter, 107
LASI

IGSET parameter, 107
LAST, 23
LATEX

PostScript, 100
LDIR, 81
length of

basic dashed segment, 110
X axis, 110
Y axis, 110

LFON

SET parameter, 109
library functions in SIGMA, 76
limits on fitted parameters, 91
line

type, 115, 117
width, 112

linear scale, 109
lines, 105
LINX

OPTION parameter, 108
LINY

OPTION parameter, 108
LINZ

OPTION parameter, 108
logarithmic scale, 109
logical operator in SIGMA, 68
LOGX

OPTION parameter, 108
LOGY

OPTION parameter, 108
LOGZ

OPTION parameter, 108
lower case letters, 121, 122
LS, 71
LS, 69
LS (SIGMA), 70
LTYP

IGSET parameter, 107
LTYPE

SET parameter, 115
//LUN1, 78
LVMAX, 69
LVMAX (SIGMA), 71
LVMIM, 69
LVMIN (SIGMA), 71
LWID

IGSET parameter, 107

MACRO, 37, 38, 40, 41
macro, 5, 6, 8

parameter, 6
macro statements, 37, 38

flow control, 45
macro variable, 21

argument count, see [#]
argument list, see [*]
file name, see [0]
indirection, 44
numbered, see [1]
return code, see [@]
special, 42
undefined, 40, 41

MACRO/DEFAULT, 18
Macros, 5
Main Browser, 50, 51, 54, 133, 136, 138, 139, 147–

149, 151, 160
mandatory parameter, 12
marker

type, 115, 117
MASK, 85
mask, 4, 8, 81, 83
MAX, 69
MAX (SIGMA), 72
MAXV, 69
MAXV (SIGMA), 72

menu, 11
MESSAGE, 20, 30
METAFILE, 101
metafile, 5, 9, 15, 100
MIGRAD, 90, 91
MIN, 69
minimisation, 7, 88
MIN (SIGMA), 72

MINUIT, 7, 88
MINV, 69

INDEX 189

MINV (SIGMA), 72
mode

HIGZ
G mode, 100
Z mode, 100, 102

MODIFY, 128
Motif, 6, 50, 132, 138, 175, 176, 178, 181
MSCF

IGSET parameter, 107
MTYP

IGSET parameter, 107
SET parameter, 115

NAST

OPTION parameter, 108
native input/output, 7
NBAR

OPTION parameter, 108
NBOX

OPTION parameter, 108
NCHA

OPTION parameter, 108
NCO, 69
NCO (SIGMA), 72
NDAT

OPTION parameter, 108
NDVX

SET parameter, 109, 110, 112
NDVY

SET parameter, 109
NDVZ

SET parameter, 109
NEAH

OPTION parameter, 108
NEXTL, 38, 48
NFIL

OPTION parameter, 109
NFIT

OPTION parameter, 108
NGRI

OPTION parameter, 108
NOPG

OPTION parameter, 108
NPTO

OPTION parameter, 108
NSQR

OPTION parameter, 108
NSTA

OPTION parameter, 108
NTAB

OPTION parameter, 108
NTCUT, 84, 86
NTCUTS, 85
NTIC

OPTION parameter, 108
NTMASK, 84

NTPLOT, 84
Ntuple, 4, 8, 77, 81

cut, 81
mask, 81
weight, 81

Ntuple Viewer, 133, 135, 141, 173, 176
NTUPLEPLOT, 81
number of

divisions for
X axis, 110
Y axis, 110

passes for software characters, 110
NZFL

OPTION parameter, 108

Object window, 50, 60, 61
OFF ERROR, 38, 49
ON ERROR, 38, 49
ON ERROR CONTINUE, 38
ON ERROR EXITM, 38
ON ERROR GOTO, 38, 49
ON ERROR STOPM, 38
operating system, 5
operation on vectors, 65
operator in SIGMA, 67
OP (SIGMA), 68
OPTION (), 106
OPTION

***P, 108
**P, 108
*P, 108
A0, 108
A1, 108
A2, 108
A3, 108
A4, 108
A5, 108
A6, 108
AST , 108
AST, 108
BAR , 108
BAR, 108
BOX , 108
CHA , 108
CHA, 108
DATE, 114
DVXI, 108
DVXR, 108
DVYI, 108
DVYR, 108
EAH, 108
FILE, 114
FIT , 108
FIT, 108, 114
GRID, 108
HARD, 108

190 INDEX

HORI, 108
HTIT, 108
LINX, 108
LINY, 108
LINZ, 108
LOGX, 108
LOGY, 108
LOGZ, 108
NAST, 108
NBAR, 108
NBOX, 108
NCHA, 108
NDAT, 108
NEAH, 108
NFIL, 109
NFIT, 108
NGRI, 108
NOPG, 108
NPTO, 108
NSQR, 108
NSTA, 108
NTAB, 108
NTIC, 108
NZFL, 108
PTO , 108
PTO, 108
SOFT, 108
SQR, 108
STA , 108
STAT, 114
STA, 108
TAB , 108
TIC , 108
TIC, 108
UTIT, 108
VERT, 108
ZFL , 108
ZFL1, 108
ZFL, 108

OPTION, 100, 103, 105, 107, 114, 115
optional parameter, 12
ORDER, 69
ORDER (SIGMA), 73

OS9, 131
module, 79

page
format, 109
number, 109
number size, 110

PAWMAIN, 77
PANEL, 55
panel

menu, 11
PANEL interface, 54, 55, 57
paper orientation, 109

parameter, 6
errors (fit), 91

PASS

IGSET parameter, 107, 122
SET parameter, 109

path, 10
PAW, 16, 51, 90

access, 10
entities, 15
initialisation, 11
object, 15
server, 131
structure, 6

PAW (Physics Analysis Workstation), 132, 133, 136,
141, 142, 144, 151, 161–163, 165, 175

PAW++, 132–135, 139, 155, 176, 178
PAW++ Locate, 135, 158, 159
/PAWC/ common, 77, 78
//PAWC directory, 78
PAWINT, 77
PAWLOGON, 10, 11
PCOL

SET parameter, 109, 112, 114
PICT

IGSET parameter, 107
PICT/LIST, 102
picture, 5, 9, 101, 109

fill area
colour, 110
type, 110

line width, 110
PICTURE/CREATE, 102
PICTURE/FILE, 105
PICTURE/PRINT, 103
PIE, 66, 110
place-holder

exclamation mark character, 12
PLCI

IGSET parameter, 107
PLOT

commands, 15
PLOTHIS, 79
PMCI

IGSET parameter, 107
polyline

colour index, 108
type, 108
width, 108

polymarker
colour index, 108
scale factor, 108
type, 108

PostScript, 9, 15, 100, 145
colour printers, 100
fonts, 122

Courier, 122

INDEX 191

Courier-Bold, 122
Courier-BoldOblique, 122
Courier-Oblique, 122
Helvetica, 122
Helvetica-Bold, 122
Helvetica-BoldOblique, 122
Helvetica-Oblique, 122
Symbol, 122
Times-Bold, 122
Times-BoldItalic, 122
Times-Italic, 122
Times-Roman, 122
ZapfDingbats, 122

special A4, 100
precision

text, 121
prefix SIGMA, 67
presenter, 130, 131
PRINT

commands, 15
PROD, 69
PROF (SIGMA), 73

projection, 8
PSIZ

SET parameter, 109
PTO

OPTION parameter, 108
PTO

OPTION parameter, 108
PTO (Please Turn Over), 109
PTYP

SET parameter, 109, 112, 114
pull-down menu, 11
PWID

SET parameter, 109

QUAD, 69
QUAD (SIGMA), 74
QUEST, see IQUEST

READ, 38, 39
real time, 79
RECALL, 24
RECORDING, 23
remote

file, 129
login, 129, 131
shell, 129, 131

REPEAT, 38
replay, 7
RETURN, 37–39
RLOGIN, 129, 131
RSHELL, 129, 131
RZ, 146, 147
RZ file, 7
RZLDIR, 147

SCAN, 81
scatter plot

and table character size, 110
table, 77

selection
function, 81, 86

server, 131
SET (), 107
SET

*COL, 114
2SIZ, 110
ASIZ, 109
AURZ, 105
BARO, 109
BARW, 109
BCOL, 109, 112, 114
BTYP, 109, 112, 114
BWID, 109
CFON, 109
CHHE, 119
CSHI, 109
CSIZ, 109
DASH, 109
DATE, 109, 114
DMOD, 109
ERRX, 109
FAIS, 115
FASI, 115
FCOL, 109, 112, 114
FILE, 109, 114
FIT , 109
FIT, 115
FPGN, 109
FTYP, 109, 112, 114
FWID, 109
GFON, 109
GRID, 109
GSIZ, 109
HCOL, 109, 112, 114
HMAX, 109
HTYP, 109, 112, 114
HWID, 109
KSIZ, 109
LFON, 109
LTYPE, 115
MTYP, 115
NDVX, 109, 110, 112
NDVY, 109
NDVZ, 109
PASS, 109
PCOL, 109, 112, 114
PSIZ, 109
PTYP, 109, 112, 114
PWID, 109
SMGR, 109
SMGU, 109

192 INDEX

SSIZ, 109
STAT, 109, 114
TANG, 119
TFON, 110
TSIZ, 110
TXAL, 120
TXCI, 121
TXFP, 121
VFON, 110
VSIZ, 110
XCOL, 110
XLAB, 110
XMGL, 110
XMGR, 110
XSIZ, 110
XTIC, 110
XVAL, 110
XWID, 110
XWIN, 110
YCOL, 110
YGTI, 110
YHTI, 110
YLAB, 110
YMGL, 110
YMGU, 110
YNPG, 110
YSIZ, 110
YTIC, 110
YVAL, 110
YWID, 110
YWIN, 110

SET, 100, 105, 110, 112, 114, 115, 118, 119
SET , 105, 106
SET/APPLICATION, 37, 38
SET/COMMAND, 18
SET/DOLLAR, 27
SET/VISIBILITY, 17
SHELL, 62, 103
shell

bash, 3
tcsh, 3

SHIFT, 38, 42
SHOW

IGSET parameter, 108
SIGMA, 7, 30, 32, 64, 65, 67–76

$SIGMA, 67
access, 67
APPLication SIGMA, 67
array, 67

filling, 67
structure, 67

basic operator, 68
boolean value, 68
control operator, 68
function, 68
library functions, 76

logical operator, 68
prefix SIGMA, 67
vector, 67

SIZE, 100
slice, 8
SMGR

SET parameter, 109
SMGU

SET parameter, 109
SOFT

OPTION parameter, 108
software

characters, 109
special symbols, 14, 121, 122
SQR

OPTION parameter, 108
SSIZ

SET parameter, 109
STA

OPTION parameter, 108
STA

OPTION parameter, 108
STAT

OPTION parameter, 114
SET parameter, 109, 114

statistic
analysis, 7
parameters on pictures, 109, 114
values to be plotted, 110

STOPM, 38, 39, 49
STRING, 21
structure of PAW, 6
style of dialogue, 6
subscript, 121, 122
SUMV, 69
SUMV (SIGMA), 74

superscript, 121, 122
SWITCH

Z, 102
symbols, 14
system function, 21, 27

$ANAM, 27
$ANUM, 27
$ARGS, 28
$AVAL, 27
$CPTIME, 28, 28
$DATE, 28
$DEFINED, 28, 43
$ENV, 28
$EVAL, 30, 30, 33, 35
$EXEC, 30
$FEXIST, 28
$FORMAT, 31
$INDEX, 28
$INLINE, 31, 31, 41
$IQUEST, 28, 49

INDEX 193

$KEYNUM, 27
$KEYVAL, 27
$LAST, 27
$LEN, 28
$LOWER, 28
$MACHINE, 28, 28, 29
$NUMVEC, 28, 32
$OS, 28, 28, 29
$PID, 28
$QUOTE, 29, 30
$RSIGMA, 30, 30, 31
$RTIME, 28, 28
$SHELL, 28, 28
$SIGMA, 30, 30, 31, 33
$STYLE, 27
$SUBSTRING, 28
$TIME, 28
$UNQUOTE, 30, 37
$UPPER, 28
$VDIM, 28, 28
$VEXIST, 28
$VLEN, 28
$WORDS, 29
$WORD, 29
arguments, 27
name separators, 27

TAB

OPTION parameter, 108
TANG

IGSET parameter, 107
SET parameter, 119

TCP/IP, 131
tcsh shell, 3
termination character, 121, 122
TEXT, 107, 118–122
text

(and title) font and precision, 110
alignment, 108

horizontal, 120
vertical, 120

angle, 108
character height, 108
colour index, 108
data, 15
font, 108, 121
precision, 108, 121
width, 108

text alignment, 120
TFON

SET parameter, 110
TIC

OPTION parameter, 108
TIC

OPTION parameter, 108
tick marks, 112

title font and precision, 110
TMSI

IGSET parameter, 107
Transcript Pad, 53, 54, 60, 133, 134, 136, 142
TSIZ

SET parameter, 110
TXAL

IGSET parameter, 107
SET parameter, 120

TXCI

IGSET parameter, 108
SET parameter, 121

TXFP

IGSET parameter, 108
SET parameter, 121

Unix, 3
unix, 10
UNTIL, 38
upper case letters, 121, 122
USAGE, 18
USAGE command, 14
user

title, 109
UTIT

OPTION parameter, 108
UWFUNC, 21, 86

VAX, 10
VAX/VMS, 130
VECTOR, 64
vector, 4, 9, 64

address, 64
arithmetic, 65, 67
create, 64
fill, 64
in SIGMA, 67
operations, 67

VECTOR/CREATE, 32
VECTOR/LIST, 32
VECTOR/READ, 32
VECTOR/WRITE, 32
VEFIT, 96
version, 10
VERT

OPTION parameter, 108
VFON

SET parameter, 110
VISIBILITY, 17
VMAX, 69
VMAX (SIGMA), 75
VMIN, 69
VMIN (SIGMA), 75

VMS, 10, 130
VSIZ

SET parameter, 110
VSUM, 69

194 INDEX

VSUM (SIGMA), 75

weight, 81
WHILE, 38
workstation, 10

type, 11
workstation type, 100

X axis
colour, 110
tick marks length, 110

X margin
left, 110
right, 110

X space between windows, 110
X windows, 7, 10
X11, 10, 133, 137, 175, 176, 178
XCOL

SET parameter, 110
XLAB

SET parameter, 110
XMGL

SET parameter, 110
XMGR

SET parameter, 110
XSIZ

SET parameter, 110
XTIC

SET parameter, 110
XVAL

SET parameter, 110
XWID

SET parameter, 110
XWIN

SET parameter, 110

Y axis
colour, 110
tick marks length, 110

Y margin
low, 110
up, 110

Y position of
global title, 110
histogram title, 110
page number, 110

Y space between windows, 110
YCOL

SET parameter, 110
YGTI

SET parameter, 110
YHTI

SET parameter, 110
YLAB

SET parameter, 110
YMGL

SET parameter, 110

YMGU

SET parameter, 110
YNPG

SET parameter, 110
YSIZ

SET parameter, 110
YTIC

SET parameter, 110
YVAL

SET parameter, 110
YWID

SET parameter, 110
YWIN

SET parameter, 110

ZEBRA, 7, 77, 145–147, 153
FRALFA, 15
FZ file, 15
RZ file, 15
TOALFA, 15

ZFL

OPTION parameter, 108
ZFL

OPTION parameter, 108
ZFL (option), 102
ZFL1

OPTION parameter, 108
ZFL1 (option), 103
ZONE, 100, 112

