CERN Program Library Long Writeup Q121

Physics Analysis Workstation

User's guide

Information Technology Division

CERN, Geneva, Switzerland

Copyright Notice

PAW - Physics Analysis Workstation
CERN Program Library entry Q121
© Copyright CERN, Geneva 1992-1999

Copyright and any other appropriate legal protection of these computer programs and associated documenta-
tion reserved in all countries of the world.

These programs or documentation may not be reproduced by any method without prior written consent of the
Director-General of CERN or his delegate.

Permission for the usage of any programs described herein is granted apriori to those scientific institutes
associated with the CERN experimental program or with whom CERN has concluded a scientific collaboration
agreement.

Requests for information should be addressed to:

CERN Program Library Office
CERN-IT Division

CH-1211 Geneva 23
Switzerland

Tel. +41 22 767 4951

Fax. +41 22 767 8630
Internet: cernlib@cern.ch

Trademark notice: All trademarks appearing in this guide are acknowledged as such.

Contact Person: Olivier Couet (0livier.Couet@cern.ch)
Document Consultant: ~ Michel Goossens (Michel.Goossens@cern.ch)

Edition — January 1999

About thisguide

Preliminary remarks

In this manual examples are in monotype face and strings to be input by the user are underlined. In the index
the page where a command is defined is in bold, page numbers where a routine is referenced are in normal type.

Related Manuals

This document can be complemented by the following manuals:

COMIS, Compilation and Interpretation System [1]

HBOOK User Guide — Version 4 [2]

HIGZ-HPLOT — High level Interface to Graphics and ZEBRA and HPLOT User Guide [3]
KUIP — Kit for a User Interface Package [4]

MINUIT — Function Minimization and Error Analysis [5]

— ZEBRA — Data Structure Management System [6]

This document present the basic concepts of PAW. For more detailed and up to date informations on the system it
is strongly recommended to look at the following URL.:

http://wwwcn.cern.ch/pl/paw/
Acknowledgements

The authors of PAW would like to thank all their colleagues who, by their continuous interest and encouragement,
have given them the necessary input to provide a modern and easy to use data analysis and presentation system.

Table of Contents

1 A few words on PAW

11
1.2
13
14
15
1.6

1.7

What Can You Do with PAW?
AUsersView of PAW
Fundamental Objects of PAW
The Component Subsystems of PAW e
1.6.1 KUIP-Theuserinterface package
1.6.2 HBOOK and HPLOT - The histograming and plotting packages
1.6.3 HIGZ - The graphics interface package
1.6.4 ZEBRA - The data structure managementsystem
1.6.5 MINUIT - Function minimizationand erroranalysis
1.6.6 COMIS - The FORTRAN interpreter i
1.6.7 SIGMA - The array manipulationlanguage
APAW GIOSSArY

2 General principles

21

2.2
2.3
24

2.5
2.6

ACCeSS O PAW . . L e
211 VAXIVMS . e
2.1.2 UniXSYStEMS e e e
2.1.3 Workstationtype
2.1.4 Differentmodestostart PAW
Initialising PAW
Command Structure e e e
Getting help
241 USaQe . . . o e
Special symbols for PAW
PAW entities and their related commands

3 User interface - KUIP

3.1

3.2

3.3

3.4

Command linesyntax e
3.1.1 Commandstructure e
3.1.2 ArQUMENES e e e
3.1.3 Moreoncommand lines
AlBSES
3.2.1 Argumentaliases
322 Commandaliases
System functions
3.3.1 Inquiryfunctions
3.3.2 String manipulations
3.3.3 Expressionevaluations e
3.3.4 Histogramsinquiry functions.
3.3.5 Graphicsinquiry functions
3.3.6 Cutsmanipulations
VBCIOIS . . . o

0 N~N~NNOD OO WN R R

3.4.1 Creating VECIOrS o
3.4.2 ACCESSINGVECIOIS o o o e e e e
35 EXPreSSIONS . . . o v
3.5.1 Arithmeticexpressions
3.5.2 Bo00lean expressions e
3.5.3 String exXpressions
3.5.4 Garbage expressions e
3.55 Thesmall-printon expressions
3.6 MACIOS e
3.6.1 Macrodefinitionsand variables
3.6.2 Flowcontrolconstructs
3.7 Motifmode
3.7.1 TheBrowserInterface
3.7.2 The “Executive WIindow™ e
3.7.3 User Definable Panels of Commands
3.7.4 X-WIindows ResOUrCeS o o i
3.8 Nitty-Gritty
3.8.1 Systemdependencies
3.8.2 Theeditserver
Vectors
4.1 \Vectorcreationandfilling.
4.2 Vectoraddressing
4.3 Vectorarithmetic operations e
4.4 \Vector arithmetic operations using SIGMA e
45 UsingvectorsinaCOMISroutine e
4.6 Usage of vectors with other PAW objects
4.7 Graphical outputofvectors e
4.8 Fittingthecontentsofavector
SIGMA
5.1 AccesstoSIGMA e
5.2 Vector arithmetic operations using SIGMA
5.2.1 BaSiCOPErators o
5.2.2 Logical 0perators
523 Control operators
53 SIGMATUNCLiONS e
5.3.1 SIGMA functions - A detailed description. L
5.4 Awvailable library functions
HBOOK
6.1 Introduction
6.1.1 The functionality of HBOOK
6.2 BasiCideas
6.2.1 RZdirectoriesand HBOOK files
6.2.2 Changingdirectories
6.3 HBOOK batch as the first step of theanalysis

6.3.1 Addingsomedatatothe RZfile,

6.4

6.5

6.6

6.7

Using PAW to analysedata
6.4.1 Plothistogramdata
Ntuples: Acloserlook
6.5.1 Ntuple plotting, variables and selection mechanisms
6.5.2 Masks
6.5.3 Examples
Fitting with PAW/HBOOK/MINUIT e e
6.6.1 Basicconceptsof MINUIT.
6.6.2 Basic concepts - The transformation for parameters with limits.
6.6.3 Howto getthe rightanswer fromMINUIT.
6.6.4 Interpretation of Parameter Errors:
6.6.5 Fitting histograms
6.6.6 Asimplefitwithagaussian
Doing more with Minuit

Graphics (HIGZ and HPLOT)

7.1
7.2
7.3

7.4
75
7.6
7.7
7.8
7.9

HPLOT, HIGZ and local graphicspackage
Themetafiles
The HIGZ pictures e e
7.3.1 PictureSinmemory e
7.3.2 Picturesondirectaccessfiles.
7.3.3 Automatic storage picturesinmemory e
7.3.4 HIGZ pictures generated ina HPLOT program v v v ..
Setting attributes
Moreonlabels
Colour, line width, and fillarea in HPLOT e
Informationabout histograms
Textdrawing e
The HIGZ graphicseditor. e

Distributed PAW

8.1
8.2
8.3

Access to remote files fromaPAW sessiono
Using PAW as a presenter on VMS systems (global section)
Using PAW as a presenter on OSO Systems

PAW++: A guided tour

9.1

9.2

9.3

The Executive WIindow e
9.1.1 The Executive Windowmenubar
The Main BrowSer e e e e
9.2.1 Theobjectsinthe “objectwindow”
9.22 TheMainBrowser MenuBar
9.2.3 InformationWindows
9.24 ContentWindow

9.3.1 TheGraphicsWindow
932 Ntuple.
0.3.3 1D-Histogram
9.3.4 2D-Histogram e

90

9.4

9.5
9.6

9.35 XAxis
936 YAxis

9.3.7 Locateon Histograms

9.3.8 Locate on Ntuples

9.3.9 Integrate Histograms

The Histogram Style Panel

9.4.1 The Histogram Style Panel MenuBar

942 Plotinfo
943 Style
9.4.4 General Attributes
9.4.5 Object Attributes
9.46 Geometry
9.4.7 Viewing Angles .
9.4.8 Axis Scaling . .
949 Zones
9.4.10 Axis Settings . .
9411 Font.

9.4.12 Coordinate SYStems

9.4.13 Plot Options . .
Ntuple Viewer
The Cut Editor
9.6.1 The Cut Editor M
9.6.2 Ntuple Scanner .

enuBar e

9.7 KuUIP/Motif Panel Interface e

X Window resources

A.1 Xresources for PAW++ .
A.2 Xresources for for KUIP/Motif o o e e

B Editing keys in the Input Pad

C The Motif user interface tools

Ci1
C.2

C3
C4

Buttons
C.2.1 Toggle Buttons .
C.2.2 Push Buttons . .
C.2.3 Selection Buttons
Paned Window
Window manager buttons

Bibliography

Index

Vi

Chapter 1. A few words on PAW

1.1 A short history

At the beginning of 1986 the Physics Analysis Workstation project PAW was launched at CERN. The first public
release of the system was made at the beginning of 1988. At present the system runs on most of the computer
systems used in the High Energy Physics (HEP) community (Mainframes, Workstations, PC’s). In addition to its
powerful data analysis, particular emphasis has been put on the quality of the user interface and of the graphical
presentation.

1.2 What isPAW?

PAW is an interactive utility for visualizing experimental data on a computer graphics display. It may be run in
batch mode if desired for very large and time consuming data analyses; typically, however, the user will decide on
an analysis procedure interactively before running a batch job.

PAW combines a handful of CERN High Energy Physics Library systems that may also used individually in
software that processes and displays data. The purpose of PAW is to provide many common analysis and display
procedures that would be duplicated needlessly by individual programmers, to supply a flexible way to invoke
these common procedures, and yet also to allow user customization where necessary.

1.3 What Can You Do with PAW?

PAW can do a wide variety of tasks relevant to analyzing and understanding physical data, which are typically
statistical distributions of measured events. Below we list what are probably the most frequent and best-adapted
applications of PAW; the list is not intended to be exhaustive, for it is obviously possible to use PAW’s flexibility
to do a huge number of things, some more difficult to achieve than others within the given structure.

Typical PAW Applications:

e Plot a Vector of Data Fields for a List of Events. A set of raw data is typically processed by the user’s own
software to give a set of physical quantities, such as momenta, energies, particle identities, and so on, for
each event. When this digested data is saved on a file as an Ntuple, it may be read and manipulated directly
from PAW. Options for plotting Ntuples include the following:

— One Variable. If a plot of a one variable from the data set is requested, a histogram showing the
statistical distribution of the values from all the events is automatically created. Individual events are
not plotted, but appear only as a contribution to the corresponding histogram bin.

— Two or Three Variables. If a plot of two or three variables from the data set is requested, no histogram
is created, but a 2D or 3D scatter plot showing a point or marker for each distinct event is produced.

— Four Variables. If a plot of four variables is requested, a 3D scatter plot of the first three variables is
produced, and a color map is assigned to the fourth variable; the displayed color of the individual data
points in the 3D scatter plot indicates the approximate value of the fourth variable.

— More than Four Variables. More than four variables can be plotted but it is up to the user to customize
the system in order to assign the additional variables to graphics attributes like the size or the shape
(type) of the markers.

— Vector Functions of Variables. PAW allows the user to define arbitrary vector functions of the original
variables in an Ntuple, and to plot those instead of the bare variables. Thus one can easily plot some-
thing like |/ (P? + P7) if P, and P, are original variables in the data without having to add a new data
field to the Ntuple at the time of its creation.

— Selection Functions (Cuts). PAW does not require you to use every event in your data set. Several
methods are provided to define Boolean functions of the variables themselves that pick out subsets of
the events to be included in a plot.

— Plot presentation options. The PAW user can set a variety of options to customize the format and
appearance of the plots.

2 Chapter 1. A few words on PAW

e Histogram of a Vector of Variables for a List of Events. Often one is more interested in the statistical
distribution of a vector of variables (or vector functions of the variables) than in the variables themselves.
PAW provides utilities for defining the desired limits and bin characteristics of a histogram and accumulating
the bin counts by scanning through a list of events. The following are some of the features available for the
creation of histograms:

— One Dimensional Histograms. Any single variable can be analyzed using a one-dimensional histogram
that shows how many events lie in each bin. This is basically equivalent to the single-variable data
plotting application except that it is easier to specify personalized features of the display format. A
variety of features allow the user to slice and project a 2D scatter plot and make a 1D histogram from
the resulting projection.

— Two-Dimensional Histograms. The distribution of any pair of variables for a set of events can be
accumulated into a 2D histogram and plotted in a various of ways to show the resulting surface.

— Vector Functions of Variables. User-defined functions of variables in each event can be used to define
the histogram, just as for an Ntuple plot.

— Selection Functions (Cuts). Events may also be included or excluded by invoking Boolean selection
functions that are arbitrary functions of the variables of a given event.

— Event Weights. PAW allows the user to include a multiplicative statistical bias for each event which is
a scalar function of the available variables. This permits the user to correct for known statistical biases
in the data when making histograms of event distributions.

— Histogram Presentation Options. Virtually every aspect of the appearance of a histogram can be con-
trolled by the user. Axis labels, tick marks, titles, colors, fonts, and so on, are specified by a large
family of options.

e Fit a Function to a Histogram. Once a histogram is defined, the user may fit the resulting shape with one
of a family of standard functions, or with a custom-designed function. The parameters of the fit are returned
in user-accessible form. Fitted functions of one variable may be attached to a 1D histogram and plotted with
it. The capability of associating fits to higher dimensional histograms and overlaying their representations
on the histogram is in the process of being added to PAW.

The fitting process in PAW is normally carried out by the MINUIT library. To user this package effectively,
users must typically supply data with reasonable numerical ranges and give reasonable initial conditions for
the fit before passing the task to the automated procedure.

e Annotate and Print Graphics. A typical objective of a PAW user is to examine, manipulate, and display
the properties of a body of experimental data, and then to prepare a graph of the results for use in a report,
presentation, or publication. PAW includes for convenience a family of graphics primitives and procedures
that may be used to annotate and customize graphics for such purposes. In addition, any graphics display
presented on the screen can be converted to a PostScript file for black-and-white or color printing, or for
direct inclusion in a manuscript.

1.4 A User’sView of PAW

In order to take advantage of PAW, the user must first have an understanding of its basic structure. Below we
explain the fundamental ways in which PAW and the user interact.

Initialization. PAW may be invoked in a variety of ways, depending on the user’s specific computer system; these
are described in the following chapter. As PAW starts, it prompts the user to select an interaction mode (or non-
interactive mode) and window size and type (if interactive). The available window sizes and positions are specified
in the user file "higz_windows.dat". User-specific intializations are specified in the file "pawlogon.kumac".

Command Mode Interface. The most basic interface is the KUIP “command mode” interface. KUIP provides
a basic syntax for commands that are parsed and passed on to the PAW application routines to perform specific
tasks. Among the basic features of KUIP with which the user interacts are the following:

1.5. Fundamental Objects of PAW 3

e Command Entry. Any unique partially entered command is interpreted as a fully entered command. KUIP
responds to an ambiguous command by listing the possible alternatives. On Unix systems, individual com-
mand lines can be edited in place using individual control keystrokes similar to those of the emacs editor, or
the bash or tcsh Unix command shells. On other systems, a command line that is in error can only be
revised after it is entered, using the VAX/VMS editor “EDT” style text line editing language.

e Parameters. Parameters are entered after the basic command on the same line and are separated by spaces.
If a parameter has embedded blanks, it must be it must be put between quotes. An exclamation point (!)
can be used to keep the default parameters in a sequence when only a later parameter is being changed. If
an underscore (_) is the last character on a line, the command may be continued on the next line; no spaces
are allowed in the middle of continued parameter fields.

e On-Line Assistance. The "usage" and "help" commands can be used to get a short or verbose description
of parameters and features of any command.

e Command History. A command history is kept both in memory for interactive inspection and on a disk file.
The command history file can be recovered and used to reconstruct a set of actions carried out interactively.

e Aliases. Allow the abbreviation of partial or complete command sequences.

e Macros. A text file containing PAW commands and flow control statements.

KUIP/MOTIF Interface. If the user’s workstation supports the OSF/Motif windowing system, PAW can be
started in the KUIP/MOTIF mode: the executable module to be run in that case is called PAW++. However, a
small text panel and a command history panel keep track of individual actions, and permit entry and recall of typed
commands similar to the command mode interface.

The basic features of this interface are:

e Pull-Down Menu “Commands™. Each PAW command (that can be given in input) has a corresponding
item in a hierarchical pull-down menu (entry “Commands”). Commands that require arguments cause a
parameter-entry dialog box to appear; when the arguments are entered and command execution requested
(button “OK” or “Execute”), the command is executed as though typed from the command mode interface.

e Action Panel(s). A user may have a family of frequently executed macros or commands assigned to specific
buttons on the action panel(s). These panels are totally user definable.

e Object Browser. All the objects known in PAW (Histograms, Ntuples, Vectors etc...) can be manipulated via
icons and pull-down menus in the “Object Browser”.

e Direct Graphics Interaction. One can click in the graphics area and identify automatically which object has
been selected. A pop-up menu appears with a list of possible actions on this object.

Graphics Output Window. The graphics image produced by PAW commands, regardless of the command in-
terface, appears on a separate graphics output window. The actual size and position of this window on the screen is
controlled by a list of numbers of the form x-upper-left y-upper-left x-width y-height in the user file
higz_windows.dat. The width and height of the drawing area within this window are subject to additional user
control, and the user can specify “zones,” which are essentially ways of dividing the window into panes to allow
simultaneous display of more than one plot. Some picking facilities are also available.

1.5 Fundamental Objects of PAW

PAW is implicitly based on a family of fundamental objects (see figure 1.1 on the following page). Each PAW
command performs an action that either produces another object or produces a “side-effect” such as a printed
message or graphics display that is not saved anywhere as a data structure. Some commands do both, and some
may or may not produce a PAW data structure depending on the settings of global PAW parameters. In this section,
we describe the basic objects that the user needs to keep in mind when dealing with PAW. The reader should
perhaps note that the PAW commands themselves do not necessarily reflect the nature of PAW objects as clearly
as they might, while the MOTIF interactive graphics interface in fact displays distinct icons for most of the object
types listed below.

4 Chapter 1. A few words on PAW
Data
1D
Vectors 2D
3D
_ 1D
Histograms 2D
3D
RWN
Ntuples
CWN
Analysis Presentation
Fitting 1D, 2D, and 3D Plots
Smoothing
Array Manipulation
FORTRAN Interpreter
Projections
ASCII RZ
Figure 1.1: PAW’s fundamental “data” objects
Objects:

1D Histograms. A histogram is the basic statistical analysis tool of PAW. Histograms are created (“booked”)
by choosing the basic characteristics of their bins, variables, and perhaps customized display parameters;
numbers are entered into the histogram bins from an Ntuple (the histogram is “filled”) by selecting the de-
sired events, weights, and variable transformations to be used while counts are accumulated in the bins.
Functional forms are frequently fit to the resulting histograms and stored with them. Thus a fit as an object
is normally associated directly with a histogram, although it may be considered separately.

2D Histograms. 2D (and higher-dimensional) histograms are logical generalizations of 1D histograms. 2D
histograms, for example, are viewable as the result of counting the points in a the sections of a rectangular
grid overlaid on a scatter plot of two variables. Higher-dimensional histograms can also be fitted, and support
for associating the results of a fit to a higher-dimensional histogram is currently being incorporated in PAW.

Ntuples. An Ntuple is the basic type of data used in PAW. It consists of a list of identical data structures, one
for each event. Typically, an Ntuple is made available to PAW by opening a HBOOK file; this file, as created
by HBOOK, contains one or more Ntuples and possibly also directories, which may store a hierarchy of
Ntuples and histograms. A storage area for an Ntuple may be created directly using NTUPLE/CREATE; data
may then be stored in the allocated space using the NTUPLE/LOOP or NTUPLE/READ commands. Other com-
mands merge Ntuples into larger Ntuples, project vector functions of the Ntuple variables into histograms,
and plot selected subsets of events.

Cuts. A cut is a Boolean function of Ntuple variables. Cuts are used to select subsets of events in an Ntuple
when creating histograms and ploting variables.

Masks. Masks are separate files that are logically identical to a set of boolean variables added on the end of
an Ntuple’s data structure. A mask is constructed using the Boolean result of applying a cut to an event set.
A mask is useful only for efficiency; the effect of a mask is identical to that of the cut that produced it.

Vectors. PAW provides the facilities to store vectors of integer or real data. These vectors, or rather arrays
with up to 3 index dimensions, can be manipulated with a set of dedicated commands. Furthermore they are
interfaced to the array manipulation package SIGMA and to the Fortran interpreter COMIS. They provide a
convenient and easy way to analyse small data sets stored in ASCII files.

1.5. Fundamental Objects of PAW 5

PAW
HPLOT
The Plotting Package
KUIP L MINUIT
User Interface Minimization Package
Command Processor]/
Menu Dialogue HIGZ
Motif Interface IThe Graphics Package]]
I basic graphics and HBOOK
graphics editor for Histogramming
SIGMA pictures in data base N-Tuples
Arrays Manipulation Statistical Analysis
| —
X-Window &/1
GKS, DI3000, PHIGS
MClntosh, IBM PC etc ... ZEBRA COMIS
Data Structure Manager FORTRAN Interpreter
Input/Output Server
Data Base Manager

Figure 1.2: PAW and its components

e PostScript (meta)files. PostScript format (meta)files are especially useful because they can be directly
printed on most printers; furthermore, the printed quality of graphics objects such as fonts can be of much
higher quality than the original screen image.

e Pictures. A picture is an exact copy of the screen image, and so its storage and redisplay time are indepen-
dent of complexity. Pictures are also intensively used for object picking in the Motif version of PAW.

e ZEBRA(RZ) Logical Directories. In a single PAW session, the user may work simultaneously with many
Ntuples, histograms, and hierarchies of Ntuple and histograms. However, this is not accomplished using the
native operating system’s file handler. Instead, the user works with a set of objects that are similar to a file
system, but are instead managed by the ZEBRA RZ package. This can be somewhat confusing because a
single operating system file created by RZ can contain an entire hierarchy of ZEBRA logical directories;
furthermore, sections of internal memory can also be organized as ZEBRA logical directories to receive
newly-created PAW objects that are not written to files. A set of commands CDIR, LDIR, and MDIR are the
basic utilities for walking through a set of ZEBRA logical directories of PAW objects; Each set of directories
contained in an actual file corresponds to a logical unit number, and the root of the tree is usually of the form
//LUNx; the PAW objects and logical directories stored in internal memory have the root //PAWC. A macro
is a set of command lines stored in a file, which can be created or modified with any text editor. In addition
to all the PAW commands, special macro flow control statements are also available.

e Operating System File Directories. Many different ZEBRA files, some with logically equivalent Ntuples
and histograms, can be arranged in the user’s operating system file directories. Thus one must also keep
clearly in mind the operating system file directories and their correspondence to the ZEBRA logical directo-
ries containing data that one wishes to work with. In many ways, the operating system file system is also a
type of “object” that forms an essential part of the user’s mental picture of the system.

6 Chapter 1. A few words on PAW

1.6 The Component Subsystems of PAW

The PAW system combines different tools and packages, which can also be used independently and some of which
have already a long history behind them (e.g. HBOOK and HPLOT, SIGMA, COMIS, MINUIT). Figure 1.2 shows
the various components of PAW.

1.6.1 KUIP- Theuser interface package

The purpose of KUIP (Kit for a User Interface Package) is to handle the dialogue between the user and the
application program (PAW in our case). It parses the commands input into the system, verifies them for correctness
and then hands over control to the relevant action routines.

Commands are grouped in a tree structure and they can be abbreviated to their shortest unambiguous form. If
an ambiguous command is typed, then KUIP responds by showing all the possibilities. Aliases allow the user to
abbreviate part or the whole of commonly used command and parameters. A sequence of PAW commands can be
stored in a text file and, combined with flow control statements, form a powerful macro facility. With the help
of parameters, whose values can be passed to the macros, general and adaptable task solving procedures can be
developed.

The user has the choice between different dialogue styles ranging from the conventional command line interface
to a high-level windowed environment based on OSF/Motif . In order to save typing, default values, providing
reasonable settings, can be used for most parameters of a command. A history file, containing the n most recently
entered commands, is automatically kept by KUIP and can be inspected, copied or re-entered at any time. The
history file of the last PAW session is also kept on disk.

1.6.2 HBOOK and HPLOT - The histograming and plotting packages

HBOOK and its graphics interface HPLOT are libraries of FORTRAN callable subroutines which have been in use
for many years. They provide the following functionality:

— One- and two-dimensional histograms and Ntuples

— Projections and slices of two-dimensional histograms and Ntuples
— Complete control (input and output) of the histogram contents

— Operations and comparison of histograms

— Minimization and parameterization tools

— Random number generation

— Histograms and Ntuples structured in memory (directories)

— Histograms and Ntuples saved onto direct access ZEBRA files

— Wide range of graphics options:

Contour histograms, bar chart, shaded histograms, error bars, colour
Smoothed curves and surfaces

Scatter, lego, contour and surface plots

Automatic windowing

Graphics input

1.6.3 HIGZ - Thegraphicsinterface package

A High level Interface to Graphics and ZEBRA (HIGZ) has been developed within the PAW project. This package
is a layer between the application program (e.g. PAW/HPLQOT) and the basic graphics package (e.g. X11) on a
given system. Its basic aims are:

— Full transportability of the picture data base.
— Easy manipulation of the picture elements.
— Compactness of the data to be transported and accessibility of the pictures in direct access mode.

1.6. The Component Subsystems of PAW 7

— Independence of the underlying basic graphics package. Presently HIGZ is interfaced with several GKS
packages, X- Windows (X11), PHIGS, Mac, PC’s graphic systems, GL (Silicon Graphics), GDDM (IBM),
GPR (Apollo) as well as with the DI3000 system. Note that some of these graphics systems are now obsolete.
PAW is now mainly used in its X11 version.

These requirements have been incorporated into HIGZ by exploiting the data management system ZEBRA.

HIGZ does not introduce new basic graphics features, but introduces some macroprimitives for frequently used
functions (e.g. arcs, axes, boxes, pie-charts, tables). The system provides the following features:

Basic graphics functions: basic primitives, attributes, space definition.
Higher-level macroprimitives.

Data structure management using an interface to the ZEBRA system.
Interactive picture editing.

These features, which are available simultaneously, are particularly useful during an interactive session, as the user
is able to “replay” and edit previously created pictures, without the need to re-run the application program. A direct
interface to PostScript is also available.

1.6.4 ZEBRA - Thedata structure management system

The data structure management package ZEBRA was developed at CERN in order to overcome the lack of dynamic
data structure facilities in FORTRAN, the favourite computer language in high energy physics. It implements the
dynamic creation and modification of data structures at execution time and their transport to and from external
media on the same or different computers, memory to memory, to disk or over the network, at an insignificant
cost in terms of execution-time overheads.

ZEBRA manages any type of structure, but specifically supports linear structures (lists) and trees. ZEBRA in-
put/output is either of a sequential or direct access type. Two data representations, native (no data conversion
when transferred to/from the external medium) and exchange (a conversion to an interchange format is made), al-
low data to be transported between computers of the same and of different architectures. The direct access package
RZ can be used to manage hierarchical data bases. In PAW this facility is exploited to store histograms, Ntuples
and pictures in a hierarchical direct access directory structure.

1.6.5 MINUIT - Function minimization and error analysis

MINUIT is atool to find the minima of a multi-parameter function and analyse the shape around the minimum.
It can be used for statistical analysis of curve fitting, working on a x2 or log-likelihood function, to compute the
best fit parameter values, their uncertainties and correlations. Guidance can be provided in order to find the correct
solution, parameters can be kept fixed and data points can be easily added or removed from the fit. An interactive
Motif based interface is in preparation.

16.6 COMIS-The FORTRAN interpreter

The COMIS interpreter allows the user to execute interactively a set of FORTRAN routines in interpretive mode.
The interpreter implements a large subset of the complete FORTRAN language. It is an extremely important tool
because it allows the user to specify his own complex data analysis procedures, for example selection criteria or a
minimisation function.

1.6.7 SIGMA - Thearray manipulation language

A scientific computing programming language SIGMA (System for Interactive Graphical Mathematical Applications),
which was designed essentially for mathematicians and theoretical physicists is integrated into PAW. Its main char-
acteristics are:

— The basic data units are scalars and one or more dimensional rectangular arrays, which are automatically
handled.

— The computational operators resemble those of FORTRAN.

Chapter 1. A few words on PAW

1.7 A PAW Glossary

Data Analysis Ter minology

DST

Ntuple

Event

Variable

Cut

Mask

Function

A “Data Summary Tape” is one basic form of output from a typical physics experiment. A DST is
generally not used directly by PAW, but is analyzed by customized user programs to produce Ntuple
files, which PAW can read directly.

A list of identical data structures, each typically corresponding to a single experimental event. The
data structures themselves frequently consist of a row of numbers, so that many Ntuples may be
viewed as two-dimensional arrays of data variables, with one index of the array describing the po-
sition of the data structure in the list (i.e., the row or event number), and the other index referring
to the position of the data variable in the row (i.e., the column or variable number). A meaningful
name is customarily assigned to each column that describes the variable contained in that column
for each event.

A single instance of a set of data or experimental measurements, usually consisting of a sequence
of variables or structures of variables resulting from a partial analysis of the raw data. In PAW ap-
plications, one typically examines the statistical characteristics of large sequences of similar events.

One of a user-defined set of named values associated with a single event in an Ntuple. For example,
the (z, y, z) values of a momentum vector could each be variables for a given event. Variables
are typically useful experimental quantities that are stored in an Ntuple; they are used in algebraic
formulas to define boolean cut criteria or other dependent variables that are relevant to the analysis.

A boolean-valued function of the variables of a given event. Such functions allow the user to specify
that only events meeting certain criteria are to be included in a given distribution.

A set of columns of zeros and ones that is identical in form to a new set of Ntuple variables. A
mask is typically used to save the results of applying a set of cuts to a large set of events so that
time-consuming selection computations are not repeated needlessly.

Sequence of one or more statements with a FORTRAN-like syntax entered on the command line or
via an external file.

Statistical Analysis Terminology

Histogram

Booking
Filling
Fitting
Projection
Band
Slice

Weight

A one- or two-dimensional array of data, generated by HBOOK in batch or in a PAW session.
Histograms are (implicitly or explicitly) declared (booked); they can be filled by explicit entry of
data or can be derived from other histograms. The information stored with a histogram includes a
title, binning and packing definitions, bin contents and errors, statistic values, possibly an associated
function vector, and output attributes. Some of these items are optional. The ensemble of this
information constitutes an histogram.

The operation of declaring (creating) an histogram.

The operation of entering data values into a given histogram.

Least squares and maximum likelihood fits of parametric functions to histograms and vectors.

The operation of projecting two-dimensional distributions onto either or both axes.

A band is a projection onto the X (or Y) axis restricted to an interval along the other Y (or X) axis.

A slice is a projection onto the X (or Y) axis restricted to one bin along the other Y (or X) axis.
Hence a slice is a special case of a band, with the interval limited to one bin.

PAW allows the user to include a multiplicative statistical bias for each event which is a scalar
function of the available variables. This permits the user to correct for known statistical biases in the
data when making histograms of event distributions.

KUIP/ZEBRA User Environment Ter minology

Macro

A text file containing a set commands and logical constructs to control the flow of execution. Pa-
rameters can be supplied when calling a macro.

1.7. A PAW Glossary 9

Vector

The equivalent of a FORTRAN array supporting up to three dimensions. The elements of a vector
can be stored using a real or an integer representation; they can be entered interactively on a terminal
or read from an external file.

Logical Directory The ZEBRA data storage system resembles a file system organized as logical directories. PAW

maintains a global variable corresponding to the “current directory” where PAW applications will
look for PAW objects such as histograms. The ZEBRA directory structure is a tree, and user func-
tions permit the “current directory” to be set anywhere in the current tree, as well as creating new
“directories” where the results of PAW actions can be stored. A special directory called //PAWC
corresponds to a memory-resident branch of this virtual file system. ZEBRA files may be written to
the operating system file system, but entire hierarchies of ZEBRA directories typically are contained
in a single binary operating system file.

Graphics Production Ter minology

Metafile

Picture

PostScript

A file containing graphical information stored in a device independent format, which can be replayed
on various types of output devices. (e.g. PostScript).

A graphics object composed of graphics primitives and attributes. Pictures are generated by the
HIGZ graphics interface and they can be stored in a picture direct-access database, built with the
RZ-package of the data structure manager ZEBRA.

A high level page description language permitting the description of complex text and graphics us-
ing only text commands. Using PostScript representations of graphics makes it possible to create
graphics files that can be exchanged with other users and printed on a wide variety of printers with-
out regard to the computer system upon which the graphics were produced. Any graphics display
produced by PAW can be expressed in terms of PostScript, written to a file, and printed.

Chapter 2: General principles

2.1 Accessto PAW

At CERN the PAW program is interfaced on all systems via a command procedure which gives access to the three
release levels of the CERN Program Library (PROduction, OLD and the NEW areas) and sets the proper environment
if necessary. Users who are not at CERN or who are using non-central computer systems should contact their
system administrator for help on PAW.

211 VAX/VMS
A command file CERN_ROOT: [EXE]PAW.COM is defined system-wide via the logical symbol PAW; its interface is:
PAW/ver (the default is PRO)

You may set the initialization of PAW either as a PAWLOGON . KUMAC located in your home directory, or through the
logical symbol DEFINE PAW$LOGON disk: [user.subdir]file.kumacto be defined usually in your LOGIN.COM.

2.1.2 Unix systems

The driver shell script is located in the file /cern/pro/bin/paw. In order to access it automatically you could
add the directory /cern/pro/binto your command search path. The command syntax is:

paw -v ver (the default is-v PRO)

2.1.3 Workstation type

PAW needs to know the X-host where graphics must be displayed; this can be specified on each system on the
command line:

Vax/VMS: PAW/X11/host=yourhost
Unix: paw -d X11 -h yourhost

or at the “Workstation” promptin PAW: Workstation type (?=HELP) [CR]=1 : 1.yourhost

If yourhost is not specified, the output is redirected (like for all X11 applications) to the display defined via the
environment variable DISPLAY.

The workstation type selects which type of workstation has to be opened. It corresponds to a line number in a file
higz_windows.dat. PAW tries to open this file in your current working directory. If it does not succeed it tries
in your HOME directory. If it doesn’t succeed once more, it creates the file in your HOME directory as follows:

0000 0000 0600 0600

0000 0000 0600 0600

where the lines define each of the workstation types (from 1 to 10) with the x-margin (left), y-margin (top), x-size
(width) and y-size (height) of the corresponding window in pixels.

For a more complete and up to date description you can refer to the PAW FAQs avaialable from the PAW web
home page.

2.1.4 Different modesto start PAW

— A batch version of PAW is available (note that batch implies workstation type 0):

On Unix do: paw -b macroname
On VMS do: PAW/BATCH=macroname

— One can disable the automatic execution of the PAWLOGON macro:

On Unix do: paw -n
On VMS do: PAW/NOLOG

10

2.2. Initialising PAW 11

2.2 Initialising PAW

When PAW is started, a system startup procedure is initiated, which indicates the current version of PAW and
requests the workstation type of the terminal or workstation which you are using.

$ PAW
Sk 3k >k 3k 3k >k 3k 3k >k Sk ok >k Sk ok ok Sk ok >k Sk ok >k k ok >k 3k ok >k 3k >k >k ok >k k >k Sk 3k >k k 3k >k 3k >k k >k >k 3k ok k >k >k 3k ok sk k.

WELCOME to PAW

Version 2.10/01 2 September 1998

* % ¥ X *
EEE I

stk ks sk ok R sk sk ok R sk sk ok K ok ok oK sk sk ok sk ok R sk ok ok sk ok R sk ok ok sk ok o o ok ok
Workstation type (?=HELP) <CR>=1 : ?

List of valid workstation types:
0: Alphanumeric terminal
1-10: Describe in file higz_windows.dat
n.host: Open the display on host (1 < n < 10)
7878: FALCO terminal
7879: xterm

Note that if you specify 0, PAW will not open a graphics workstation. This may be appropriate if one wants to use
PAW on an alphanumeric terminal.

Before passing control to the user, the system looks for a user-supplied file pawlogon.kumac. The latter can
contain commands which the user wants to be executed at PAW startup, e.g. declaration of files, creation of
aliases, definition of HPLOT parameters. A simple version of this PAW initialisation file, displaying date and time,
can be:

MESS 7 dkkokok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ke sk sk ok

mess % *?
mess ’* Starting PAW session on ’//$date//’ at ’//$time//’ *?
mess % *?

MESS 7 Hokokokokkok sk ok ok ok sk ok 3 ok ok ok ok 3 K 3 ok ok ok K 3K K 3 ok ok oK K K o ok ok K K 3 ok ok ok K ok ok ok ok kK ok)

In order to only have one version of this file on VAX/VMS the user should define a logical name PAW$LOGON in
his LOGIN. COM, as explained on the previous page. The file pawlogon.kumac is taken in the current directory.

2.3 Command structure
PAW is based on the KUIP[4] User Interface package, which can provide different types of dialogue styles:

— Command mode, where the user enters a command line via the terminal keyboard.
— Alphanumeric menu mode, where the command is selected from a list.

— Graphics menu modes:
e Pull-down menus, fixed layout reflecting the command structure;
o Panels of function keys, interactive user definable multiple layouts.

It is possible to change interactively from one style to another.
The general format of a PAW command line is:

command parameters

The first part of the command has the format:

object/verb

12 Chapter 2. General principles

where the object is the item on which the action is performed (e.g. HISTOGRAM, VECTOR, NTUPLE)and the verb
is the action to be performed (e.g. CREATE, DELETE, PLOT).Insome cases the object needs to be specified further
(e.g. GRAPHICS/PRIMITIVE), while in other cases the verb’s action needs to be clarified further (e.g. CREATE/1D).
All components can be abbreviated to their shortest unambiguous form. For example the two following lines will
have the same effect of creating a vector A with nine components:

VECTOR/CREATE A(9)

or
VE/CR A(9)

In the case that the form is ambiguous all possible interpretations for the given abbreviation are displayed.

The second part of a command are its parameters and their meaning is determined by their position. Some
of these can be mandatory with the remaining ones optional. If all mandatory parameters are not provided on
the command line, PAW will prompt the user to specify them, indicating the default values if defined. If the user
wants to assign the default value to a parameter from the command line he can use the place-holder character
exclamation mark (1) to signify this to PAW. In the case of optional parameters, the user must provide them in
the correct sequence if he wants to change their values, otherwise the corresponding defaults are taken. Parameters
containing blanks must be enclosed within single quotes.

In the example below we create a one-dimensional histogram, providing the parameters one by one answering the
PAW query:

PAW > histogram/create/1dhisto
Histogram Identifier (<CR>=): 10
Histogram title (KCR>=): titlel
Number of channels (<CR>=100): <CR>
Low edge (<CR>=0): 10.

Upper edge (<CR>=100): 20.

For the command below we provide all parameters on the command line, including an optional one (1000 .), which
by default has the value 0. Note that this parameter must be specified explicitly, since PAW does not prompt for
it, as seen in the previous example. Note also the use of the exclamation mark to take the default for the number of
channels (100).

PAW > hi/cr/1d 20 title2 ! 10. 20. 1000.

2.4 Getting help

Once inside PAW, one can start entering commands. An interesting first try would be the HELP command, which
displays a list of items, preceded by a number and followed by one line of explanation. In the next example we
search for a command to create a one-dimensional histogram.

PAW > help

From /...

1: KUIP Command Processor commands.

2: MACRO Macro Processor commands.

3: VECTOR Vector Processor commands.

4: HISTOGRAM Manipulation of histograms, Ntuples.

5: FUNCTION Operations with Functions. Creation and plotting.
6: NTUPLE Ntuple creation and related operationms.

T: GRAPHICS Interface to the graphics packages HPLOT and HIGZ.
8: PICTURE Creation and manipulation of HIGZ pictures.

9: ZEBRA Interfaces to the ZEBRA RZ, FZ and DZ packages.
10: FORTRAN Interface to MINUIT, COMIS, SIGMA and FORTRAN

Input/Output.
11: NETWORK To access files on remote computers.
12: OBSOLETE Obsolete commands.

Enter a number (’Q’=command mode): 4

/HISTOGRAM

2.4. Getting help 13

Manipulation of histograms, Ntuples. Interface to the HBOOK package.

From /HISTOGRAM/...

1: *x FILE Open an HBOOK direct access file.

2: * LIST List histograms and Ntuples in the current directory.

3: * DELETE Delete histogram/Ntuple ID in Current Directory
(memory) .

4: * PLOT Plot a single histogram or a 2-Dim projection.

5: * ZOOM Plot a single histogram between channels ICMIN and
ICMAX.

6: * MANY_PLOTS Plot one or several histograms into the same plot.

7: * PROJECT Fill all booked projections of a 2-Dim histogram.

8: * COPY Copy a histogram (not Ntuple) onto another one.

9: * FIT Fit a user defined (and parameter dependent) function
to a histogram ID (1-Dim or 2-Dim) in the specified
range.

10: 2D_PLOT Plotting of 2-Dim histograms in various formats.
11: CREATE Creation ("booking") of HBOOK objects in memory.
12: HIO Input/Output operations of histograms.

13: OPERATIONS Histogram operations and comparisons.

14: GET_VECT Fill a vector from values stored in HBOOK objects.
15: PUT_VECT Replace histogram contents with values in a vector.
16: SET Set histogram attributes.

Enter a number (’Zone level back, ’Q’=command mode): 11
/HISTOGRAM/CREATE

Creation ("booking") of HBOOK objects in memory.

From /HISTOGRAM/CREATE/...

1: * 1DHISTO Create a one dimensional histogram.

2: * PROFILE Create a profile histogram.

3: * BINS Create a histogram with variable size bins.

4: x 2DHISTO Create a two dimensional histogram.

5: * PROX Create the projection onto the x axis.

6: * PROY Create the projection onto the y axis.

7: * SLIX Create projections onto the x axis, in y-slices.

8: x SLIY Create projections onto the y axis, in x-slices.

9: * BANX Create a projection onto the x axis, in a band of y.
10: * BANY Create a projection onto the y axis, in a band of x.
11: * TITLE_GLOBAL Set the global title.

Enter a number (’Zone level back, ’Q’=command mode): 1

* /HISTOGRAM/CREATE/1DHISTO ID TITLE NCX XMIN XMAX [VALMAX]

ID C ’Histogram Identifier’ Loop
TITLE C ’Histogram title’ D=’ °

NCX I ’Number of channels’ D=100
XMIN R ’Low edge’ D=0.

XMAX R ’Upper edge’ D=100.

VALMAX R ’Maximum bin content’ D=0.

Create a one dimensional histogram. The contents are set to zero. If
VALMAX=0, then a full word is allocated per channel, else VALMAX is used
as the maximum bin content allowing several channels to be stored into
the same machine word.

<CR>=continue, ’Q’=command mode, ’X’=execute: q

An item preceded by a star indicates a terminal leaf in the command tree, i.e. an executable command.
One can also inquire about creating a one-dimensional histogram by typing simply:

HELP histogram/create/ldhisto

or

14 Chapter 2. General principles

HELP his/cre/1d
or even
HELP 1

The system will then display the following information:

* /HISTOGRAM/CREATE/1DHISTO ID TITLE NCX XMIN XMAX [VALMAX]

ID ’Histogram Identifier’ Loop
TITLE ’Histogram title’ D=’ °
NCX ’Number of channels’ D=100

XMAX ’Upper edge’ D=100.

C
C
I
XMIN R ’Low edge’ D=0.
R
VALMAX R ’Maximum bin content’ D=0.

Create a one dimensional histogram. The contents are set to zero. If
VALMAX=0, then a full word is allocated per channel, else VALMAX is used
as the maximum bin content allowing several channels to be stored into
the same machine word.

24.1 Usage

Very often a single line description of the usage of a command is sufficient as a reminder. This can be obtained by
the USAGE command, e.g.:

PAW > USAGE 1d

* /HISTOGRAM/CREATE/1DHISTO 1ID TITLE NCX XMIN XMAX [VALMAX]

2.5 Special symbolsfor PAW

One should pay attention to the fact that, in addition to their common arithmetic meaning, the symbols in table 2.1
have a special connotation when working with PAW .

Symbol Meaning
blank Separator between command and parameter and between different parameters
/ Separator between command elements

Comment line (if first character of the command line)

| Inline comments

’ String delimiter

Line continuation in KUIP commands

Q Escape character to be put in front of | and * to interpret them as literal
! Place-holder for command parameter (i.e. default value is taken)

At beginning of command line: Unix C shell-like history

(e.9.!!, !'number, !-number, !string)
] Macro argument delimiters
Separator between macro file and macro member
) Vector subscript delimiters

Vector subscript range
, Multi-dimensional vector subscript dimensions delimiter
Note: These special characters loose their effect when imbedded in single quotes.

Table 2.1: Special symbols

2.6. PAW entities and their related commands 15

~— Ntuples ——~
z
g £ s |g
S g 8 o
= o] u
w % > 3
z 8] 2
E I z =
z o @ 3
8
Vectors Histograms
fa) < a z
< m < 5
g |3 2|z = |z
%) I-IJJ m (e} x o
[s o ¢ T = T S
O by o) 9
¢ =l g =z

ASCI| HBOOK

Files Files

NS

:

Figure 2.1: PAW entities and their related commands

2.6 PAW entitiesand their related commands

Relations which exist between various PAW entities as described in section 1.6 on page 6 and the operations which
can be performed upon them have been schematically represented in figure 2.1. All commands shown in the picture
next to the lines connecting the objects have been abbreviated in a way that they are unambiguous and can be typed
to PAW, which will then detail the various parameters to be supplied.

There are three main input/output formats, namely a simple text file (e.g. with data points or commands), a direct
access ZEBRA RZ file (used by HBOOK and HIGZ for storing histograms and pictures on a given machine) and a
ZEBRA FZ sequential file, which can be used to transfer structured ZEBRA data between various computers. The
RZ and FZ representations can be transformed into each other using the TOALFA and FRALFA commands.

The three main PAW objects, Ntuples, histograms and vectors, can be printed on an alphanumeric screen (PRINT
commands) or they can be plotted on a graphics screen (PLOT commands). The picture can be transformed into a
ZEBRA data structure and stored in a HIGZ database for later reference (e.g. editing by the HIGZ editor), or an
external presentation can be obtained via the creation of a metafile.

Chapter 3: User interface- KUIP

3.1 Command line syntax

The general syntax of a command line is a command path optionally followed by an argument list. The command
path and the arguments have to be separated from each other by one or more space characters. Therefore arguments
containing spaces or other special characters have to be quoted.

In the following we want to use an appropriate formalism to describe the syntax rules. The notation will be
introduced step by step as needed. The verbal explanation given above can be written as:

command-line ::= command-path { argument }
The slanted symbols are non-terminal, i.e. they are composed of other terminal or non-terminal symbols. The
definition of a non-terminal symbol is denoted by “::=". Symbols enclosed in braces (“{. . .}") are optional and

they can appear zero or more times.

3.1.1 Command structure

The set of commands is structured as an (inverted) tree as shown in figure 3.1.

Example of command path : HISTOGRAM / CREATE / 2DHISTO

PAW

‘ KUIP H MACRO ‘ ‘ VECTOR ‘ HISTOGRAM ‘ FUNCTION ‘ ‘ NTUPLE ‘ ‘GRAPH\CS H PICTURE H ZEBRA ‘ ‘ FORTRAN H NETWORK ‘

‘ FILE H LIsT H DELETE H PLOT H ZOooM HMANYJ—’LOTH PROJECT H coPY H FIT H 2D_PLOT ‘ CREATE ‘ HIO ‘

womsro | [rorae || one | IR [rrox][rrov |[six |[siv][eawx][eaw

Figure 3.1: Example of the PAW command tree structure

This structure is comparable to a Unix file system. The command set can be dynamically extended by linking new
commands or menus into the tree. Compared to a flat list structure the tree allows a cleaner representation through
menus, especially when the command set is large. paw has more than 200 commands. It would be hard to visualize
such a number of command in a single graphics menu.

16

3.1. Command line syntax 17

Abbreviations

A command path consists of a menu path and a command name. The menu path itself consists of a list of menu
names up to an arbitrarily deep level of sub-menus.

command-path
menu-path

[menu-path/] command-name
[/1 menu-name{/menu-name}
Here we introduced two more notations. Symbols in teletype mode (“/”) are literals, i.e. the menu and command

names have to be separated by a slash character. Symbols enclosed in brackets (“[. . .1”) are optional which can
appear zero or one times.

These syntax rules already show that a command path may be abbreviated by omitting part of the leading menu
path. For example, if the complete command path is

/MENU/SUBMENU/COMMAND
valid abbreviations are

MENU/SUBMENU/COMMAND
SUBMENU/COMMAND
COMMAND

but not “MENU/COMMAND” or “/SUBMENU/COMMAND”. Note that the command name matching is case-insensitive,
i.e. the following are all valid possibilities:

COMMAND
command
Command

Furthermore, menu and command names may be abbreviated by omitting trailing parts, i.e.

SUB/COMMAND
COMMA
/M/s/c

are also valid abbreviations.

The shortest unambiguous abbreviation for any command is not fixed but depends on the whole command set.
PAW lists all possible ambiguities if a given abbreviation has no unique match:

PAW > LIST
*xx Ambiguous command list. Possible commands are :

/KUIP/ALIAS/LIST
/MACRO/LIST
/VECTOR/LIST
/HISTOGRAM/LIST
/NTUPLE/LIST
/PICTURE/LIST

Changing the root menu The command SET/ROOT defines the menu from which the search for command name
starts. It is not quite comparable to the Unix cd or VMS SET DEFAULT command. If no matching command is
found going downwards from the SET/R0O0T menu a second attempt is made starting off at the top menu “/”.

Disabling commands The command SET/VISIBILITY allows to disable/enable individual commands. Dis-
abled commands cannot be executed and they do not contribute to name ambiguities. However, the HELP infor-
mation is still available. Note that the VISIBILITY command can disable itself which makes it impossible to
re-enable any command.

18 Chapter 3. User interface - KUIP

Automatic macro execution The command MACRO/DEFAULT implements two facilities. First it allows to define
a directory search path used by the EXEC command for locating . kumac macro files. Second it controls the implicit
interpretation of the command name token as a possible macro filename:

-Command This is the default setting which does not try to interpreted cmd as macro name.

-Auto If the search path contains a file cmd . kumac it is executed, i.e. the actual command becomes
“EXEC cmd”, otherwise the search for a command named cmd starts.

-AutoReverse If cmd is either not a command name or ambiguous and a file cmd . kumac exists the command
is transformed into “EXEC cmd”.

Command template The command SET/COMMAND allows to define a template which is used whenever the com-
mand token does not match any command name. The template can contain “$1”,..., “$9” which are substituted
with the n’th token from the original command line, or “$*” which is replaced by the complete line. For example,
PAW can be turned into a calculator by

PAW > SET/COMMAND ’mess $sigma($x)’
PAW > 17+2%5
27

“SET/COMMAND ’EXEC $x*’” has almost the same effect as “DEFAULT -AutoReverse” but these are two distinct
facilities which can be active simultaneously. The difference is that for SET/COMMAND the token in the command
name position must not match any command. If does not apply if the token is an ambiguous command name.

Both Auto/AutoReverse and SET/COMMAND logic are ignored during the execution of macro scripts.

3.1.2 Arguments

Most commands have parameters for which the user is expected to supply argument values. Parameters are either
mandatory or optional. Mandatory arguments which are not specified on the command line are prompted for. If
optional arguments are omitted a default value is used instead.

Mandatory parameters always precede the optional parameters. The command USAGE allows to see the number of
parameters for a command:

PAW > usage manual
* KUIP/MANUAL ITEM [OUTPUT OPTION]

The optional parameters are enclosed in square brackets. The default values can be seen from the help text for
a command. The STYLE command shown in figure 3.2 has only optional arguments. The corresponding default
values are indicated in the help information as “D=value”.

Mandatory parameters may also have a default value which is used if the prompt is acknowledged by simple hitting
the RETURN-key. Otherwise the proposed default is the value used in the previous command execution.

The STYLE command also shows that there are three different kind of parameters: character values indicated by
“C” after the parameter name, real values (“R”) and integer values (“I”).

Numeric (real or integer) parameters may be restricted in the range of acceptable values. In the help text this
is indicated as “R=I1ower : upper. If the argument value is outside the range PAW prompts the user to enter an
acceptable value before the command can be executed. The lower or upper range value may be missing to indicate
an unlimited range in one direction. Instead of a simple numeric value the argument may also be an expression.
For both numeric and character parameters the range may also be given as a comma-separated list of values. PAW
will accept an argument only if it matches one of the values in the list.

In general the arguments given on the command line are assigned to the command parameters from left to right but
there are also ways to change the order. In our syntax notation, using “|” to indicate possible alternatives, we can
write:

agument ::= vaue | ' | ! | namesvalue | -vaue

An argument given as a simple value is assigned to the next parameter expected. The special values “!” and “! !”
are templates for the default value and the value from the previous command execution, respectively.

3.1. Command line syntax 19

PAW > HELP STYLE

* KUIP/SET_SHOW/STYLE [OPTION SGYLEN SGSIZE SGYSPA SGBORD WKTYPE]

OPTION C ’Option’ D=7’

SGYLEN R ’max Y LENgth of each menu item box’ D=0.025 R=0.005:0.25
SGSIZE R ’space available for the application’ D=0.8 R=0:0.90
SGYSPA R ’max Y length of space between menus’ D=0.02 R=-0.5:0.50
SGBORD R ’X or Y border for menus’ D=0.015 R=0:0.25

WKTYPE I ’Graphics workstation type’ D=0

Possible OPTION values are:
? show current style
C Command line : select Command line input

AN Menu with Numbers : select general Alpha menu (with Numbers)
AL Menu with Letters : select general Alpha menu (with Letters)

Figure 3.2: Parameter types, default values, and range limits

Named arguments

The form “name=value” allows to invert the argument order or to skip a list of optional parameters for which the
default values should be used. For example,

STYLE G SGBORD=0.1
is equivalent to

STYLE G ! ! ! 0.1

A simple argument following a named argument is assigned to the parameter following the named parameter, i.e.
STYLE G SGBORD=0.1 1

is equivalent to

STYLE G ! ! ! SGBORD=0.1 WKTYPE=1

Parameter names are case-insensitive but in general they may not be abbreviated. In the help text the abbreviat
level is indicated by a “+” inside the parameter name. For example, if the parameter name is shown as

LIB*RARY

the acceptable abbreviations are “L.IB=", “LIBR=", “LIBRA=", “LIBRAR=", and “LIBRARY=".

PAW does not insist that an argument of the form “name=value” matches one of the parameter names. The
argument including the “name="part is simply assigned to the next parameter expected.

Option arguments

The last alternative “-value” to specify an argument applies only to option parameters. (Note the distinction
between option and optional. Option parameters are usually but not necessarily optional.) In the help text option
parameters are tagged by the list of possible values (figure 3.3). Frequently these parameters are named “OPTION”
or “CHOPT”.

The “~value” form allows to specify option arguments out of order, emulating the Unix style of options preceded
other command arguments. For example,

MANUAL -LATEX /KUIP

20 Chapter 3. User interface - KUIP

PAW > HELP MANUAL

* KUIP/MANUAL ITEM [OUTPUT OPTION]

ITEM C ’Command or menu path’
OUTPUT C ’Output file name’ D=’ ’
OPTION C ’Text formatting system’ D=’ ’

Possible OPTION values are:

>0 plain text : plain text format
LATEX LaTeX format (encapsulated)
TEX LaTeX format (without header)

Figure 3.3: Example for option parameters

is equivalent to
MANUAL /KUIP OPTION=LATEX

Note that this is not equivalent to “MANUAL OPTION=LATEX /KUIP”. Unlike to the “-value” form subsequent
simple arguments are still assigned to the next parameter expected, not to the one following the option parameter
itself.

Since a leading “~" can be part of a valid (non-option) argument the value is checked against a set of rules before
it is actually interpreted as an option assignment.

The option argument can be a concatenation of several of the allowed option values. PAW checks that the argument
string is exclusively constructed from valid option values. This check is done by removing matches of option values
from the argument string, starting with the longest option values first. For example, with the definition

Possible OPTION values are:
AB

ABC
CD

the argument “~ABCD” is not interpreted as option assignment because after removing the longest match “ABC” the
remainder “D” is not anymore a valid option value. (This case would have to be written as “~CDAB”.

Argument values

Since in command line blanks are used to separate the command name and the individual arguments string val-
ues containing blanks have to be quoted. The rules are the same as used by Fortran: the quote character is the
apostrophe “>”, and apostroph inside a quoted string have to be duplicated:

MESS ’Hello world’
MESS ’Do or don’’t’

Note that the MESSAGE command has only a single parameter:
* KUIP/MESSAGE [STRING]
STRING C ’Message string’ D=’ °’
Nevertheless, in most cases quoting the message string is not necessary. If the command line contains more

arguments than there are parameters the additional values are concatenated to the argument for the last parameter.
In the concatenation each value is separated by a (single) blank character, i.e. the commands

3.1. Command line syntax 21

MESS ’Hello World’
MESS Hello World
MESS Hello World

yield all the same output. Therefore the message text only needs quoting if the words should be separated by more
than one space character.

Quoting inhibits the interpretation of the enclosed string as special argument values. Printing an exclamation mark
as message text has to written as

MESS 1!’

because “MESS !” would mean to take the default value for the parameter STRING and yield an empty line only.
Another instance is if an argument of the form “name=value” should be taken literally. For example, the command
line

EXEC mac foo=bar

initializes the macro variable “foo” to the value “bar”. However, if the intention is to pass the string “foo=bar”
as argument to the macro quotes must be used:

EXEC mac ’foo=bar’
In addition, some commands, e.g.
% NTUPLE/PLOT IDN [UWFUNC NEVENT IFIRST NUPD OPTION IDH]
use the form “name=value” for equality tests in the cut expression UWFUNC. For example, the command
NT/PLOT 10.energy year=1998

selects all event for which the Ntuple column YEAR has the value 1998. Any name clash between the Ntuple
column and one of the command parameters requires quoting. If the column was called NUPD instead of YEAR the
command would have to be written as

NT/PLOT 10.energy ’nupd=1998’

or alternatively as “NT/PLOT 10.energy UWFUNC=nupd=1998".
Finally, quoted strings are also exempted from any substitutions of aliases, system functions, and macro variables.
For example,

MESS ’foo’

always prints “foo” while
MESS foo

can result in “bar” if preceded by the command “ALIAS/CREATE foo bar”. Since square brackets denote macro
variable substitution and system functions names start with a dollar-sign it is especially recommended to quote
VMS file specifications.

The operator “//” allows to concatenate several parts to a single argument value. Unquoted strings on either
side of the concatenation operator are implicitly treated as literals unless they are subject to a substitution, i.e. the
command lines

MESS ’abc’//’def’

MESS ’abc’//def

MESS abc//’def’

MESS abc//def

MESS abcdef

MESS ’a’//’b’//’c’//’d’//’e’// £’

are all equivalent (provided that abc and def are not defined as aliases). The character sequence “//” at the
beginning or end of an argument is taken literally, e.g. in

CD //LUN2//1

the command receives the value “//LUN21".

22 Chapter 3. User interface - KUIP

3.1.3 Moreon command lines

The command line syntax allows to write several commands in one line and also to extend commands with long
argument lists over several lines.

Multiple commands on a single line

An input line presented to the PAW command processor may contain several commands separated by “;”. The
commands are executed sequentially as if they were on separate lines:

MESS Hello world!; MESS How are you?
is equivalent to

MESS Hello world!
MESS How are you?

Note that the text following the semicolon will not be used to satisfy any prompts emitted by the preceding com-
mand, e.g. “usage; manual” will not behave as “usage manual”.

The semicolon is not interpreted as line separator if it is immediately followed by a digit or one of the characters
+ - *x 7 [

For example, issuing a VMS command with a file version number such as

SHELL delete *.tmp;*

does not require quoting. Note that this exception rule applies independently of the operating system. In order to
avoid surprises we recommend to put always at least one blank after a semicolon intended to be a line separator.

Each command execution returns a status code which is zero for success and non-zero for failure. The sequences
“;&” and “; ! allow to execute the remaining part of an input line depending on the status code of the preceding
command. With

cmdl ;& cmd2 ; cmd3
the commands cmd2 and cmd3 are only executed if cmd1 succeeded while with
cmdl ;! cmd2 ; cmd3

the remaining commands are only executed if the first one failed. Note that the two characters must follow each
other immediately without intervening blank.

In some commands, for example HISTO/PLOT, one of the parameters is marked in the help text with the attribute
“Loop”. If the corresponding argument is a comma-separated list of values PAW implicitly repeats the command
for each value in the list individually:

HISTO/PLOT 10,20,30

is equivalent to

HISTO/PLOT 10

HISTO/PLOT 20

HISTO/PLOT 30

Note that “,” inside parentheses is not taken as value separator, i.e.

HISTO/PLOT 10(1:25,1:25)

executes a single command.

3.1. Command line syntax 23

“A/"E Move cursor to beginning/end of the line.

"F/"B Move cursor forward/backward one character.

"D Delete the character under the cursor.

“H, DEL | Delete the character to the left of the cursor.

“K Kill from the cursor to the end of line.

"L Redraw current line.

~0 Toggle overwrite/insert mode. Text added in overwrite mode (including yanks) overwrites exist-
ing text, while insert mode does not overwrite.

“P/"N Move to previous/next item on history list.

"R/"S Perform incremental reverse/forward search for string on the history list. Typing normal charac-

ters adds to the current search string and searches for a match. Typing "R/~S marks the start of
a new search, and moves on to the next match. Typing ~“H or DEL deletes the last character from
the search string, and searches from the starting location of the last search. Therefore, repeated
DEL’s appear to unwind to the match nearest the point at which the last "R or =S was typed. If
DEL is repeated until the search string is empty the search location begins from the start of the
history list. Typing ESC or any other editing character accepts the current match and loads it into
the buffer, terminating the search.

~T Toggle the characters under and to the left of the cursor.

U Kill from the prompt to the end of line.

Y Yank previously Killed text back at current location. Note that this will overwrite or insert, de-
pending on the current mode.

TAB By default adds spaces to buffer to get to next TAB stop (just after every 8th column).

LF, CR Returns current buffer to the program.

Table 3.1: Key-binding for recall style KSH

Single commands on multiple lines

For commands with very long argument lists it can become necessary to continue it on the next line. An input line
ending with an “_" character is joined with the following line.

In the concatenation the underscore itself and all but one of the leading blanks from the next line are removed.
Blanks preceding the underscore are left intact. For example,

ME_
SS

’Hello_
world’

is an extravagant way of writing
MESS ’Hello world’

Note that the interpretation of “_" as line continuation cannot be escaped. If the command line should really end
with an underscore the last argument must be quoted.

Recalling previous commands

The command lines types during a session are written into a history file. By default the file is called 1ast . kumac
and is updated every 25 commands. The commands LAST and RECORDING allow to change the file name and the
frequency. At the start of a new session the existing file is renamed into last . kumacold (except on VMS) before
the new last.kumac is created. Comment lines indicate the date and time at which the sessions were started and
stopped.

In this way the user can keep track of all commands entered in the previous and in the current session. The
command “LAST -99” flushes the buffered lines into 1ast.kumac and envokes the editor on the file. The user

24 Chapter 3. User interface - KUIP

BS/"E | Move cursor to beginning/end of the line.
“F/~D | Move cursor forward/backward one character.

DEL Delete the character to the left of the cursor.

~A Toggle overwrite/insert mode.

°B Move to previous item on history list.

U Delete from the beginning of the line to the cursor.
TAB Move to next TAB stop.

LF,CR | Returns current buffer to the program.

Table 3.2: Key-binding for recall style DCL

can then extract the interactively typed commands and copy them into another . kumac file from which they can be
re-executed.

The command “LAST -n” prints the last n commands entered. On a workstation this allows to re-execute com-
mand sequences by doing cut-and-paste operations with the mouse.

PAW provides a mechanism similar to the one found in the Unix csh shell for re-executing commands:

'-n executes the n’th last command once more.
1 is an short-cut for “!-1" re-executing the last command.
'n re-executes the n’th command entered since the beginning of the session.

! prints the commands together with their numbers. The number of lines printed depend on the recording
frequency.

'foo re-executed the latest command line starting with the string “foo”.
The command line numbering can also be seen if the prompt string contains *“[1”:

PAW > PROMPT ’Paw[] ’
Paw[2]

On Unix and VMS PAW also provides recalling and editing of command lines for re-executing. The command
RECALL allows to choose between different key-bindings:

Recall style XSH has an Emacs-like binding (table 3.1) similar to the one used by the ksh and bash shells.
If the terminal returns ANSI escape sequences the arrow keys can be used instead of “B/~F/"N/"P.

Recall style DCL implements the key-binding of VMS line editing (table 3.2).
The style names KSHO and DCLO allow to switch to overstrike mode instead of the default insert mode.
Recall style NONE directs PAW to do plain reading from the terminal input.

3.2 Aliases

Aliases allow the user to define abbreviations for parts of a command line. There are two types of aliases, command
aliases and argument aliases, which differ in the way they are recognized in a command line. Both alias types can
be defined by the ALTAS/CREATE command:

* KUIP/ALIAS/CREATE NAME VALUE [CHOPT]

NAME C ’Alias name’
VALUE C ’Alias value’
CHOPT C ’Option’ D=’A’

Possible CHOPT values are:

A create an Argument alias
C create a Command alias
N DNo alias expansion of value

3.2. Aliases 25

The alias value may be any string but the alias name can only consist letters, digits, “_", “~”, “@”, and “$”
characters. Command and argument aliases share the same name space. If a command alias with the same name
as an existing argument alias is created, the argument alias is deleted first, and vice versa.

3.21 Argument aliases

If an argument alias name is recognized anywhere in the command line it is substituted by its value. The name
matching is case-insensitive and the substitution is literally, i.e. without case folding or insertion of additional
blanks. The replacement is scanned for further occurrences of alias names which in turn will be replaced as well.

The alias name must be separated from the rest of the command line either by a blank or by one of the special
characters

/o, o= 5k)

(not necessarily the same character on both sides). For example, if foo and bar are alias names, foot and Bar-B-Q
are not affected. If two alias replacements need to be concatenated the “//” operator can be used, i.e.

ALTAS/CREATE DIR disk$user: [paw]
ALTAS/CREATE FIL file.dat
HISTO/FILE 1 DIR//FIL

translates into “HISTO/FILE 1 disk$user: [paw]file.dat”. Since argument aliases are also recognized in the
command position with the definition abbreviations like HISTO/FIL cannot be used anymore.

Alias substitution does not take place inside quoted strings. The ALTAS commands themselves are treated as a
special case. In the command line parsing they are specifically exempted from alias translation in order to allow
aliases can be deleted and redefined without quoting. For example,

PAW > ALIAS/DELETE *

PAW > ALIAS/CREATE foo bar
PAW > ALIAS/CREATE bar BQ
PAW > ALIAS/CREATE foo tball
PAW > ALIAS/LIST

Argument aliases:

BAR => BQ

F0OO => tball

No Command aliases defined.

redefines FOO rather than creating a new alias name BQ. The value part, however, is subject to alias translations. If
the aliases are created in reverse order

PAW > ALIAS/DELETE *

PAW > ALTIAS/CREATE bar BQ
PAW > ALIAS/CREATE foo bar
PAW > ALIAS/LIST

Argument aliases:

BAR => BQ

FOO => BQ

No Command aliases defined.

the second alias is created as “ALIAS/CREATE foo BQ”. In this case quoting the alias value does not avoid the
translation. Writing instead

ALTAS/CREATE foo ’bar’

will yield the same result. Since the ALIAS commands bypass part of the command line parsing the translation of
the value part has to be applied by the ALTAS/CREATE command itself. At that stage the information about quoting
is no longer available.

The option “N” allows to inhibit the alias expansion in the value. Using this option can lead to an infinite recursion
of alias translations which will be detected only when one the alias names involved is actually used.

26 Chapter 3. User interface - KUIP

PAW > ALIAS/DELETE *

PAW > ALIAS/CREATE foo bar
PAW > ALIAS/CREATE -N bar foo
PAW > ALIAS/LIST

Argument aliases:

BAR => foo

FOO => bar

No Command aliases defined.
PAW > foo

***x Recursive command alias in foo
***x Recursive argument alias in foo
**%x Unknown command: foo

PAW > bar
***x Recursive command alias in bar
***x Recursive argument alias in bar
**x Unknown command: bar

Alias substitution happens before the command line is split-up into command name and arguments. Hence, aliases
can represent several arguments at once. For example,

ALTAS/CREATE limits ’100 -1.57 1.57°
FUN1 10 sin(x) limits

is equivalent to
FUN1 10 sin(x) 100 -1.57 1.57

The quotes in the ALTAS/CREATE command are necessary but they are not part of the alias value. If an alias value
containing blanks is supposed to be treated as a single argument four extra quotes are needed in order that

ALTAS/CREATE htitle ’’°X vs. Y’’?
1D 10 htitle 100 O 1

is equivalent to

1D 10 ’X vs. Y’ 100 0 1

Argument aliases can lead to unexpected interpretations of command lines. For example, a user defining
ALTAS/CREATE e EDIT

wants “E” to be short-hand for the command EDIT. However, the following consequence is probably not intended:

PAW > nt/plot 30.e
**kx*% Unknown name ---> EDIT

For historic reasons the default option for the ALTAS/CREATE command is to define an argument alias. However,
the use of argument aliases can lead to subtle side-effects and should therefore be restricted as much as possible.

3.2.2 Command aliases

This problem described above does not arise if a command alias is created instead:
ALTAS/CREATE -C e EDIT

Command aliases are only recognized if they appear at the beginning of a command line (ignoring leading blanks).
Hence, there is no need to protect command arguments from inadvertent substitutions. Furthermore the match
must be exact (ignoring case differences), i.e. the command

/GRAPHICS/HPLOT/ERRORS

can still be abbreviated as HPLOT/E.

Alias values can also represent several commands by using one of the line separators described in section 3.1.3,
e.g.

ALTAS/CREATE -C ciao ’MESS Hello world! ; MESS How are you?’

3.3. System functions 27

3.3 System functions

A set of built-in, so-called system functions is provided. They allow, for example, to inquire the current di-
alogue style or to manipulate strings. The complete list of available functions can be obtained from “HELP
KUIP/FUNCTIONS”.

The function name is preceded by a $-sign. Arguments are given as a comma separated list of values delimited by
“(”and “)”. The arguments may be expressions containing other system functions.

Functions without arguments must be followed by a character which is different from a letter, a digit, an underscore,
or a colon®. “$0SM0SIS” will not be recognized as the function “$0s” followed by “MOSIS”. If that is the desired
effect the concatenation operator has to be used: “$0S//MOSIS”. Note however that two functions can follow each
other, e.g. “$0S$MACHINE” because the $-sign does not belong to the function name.

Depending on the setting of the SET/DOLLAR command the name following the $-sign may also be an environment
variable?. The replacement value for “$xxx” is obtained in the following order:

1 If xxx is a system function followed by the correct number and types of arguments, replace it by its value.
2 Otherwise if xxx is an argument-less system functions, replace it by its value.

3 Otherwise if xxx is a defined environment variable, replace it by its value.

4 Otherwise no replacement takes place.

3.3.1 Inquiry functions

Style inquiries

— $STYLE returns the name of the currently active dialogue style (“C”, “G”, “GP”, etc.). This allows, for
example, to a common logon macro containing different default setups depending whether PAW is started in
command line mode or in Motif mode:

IF $STYLE=’XM’ THEN
ELSE

ENDIF
— $LAST returns the previously executed command sequence:

PAW > MESS Hello world! ; MESS How are you?
Hello world!

How are you?

PAW > MESS $LAST

MESS Hello world! ; MESS How are you?

— $KEYVAL returns the content of the last selected panel box in style GP and

— $KEYNUM returns row/column address in the form “row.col”. The column address is always given as a
two-digit number.

Alias inquiries

— $ANUM returns the number of argument aliases currently defined.
— $ANAM(n) returns the name and

— $AVAL(n) returns the value of the n’th argument alias. No substitution takes place if n is not a number
between 1 and $ANUM. There is no guarantee that “$ANAM ($ANUM) refers to the most recently created alias.

1Excluding the colon as separator avoids the substitution of VMS logica name containing a dollar-sign such as in
“DISK$0S: [dir]file.dat!’’

20n VMSthere is adistinction between lowercase and uppercase names. Uppercase names (without the $-sign) are searched for fi rst in the
logical name tables and then in the symbol table while lowercase names are searched for only in the symbol table. The names HOME, PATH,
TERM, and USER have a predefi ned meaning. In order to avoid conficts with DCL symbols which are merely defi ned as abbreviations for
running executables and DCL procedures all values starting with a“$” or “@” character are excluded from substitution.

28

Chapter 3. User interface - KUIP

Vector inquiries

PAW
PAW
10
PAW
PAW
6 0

Envi

$NUMVEC returns the number of vectors currently defined.

$VEXIST (name) returns a positive number if a vector name is currently defined. The actual value returned
is undefined and may even change between tests on the same name. If the vector is undefined the value “0”
is returned.

$VDIM(name,dim) returns the vector size along index dimension dim; dim = 1 is used if the second
argument is omitted. If the vector is undefined the value “0” is returned.

$VLEN (name) returns for a 1-dimensional vector the index of the last non-zero element. For 2- and 3-
dimensional vectors the result is the same as for $VDIM. If the vector is undefined the value “0” is returned.

> V/CREATE vi1(10) R 123406
> MESS $VDIM(v1) $VLEN(v1)

6

> V/CREATE v2($VLEN(v1))

> MESS $VDIM(v2) $VLEN(v2)

ronment inquiries

$ARGS returns the program arguments with which PAW was invoked.

$DATE returns the current date in the format “dd/mm/yy”.

$TIME returns the current time in the format “hh/mm/ss”.

$RTIME returns the number of seconds elapsed since the previous usage of $RTIME.

$CPTIME returns the seconds of CPU time spent since the previous usage of $CPTIME.

$0s returns an identification for the operating system PAW is running on, e.g. “UNIX”, “VMS” etc...

$MACHINE returns an identification for the particular hardware platform or Unix brand, e.g. “HPUX”, “IBM”,
or “VAX”. Table 3.3 shows the $0S and $MACHINE values for the different platforms.
On Unix platforms the operating system version can be obtained by $SHELL (’uname -r’).

$PID returns the process number or “1” if the operating system does not support the notion of process IDs.
$IQUEST (4) returns the j’th component of the status vector
COMMON /QUEST/ IQUEST(100)

IQUEST (1) always contains the return code of the most recently executed command.

$DEFINED (name) returns name if a variable of that name is defined, or the empty string if the variable is
not defined. The argument can contain “*” as wildcard matching any sequence of characters. All matching
variable names are returned as a blank separated list.

$ENV (name) returns the value of the environment variable name, or the empty string if the variable is not
defined.

$FEXIST(filename) returns “1” if the file exists, or “0 otherwise.

$SHELL (command, n) returns the n’th line of output from the shell command.

$SHELL(command,sep) returns the output from the shell command, where newlines are replaced by the
separator string. The sep argument can be omitted and defaults to a single blank character.

The $SHELL function is operational only on Unix systems. The command string is passed to the shell set by
the HOST_SHELL command. Alias definitions etc. in the shell specific startup script (e.g. . cshrc) are taken
into account.

3.3.2 String manipulations

$LEN (string) returns the number of characters in string.

$INDEX (string, substring) returns the position of the first occurence of substring inside string or zero
if there is none.

$LOWER (string) and
$UPPER (string) return the argument string converted to lower or upper case, respectively.
$SUBSTRING (string,k,n) returns the substring

3.3. System functions 29

$0s $MACHINE | Platform

UNIX ALPHA DEC Alpha OSF
UNIX APOLLO HP/Apollo DomainOS
UNIX CONVEX Convex

UNIX CRAY Cray Unicos

UNIX DECS DECstation Ultrix
UNIX HPUX HP/UX

UNIX IBMAIX AIX for IBM/370
UNIX IBMRT AlX for RS/6000
UNIX LINUX Linux for PCs

UNIX NEXT NeXT

UNIX SGI Silicon Graphics Irix
UNIX SOLARIS | Sun Solaris

UNIX SUN SunOS

VM IBM VM/CMS for IBM/370
MVS IBMMVS MVS for IBM/370
VMS ALPHA VMS for Alpha

VMS VAX VMS for Vax

MSDOS || IBMPC MSDQOS for PCs
WINNT || ALPHA Windows/NT for DEC Alpha
WINNT || IBMPC Windows/NT for PCs

Table 3.3: Platform identification with $0S and $MACHINE

- string(k:k+n—1)ifk >0,o0r

- string(l+k+1:1+k+n)ifk <0, wherel = LEN(string).
In any case the upper bound is clamped to LEN(string). The argument n may be omitted and the result
will extend to the end of string. Character counting starts with 1; by definition the replacement is empty if
k=0orn=0.Ifn < 0an error message is emitted.

PAW > MESS $SUBSTRING (abcde,?2)/$SUBSTRING (abcde,2,3)
bcde/bed

PAW > MESS $SUBSTRING (abcde,-2)/$SUBSTRING (abcde,-4,3)
de/bcd

$WORDS (string, sep) returns the number of words in string separated by the sep character. Leading and
trailing separators are ignored and strings of consecutive separators count as one only. The second argument
may be omitted and defaults to blank as the separator character.

PAW > MESS $WORDS(’,abc,def,,ghi’,’,’)
3

$WORD (string,k,n, sep) returns n words starting from word k. The last two arguments may be omitted
default to blank as separator character and the replacement value extending to the last word in string.

PAW > MESS $WORD(’abc def ghi’,2)
def ghi

PAW > MESS $WORD(’abc def ghi’,2,1)
def

$QUOTE (string) returns a quoted version of string, i.e. the string is enclosed by quote characters and quote
characters inside string are duplicated. The main use of this function is if an alias value containing blanks
should be treated as a single lexical token in a command line:

ALTAS/CREATE htitle ’Histogram title’
1d 10 $QUOTE(htitle) 100 0 1

30

Chapter 3. User interface - KUIP

Another useful application of $QUOTE is to pass the value of an alias or macro variable as a character constant
to a comis function, for example

foo = ’bar’

CALL fun.f($QUOTE([fool))

is equivalentto “CALL fun.f (’bar’)”. Since the quotes around “’bar’” are not part of the variable value
the construct “CALL fun.f ([foo])”would given the desired result only if the value contains blanks forcing
the implicit quoting in the variable substitution.

$UNQUOTE (string) returns a string with enclosing quote characters removed. The main use of this function
is if a macro variable should be treated as several blank-separated lexical tokens:

limits = ’100 0 1°
1d 10 ’Histogram title’ $UNQUOTE([limits])

3.3.3 Expression evaluations

— $EXEC (cmd) executes a macro command and returns the macro’s EXITM value. Thus

mess $EXEC(’mname 5°)
is equivalent to

EXEC mname 5
mess [@]

$EVAL (expr) returns the value of a numeric expression. The expression can contain numeric constants and
references to vector elements joined by “+”, =", “x”, */”. Parentheses may be used to override the usual
operator precedence. In addition, the functions ABS (x) (absolute value), INT (x) (truncation towards zero),
and MOD (x, y) (modulus) are available. Note that all operations, including division of two integer numbers,
use floating point arithmetic.

PAW > V/CREATE vec(3) R 1.2 3.4 4.5

PAW > MESS $EVAL((2+3)/4) $EVAL(vec(1)+vec(2)+vec(3))
1.25 9.1

Even if expr is merely a constant, the result is always in a canonical format with a maximum of 6 non-zero
digits. Non-significant zeroes and the decimal point are omitted after rounding the last digit towards +oc or
—o0. A mantissa/exponent notation is used if the absolute value is > 106 or < 104

PAW > MESS $EVAL(1.500) $EVAL(14.99999) $EVAL(0.000015)
1.5 15 1.5E-05

The explicit use of $EVAL is only necessary if the result should be inserted in a place where a string is
expected, for example in the MESSAGE command. In the instances where a command expects an integer or
real argument expressions are implicitly evaluated even without the $EVAL function.

$SIGMA (expr) passes the expression to sigma for evaluation. sigma is an array manipulation package
which supports a multitude of mathematical functions (SQRT, EXP, etc.) operating on scalars and vectors:
PAW > V/CREATE v10(10) R 1 234567 8 9 10

PAW > MESS $SIGMA(2+pi) $SIGMA(vsum(v10))
6.28319 55

For a description of the complete sigma expression syntax refer to chapter 5.

sigma expressions do not follow the syntax rules for PAW expressions. Therefore they cannot contain PAW
system functions with arguments. They may, however, contain argument-less system functions, alias names,
and macro variables.

$RSIGMA is a slight variation of $SIGMA. Both functions return a scalar result in the same canonical format
used by $EVAL. The only difference is that $SIGMA removes the decimal point from integral values while
$RSIGMA leaves it in. For example, $RSIGMA should be used to calculate argument values to be passed to a
comis routine

SUBROUTINE FUN(X)
PRINT *,X
END

as floating point constants:

3.3. System functions 31

PAW > CALL fun.f($SIGMA(sqrt(8)))
2.828430

PAW > CALL fun.f($SIGMA(sqrt(9)))
.4203895E-44

PAW > CALL fun.f($RSIGMA(sqrt(9)))
3.000000

If the expression evaluates to a vector result $SIGMA (and $RSIGMA) return the name of a temporary vector con-
taining the result. $SIGMA with a vector result can be used in all places where a vector name is expected, e.g.

PAW > V/PRINT $SIGMA(sqrt(array(3,1#3)))

?78IG1(1) =1
?8IG1(2) = 1.41421
?8IG1(3) = 1.73205

The lifetime of these vectors is limited to the current command. Hence, their names should not be assigned to
macro variables and not be used in alias definitions:

PAW > A/CREATE square_roots $SIGMA(sqrt(array(3,1#3)))
PAW > V/PRINT square_roots
x% VECTOR/PRINT: unknown vector 7SIG1

— $FORMAT (expr, format) returns the expression value formatted according to the Fortran format specifier.
The possible formats are “F”, “E”, “G”, “I”, and “Z” (hexadecimal).

PAW > MESS °’x = ’//$FORMAT(1.5,F5.2)

x = 1.50

PAW > MESS ’i = ’//$FORMAT(15,I5)
i= 15

PAW > MESS ’j = ’>//$FORMAT(15,15.4)
j = 0015

— $INLINE(name) allows to insert the value of an alias or macro variable into an expression which is then
treated as being part of the expression. For example,

convert = ’$UPPER’
foo = $INLINE([convert]) (’bar’)

isequivalentto “foo = $UPPER(’bar’)”,i.e. “foo = ’BAR’”.Without $INLINE the content of [convert]
would be treated as a text string with the result that “foo = >$UPPER(’ *bar’’)’”.

3.3.4 Histogramsinquiry functions

— $HEXIST(id) returns 1 if histogram id exists or 0 otherwise

— $HINFO(id,’ENTRIES’) returns the number of entries.

— $HINFO(id, ’MEAN’) returns the mean value.

— $HINFO(id, >RMS’) returns the standard deviation.

— $HINFO(id, ’EVENTS’) returns the number of equivalent event.

— $HINFO(id,’0OVERFLOW’) returns the content of overflow channel.

— $HINFO(id,’UNDERFLOW’) returns the content of underflow channel.
— $HINFO(id,’MIN’) returns the minimum bin content.

— $HINFO(id, ’MAX’) returns the maximum bin content.

— $HINFO(id,’SUM’) returns the total histogram content.

— $HINFO(id,’XBINS’) returns the number of bins in X direction.

— $HINFO(id,’XMIN’) returns the lower histogram limit in X direction.
— $HINFO(id,’XMAX’) returns the upper histogram limit in X direction.
— $HINFO(id,’YBINS’) returns the number of bins in Y direction.

— $HINFO(id,’YMIN’) returns the lower histogram limit in Y direction.
— $HINFO(id,’YMAX’) returns the upper histogram limit in Y direction.
— $HTITLE(id) returns the histogram title.

32 Chapter 3. User interface - KUIP

3.3.5 Graphicsinquiry functions

— $GRAFINFO(’XZONES’) returns the number of zones in X direction.

— $GRAFINFO(’YZONES’) returns the number of zones in Y direction.

— $GRAFINFO(’NT’) returns the current normalization transformation number.
— $GRAFINFO(’WNXMIN’) returns the lower X limit of window in current NT.
— $GRAFINFO(’WNXMAX’) returns the upper X limit of window in current NT.
— $GRAFINFO(’WNYMIN) returns the lower Y limit of window in current NT.
— $GRAFINFO(’WNYMAX’) returns the upper Y limit of window in current NT.
— $GRAFINFO(’VPXMIN’) returns the lower X limit of viewport in current NT.
— $GRAFINFO(’ VPXMAX’) returns the upper X limit of viewport in current NT.
— $GRAFINFO(’VPYMIN’) returns the lower Y limit of viewport in current NT.
— $GRAFINFO(’VPYMAX’) returns the upper Y limit of viewport in current NT.

— $GRAFINFO(’?7attr’) returns the current value of the hplot/higz attribute attr. See the HELP of the
command SET to have the list of the valid values of attr.

3.3.6 Cutsmanipulations
— $CUT (n) returns the cut expression $n

— $CUTEXPAND (string) replace $n in the (quoted) string by $CUT (n)

3.4 Vectors

PAW provides the facilities to store vectors of integer or real data. These vectors, or rather arrays with up to 3 index
dimensions, can be manipulated by PAW commands (see “HELP VECTOR”). Furthermore they are interfaced to the
array manipulation package sigma and to the Fortran interpreter comis (see chapter 5).

Vectors are memory resident only, i.e. they are not preserved across program executions. The commands VECTOR/READ
and VECTOR/WRITE allow to save and restore vector data from an external file in text format.

Vector names may be composed of letters, digits, underscores and question marks up to a maximum length of
32 characters®. Names starting with “?” are reserved for internal use by PAW.

The only exception is the predefined vector simply called “?” which has a fixed size of 100 real elements. Unlike
the others the “?” vector is mapped to a fixed memory location (the common block /KCWORK/). It does not show
up in VECTOR/LIST output and it is not counted in the result of $NUMVEC.

3.4.1 Creating vectors

Vectors can be created with the VECTOR/CREATE command. The size of the index dimensions is given in Fortran
notation, e.g.

VECTOR/CREATE v1(100)
VECTOR/CREATE v2(10,10)

The lower index bound always starts off at 1, i.e. “V/CREATE v(-10:10)" is not allowed. Omitting the index
dimension as in

VECTOR/CREATE v

is equivalent to

VECTOR/CREATE v (1)

PAW does not keep track of the actual number of index dimension given in the VECTOR/CREATE command, i.e.

VECTOR/CREATE v1(10)
VECTOR/CREATE v3(10,1,1)

are equivalent.

3Vector names which should be processed by sigma are currently limited to 7 characters.

3.5. Expressions 33

Definition: VECTOR/CREATE V(NCOL)

b ———+
| | | * | | * isaddressed by V(3)

tom—tmm—tm—————4

Definition: VECTOR/CREATE V(NCOL,NROW)

s St V(:,3) isthel-dim array representing the 3rd row
I | | | | V(2,:) isthel-dimarray representing the 2nd column
e it Sttt bt the shortcut notation V(2) can be used as well

ot ———+
| | * | | | * isaddressed by v(2,3)

dom—tm =4

Definition: VECTOR/CREATE V(NCOL,NROW,NPLANE)

e e
Fo——t———t———t———+ |
ottt ———+ |-+
I | | * | |-+ | * isaddressedby Vv(3,1,1)
ot ——t———t———+ |
(I [e
oo+ |-
I I -+

tom—tm 4

Figure 3.4: Addressing scheme for vectors

3.4.2 Accessing vectors

Single vector elements can be used in expressions where they are treated as numeric constants. Vectors with a
single element only we will refer to as “scalar vectors”. They have the special property that in expressions it is
sufficient to give the name without the “(1)” subscript.

Complete vectors and vector subranges can be used in the $SIGMA function and as argument to commands expect-
ing a vector name. The subrange notation is the same as in Fortran, e.g. v(3:5). The elements of arrays are stored
in column-major order, i.e. the elements v(1,2) and v(2,2) are adjacent in memory (see figure 3.4).

The vector processing commands are expected to deal only with contiguous vectors. Therefore a subrange referring
to a non-contiguous set of elements is copied into a temporary vector and cannot be used as output parameter.

3.5 Expressions

PAW has a built-in parser for different kinds of expressions: arithmetic expressions, boolean expressions, string
expressions, and “garbage expressions”.

3.5.1 Arithmetic expressions

The syntactic elements for building arithmetic expressions are shown in table 3.4. They can be used
— in the macro statements DO, FOR, and EXITN;
— in macro variable assignments;
— as system function arguments where a numeric value is expected;
— as argument to the $EVAL function.

Note that all arithmetic operations are done in floating point, i.e. “5/2” becomes “2.5”. If a floating point result
appears in a place where an integer is expected, for example as an index, the value is truncated.

34 Chapter 3. User interface - KUIP

expr ::= number
| vector-name for scalar vectors
| vector-name (expr)
| vector-name (expr , expr)
| vector-name (expr , expr , expr)
| [variable-name] if variable value has form of a numeric constant or
is the name of a scalar vector

[variable-name] (expr ...) if variable value is a vector name
alias-name if alias value has form of a numeric constant
$system-function (. . .) if function returns a numeric value
- expr

expr + expr

expr - expr

expr * expr

expr / expr

Cexpr)

ABS (expr)

INT (expr)

MOD (expr , expr)

Table 3.4: Syntax for arithmetic expressions

bool ::= exprre-opexpr re-op ::= .LT. | .LE.
| string eq-op string I < | <=
| expr eg-op string | .GT. | .GE.
| .NOT. bool | > | >=
| bool . AND. bool | eg-op
| bool .0R. bool egop ::= .EQ. | .NE.
| (bool) | = | <>

Table 3.5: Syntax for boolean expressions

3.5.2 Boolean expressions

Boolean expressions can only be used in the macro statements IF, WHILE, and REPEAT. The possible syntactic
elements are shown in table 3.5.

In addition, a single arithmetic expression is also accepted as boolean expression, interpreting any non-zero value
as true: This allows, for example, the short-cuts

IF $VEXIST(v1) THEN
WHILE 1 DO
instead of the explicit forms

IF $VEXIST(v1)<>0 THEN

WHILE 1=1 DO

Note, however, that an arithmetic expression is not equivalent to a boolean value. This implies that

3.5. Expressions 35

string ::= quoted-string
| unquoted-string
| string // string concatenation
| expr // string value of expression converted to string representation
| [variable-name]
| alias-name

I $system-function (. . .)

Table 3.6: Syntax for string expressions

IF $VEXIST(v1) .and. $VEXIST(v2) THEN | error

is not accepted and has to be written as

IF $VEXIST(v1)<>0 .and. $VEXIST(v2)<>0 THEN

3.5.3 String expressions

String expressions can be used
— in the macro statements CASE, FOR, and EXITM
— in macro variable assignments
— as system function arguments where a string value is expected
— as argument to the $EVAL function

They may be constructed from the syntactic elements shown in table 3.6.

3.5.4 Garbage expressions

Expressions which do not satisfy any of the above syntax rules we want to call “garbage” expressions. For example,
s = $0S$MACHINE

is not a proper string expression. Unless they appear in a macro statement where specifically only an arithmetic
or a boolean expression is allowed, PAW does not complain about these syntax errors. Instead the following
transformations are applied:

1 alias substitution
2 macro variable replacement; values containing a blank character are implicitly quoted

3 system function calls are replaced one by one by their value provided that the argument is a syntactically
correct expression

4 string concatenation

The same transformations are also applied to command arguments. Therefore the concatenation operator “//” can
be omitted in many cases. For example,

MESS $0S$MACHINE

MESS $0S//$MACHINE

MESS $EVAL ($0S$MACHINE)
MESS $EVAL($0S//$MACHINE)

give all the same result.

36 Chapter 3. User interface - KUIP

3.5.5 Thesmall-print on expressions

Expressions are evaluated by a yacc-generated parser. Yacc (“Yet Another Compiler-Compiler”) is a standard Unix tool. It
produces a C routine to parse an token stream which follows the syntax rules fi xed by the grammar defi nition.

The parser needs as front-end a lexical analyzer which reads the input stream, separates it into tokens, and returns the token
type and its value to the parser. There is another Unix tool 1ex which can produce an appropriate lexical analyzer from a set
of rules. The PAW lexical analyzer had to be hand-crafted because the interpretation of a symbol depends very much on the
global context. For example, if the input stream consistsis simply “foo” the lexical analyzer has to check consecutively:

— If foo isdefi ned asan dlias:
— If thedias value looks like a number, classify it as a number.
— Otherwise classify the dlias value as a string.

— Otherwise classify it asthe string “? foo’".

A similar reasoning has to be applied for “[foo0]":

— If foo isadefi ned macro variable:
— If the variable value looks like a number, classify it as a number.
— If the variable value is the name of a scalar vector, classify it as a number.
— Otherwise classify the variable value as a string.

— Otherwise classify it asthe string “’ [foo] *".

Macro variables do not have to (and cannot) be declared. The value is always stored as a string and it depends on the context
whether the value should be interpreted as a number. Also there is no way to tell in the beginning whether the right-hand side
of an assignment is an arithmetic or a string expression.

Thelexical analyzer starts off interpreting tokens as anumbers if it can. For example,

a= 1’
=
c = [al+[b]

istokenized as “number + number” and gives“c = 3” even though the values assigned to a and b are originally quoted. If we
have a string expression

[fool//[bar]
this could result in the possible token sequences

string // string
number // string
string // number
number // number

depending whether the values of foo and bar look like a number. Accordingly we would have to defi ne four grammar rules to
cover these different cases. The same problem occursin system functions expecting a string argument, e.g.

$SUBSTRING([foo0],2,3)

would need two rules for foo being a number or agenuine string.

Yacc allowsto avoid thisinfltion of necessary rules by using so-called lexical tie-ins. After having seen*//” or “$SUBSTRING (”
the parser can instruct the lexical analyzer that it should not attempt to classify the next token as a number. Therefore asingle
rule for each system function is suffi cient.

However, alexical tie-in can only be used after the parser found a unique match between the token sequence and all grammar
rules In the case of string concatenation we still have to provide two separate rules for

string // string
number // string

The grammar rule (see above) actually says that the left-hand side of the “//” operator can be either an arithmetic or a string
expression. An arithmetic expression is evaluated and then transformed into the result’s string representation. For example,

2x3//4
gives“’64°". On the other hand,

4//2%3

3.6. Macros 37

gives“’42x3°”, |t does not become “’ 46" because the right-hand side is not consider to be an arithmetic expression. It does
also not become “126” because aresult of a string operation is never again treated as a number even if it looks like one.

Thelexical analyzer forwards numbers in arithmetic expressions as fbating point values to the parser. The result is converted
back to the string representation when it has to be stored in the macro variable. Since a single numeric value already counts as
an arithmetic expression the original string representation can be lost. For example,

a ’0123456789’

b = [a]
MESS $LEN([al) $LEN([bl)

resultsin “10 11" because the assignment “b = 0123456789" is taken as an arithmetic expression which is reformatted into
1.23457E+08. The reformatting can be inhibited by using

b = $UNQUOTE([al)

The $UNQUOTE function removes quotes around astring. If the string isalready unquoted it does nothing except that in this case
the parser will treat the value of [a] asastring.

Macros should not depend on this reformatting behavior. We consider it as an obscure side-effect of the present implementation
rather than a feature.

3.6 Macros

A macro is a set of command lines stored in a file, which can be created and modified with any text editor. The
command EXEC invokes the macro and allows for two ways of specifying the macro name:

EXEC file
EXEC file#macro

The first form executes the first macro contained in fi /e while the second form selects the macro named macro.
The default extension for fi leis “. kumac”.

Example of macro calls

PAW > EXEC abc | Execute first (or unnamed) macro of file abc.kumac
PAW > EXEC abc#m | Execute macro M of file abc.kumac

In addition to all available commands the special “macro statements” in table 3.7 are valid only inside macros
(except for EXEC and APPLICATION, which are valid both inside and outside).

Note that the statement keywords are fixed. Aliasing such as “ALTAS/CREATE jump GOTO” is not allowed.

3.6.1 Macro defi nitions and variables
A .kumac file can contain several macros. An individual macro has the form

MACRO macro-name [parameter-list]
statements
RETURN [expression]

Each statement is either a command line or one of the macro constructs described below. For the first macro in the
file the MACRO header can be omitted. For the last macro in the file the RETURN trailer may be omitted. Therefore a
.kumac file containing only commands (like the LAST . KUMAC) already constitutes a valid macro.

Input lines starting with an asterisk (“*”) are comments. The vertical bar (*|”) acts as in-line comment character
unless it appears inside a quoted string. An underscore (“_") at the end of a line concatenates it to the next line.

Invoking a macro triggers the compilation of the whole . kumac file—not just the single macro called for. The

ENDKUMAC

statement fakes an end-of-file condition during the compilation. This allows to keep unfinished material, which
would cause compilation errors, simply by moving it after the ENDKUMAC statement rather than having to comment
the offending lines.

The APPLICATION statement has the same form and similar functionality as the SET/APPLICATION command:

38 Chapter 3. User interface - KUIP

Macro Statements
STATEMENT DESCRIPTION
MACRO mname [vari=vall ... 1 | define macromname
RETURN [value] end of macro definition
ENDKUMAC end of macro file
EXEC mname [vall ... 1] execute macro mname
EXITM [value] return to calling macro
STOPM return to command line prompt
APPLICATION command marker In-line text passed to application command
name = expression assign variable value
READ var [prompt] prompt for variable value
SHIFT shift numbered macro variables
GOTO label continue execution at 1abel
label: GOTO target label (must terminate with a colon)
IF expr GOTO label continue at 1label if expr is true
IF-THEN, ELSEIF, ELSE, ENDIF conditional block statement
CASE, ENDCASE Macro flow control
WHILE-DO, ENDWHILE Macro flow control
REPEAT, UNTIL Macro flow control
DO, ENDDO Macro flow control
FOR, ENDFOR Macro flow control
BREAKL Macro flow control
NEXTL Macro flow control
ON ERROR CONTINUE ignore error conditions
ON ERROR GOTO label continue at 1abel on error condition
ON ERROR EXITM value return to calling macro on error condition
ON ERROR STOPM return to command input on error condition
OFF ERROR deactivate the ON ERROR GOTO handling
ON ERROR reactivate the previous ON ERROR GOTO setting

Table 3.7: Macro statements

APPLICATION command marker
text
marker

The text up to the next line containing only the end marker starting in the first column is written to a temporary file
and then passed to the application command. The text is not interpreted in any way, i.e. variable substitution etc.
does not take place.

Instead of the full spelling APPLICATION any valid abbreviation of /KUIP/SET_SHOW/APPLICATION be used, e.g.
“APPL”. A call to SET/APPLICATION as a result of an alias expansion, however, is not allowed.

Macro execution

Inside a macro the EXEC statement can call other macros. A macro may also call itself recursively. The EXEC
command allows two different forms for specifying the macro to be executed:

EXEC fname#mname [argument-list]
and

EXEC name [argument-list]

3.6. Macros 39

Between the EXEC statement and the EXEC command there is a slight difference. The command “EXEC name”
executes the first macro in name . kumac while the EXEC statement will try first whether a macro name is defined
within the current . kumac file.

Macro execution terminates when one of the statements
EXITM [expression]

or
RETURN [expression]

or
STOPM

is encountered. The EXITM and RETURN statements return to the calling macro. They allow to pass a return value
which is stored into the special variable [@] of the calling macro. If no value is given it defaults to “0”. Note that
the RETURN statement also flags the end of the macro definition, i.e. the construct

IF ... THEN
RETURN error!
ENDIF

is illegal. The STOPM statement unwinds nested macro calls and returns to the command line prompt immediately.

Macro variables
Macro variables do not have to be declared. They become defined by an assignment statement:
name = expression

The right-hand side of the assignment can be an arithmetic expression, a string expression, or a garbage expression
(see section 3.5). The expression is evaluated and the result is stored as a string (even for arithmetic expressions).

The variable value can be used in other expressions or in command lines by enclosing the name in square brackets:
[name]
For example,

greet = Hello
msg = [greet]//’ World’
MESS [msg]

If the name enclosed in brackets is not a macro variable then no substitution takes place.
Variable values can also be queried from the user during macro execution. The statement

READ name [prompt]

prompts for the variable value. If the prompt string is omitted it is constructed from the macro and variable
names. The variable value prior to the execution of the READ statement is proposed as default value and will be left
unchanged if the user answers simply be hitting the RETURN-key.

Macro using the READ statement

MACRO m

READ foo

bar = abc

READ bar

MESS [foo] [bar]
msg =)

READ msg ’Enter message:’
MESS You said [msg].

40 Chapter 3. User interface - KUIP

Output when executing

PAW > EXEC m

Macro m: foo ? (<CR>=[foo]) 123
Macro m: bar ? (<CR>=abc)

123 abc

Enter message: (<CR>=) Hello
You said Hello.

Macro arguments

The EXEC command can pass arguments to a macro. The arguments are assigned to the numbered variables [1],
[21, etc. For example, with the macro definition

MACRO m
MESS pi1=[1] p2=[2]

we get the result

PAW > EXEC m foo bar
pl=foo p2=bar

Unlike named variables undefined numbered variables are always replaced by the blank string >, i.e.

PAW > EXEC m foo
pl=foo p2=’ '’

The MACRO statement can define default values for missing arguments. With the macro definition

MACRO m 1=abc 2=def
MESS pi1=[1] p2=[2]

we get the result

PAW > EXEC m foo
pl=foo p2=def

The macro parameters can also be named, for example:

MACRO m argl=abc arg2=def
MESS pl=[argl] p2=[arg2]

Even if the parameters are named the corresponding numbered variables are created nevertheless. The named
variables are a copy of their numbered counterparts rather that aliases, i.e. the above macro definition is equivalent
to

MACRO m 1=abc 2=def
argl = [1]
arg2 = [2]

The named parameters can be redefined by a variable assignment which leaves the value of the numbered variable
untouched. For example,

MACRO m arg=old
MESS [1] [arg]
arg = new

MESS [1] [arg]

yields

PAW > EXEC m
old old
old new

3.6. Macros 11

The EXEC command allows to give values for named parameters in non-positional order. For example,

MACRO m argl=abc arg2=def
MESS [argl] [arg2]

can be used as

PAW > EXEC m arg2=foo
abc foo

Unnamed EXEC arguments following a named argument are assigned to numbered variables beyond the parameters
listed in the MACRO definition. For example,

PAW > EXEC m argl=foo bar
foo def

i.e. the second argument “bar” is not assigned to [arg2] or [2] butto [3]. Note that this differs from the behavior
for command arguments (see section 3.1.2).

The construct name =value may also be used in the EXEC command for names not defined in the macro’s parameter
list. The variable name is implicitly defined inside the macro. For example,

MACRO m
MESS [foo]

yields

PAW > EXEC m

[foo]
PAW > EXEC m foo=bar
bar

Therefore a string containing a “=" must be quoted if it should be passed to the macro literally:

PAW > EXEC m ’foo=bar’
foo=bar

Since a undefined variable name can be thought of as having the value ’ [name] ’, the construct
IF [var]<>’[var]’ THEN

allows to test whether such an external variable definition was provided.

Passing a value as argument to a macro is not quite the same as assigning the value to a variable inside the macro.
The macro argument is not tried to be evaluated as an arithmetic expression. String operations, however, such as
concatenation and alias substitutions, are applied. For example, “EXEC m1 2%3 4//5” with

MACRO m1 a=0 b=0
mess [a] [b]

yields “2x3 457, while “EXEC m2” with

MACRO m1
a = 2x%3
a=4//5

mess [a] [b]

yields “6 45”. Macro arguments are not tried as arithmetic expressions in order to allow passing of vector names
without the use of quotes. Otherwise “EXEC m v1”, where v1 is a scalar vector, would pass the value of v1(1)
rather than the string *v1°.

Note that the result “6 45" can also be obtained from the first of the above examples by means of the $INLINE
function:

MACRO m1 1=0 b=0
a = $INLINE([1])
mess [a] [b]

42 Chapter 3. User interface - KUIP

Special variables

A numbered variable cannot be redefined, i.e. an assignment such as “1 = foo” is illegal. The only possibly
manipulation of numbered variables is provided by the

SHIFT

statement which copies [2] into [1], [3] into [2], etc. and discards the value of the last defined numbered
variable. For example, the construct

WHILE [1] <> ’> ’> DO
arg = [1]

SHIFT
ENDDO

allows to traverse the list of macro arguments.
For each macro the following special variables are always defined:

7

[0] contains the fully qualified macro file name, e.g. “. /fname . kumac#mname’
[#] contains the number of macro arguments

[x] is the concatenation of all macro arguments separated by blanks

[@] contains the return value of the most recent EXEC call

Like for numbered variables these names cannot be used on the left-hand side of an assignment. The values or [#]
and [*] are updated by the SHIFT statement.

Example of Input Macros

MACRO EXITMAC
MESSAGE At first, ’[@]’ = [e]
EXEC EXIT2
IF [@] = O THEN
MESSAGE Macro EXIT2 successful
ELSE
MESSAGE Error in EXIT2 - code [@]
ENDIF
RETURN
MACRO EXIT2
READ NUM
IF [NUM] > 20 THEN
MESSAGE Number too large
EXITM [NUM]-20
ELSE
V/CREATE V([NUM])
ENDIF
RETURN

Output when executing

PAW > EXEC EXITMAC

At first, [@] = 0O

Macro EXIT2: NUM 7 25

Number too large

Error in macro EXIT2 - code 5
PAW > EXEC EXITMAC

At first, [@] =0

Macro EXIT2: NUM 7 16

Macro EXIT2 successful

3.6. Macros 43

Variable indirection and arrays

Macro variables can be referenced indirectly by constructing the name using other variables, for example

DO i=1, 10

a_[i] = [i] = [i]
ENDDQO
s =0
DO i=1, 10

s = [s] + [a_[i]]
ENDDQO

While for PAW we simply created ten variables a_1, ..., a_10, we can also look at it as an array a_i. We don’t
even need to remember the dimension of the array. The system function $DEFINED returns all defined variables
matching a wildcard, for example

s =0

DO i = 1, $WORDS($DEFINED(’a_x*’))
s = [s] + [a_[i]]

ENDDO

Instead of a_i we can also use the more conventional array notation a (i)

DO i=1, 10

a([il) = [i] = [il]
ENDDO
s =0

DO i = 1, $WORDS($DEFINED(’a(*)’))
s = [s] + [a([iD]
ENDDO

as long as we have the possibility to match all array elements with a single wildcard expression.

Since for PAW all array elements are just simple variables the indices do not even need to be numeric. We can also
construct associative arrays where the indices are names, for example

events(mu) = 1000

events(el) 100

events(tau) = 10

total = 0

names = $DEFINED(’events(*)’)

DO i = 1, $WORDS([names])
name = $WORD([names], [i],1)
total = [total] + [[name]]

ENDDO

By the same token we can also create multi-dimensional arrays, for example

DOi=1, 3
DO j=1,3
a([il, [31) = [iI*2+[j]
ENDDO
ENDDO

The $DEFINED function returns the matching variable names sorted in alphabetical order, i.e.

$DEFINED (’events(*)’) iS ’events(el) events(mu) events(tau)’
$DEFINED(a(*)’) is ’a(1) a(10) a(2) ... a(9)’

and not necessarily in the order in which they were created.

The indirection only allows for variable substitution when constructing the actual variable name. Expression
evaluation etc. does not take place and constructs such as

44 Chapter 3. User interface - KUIP

total = [total]l + [$WORD([names],[i],1)] | invalid!

are not allowed.
The construct [[name]] can also be written as

[/name]

For example, this is another way to traverse the list of macro arguments:

DO i=1, [#]
arg = [%i]
ENDDO

Except for the [Yname]

Global variables

Global variables can be made visible inside a macro by executing the commands GLOBAL/CREATE or GLOBAL/IMPORT.
Technically these commands create a local variable with the same name initialized to the value of the global vari-
able. When assigning a value to the local variable the change is also propagated to the global variable. Therefore,
once they are made visible inside a macro, global variables are assigned to and used in the same way as local
variables.

The GLOBAL/CREATE command creates a global variable allowing to specify an initial value and a comment text,

e.g.

GLOBAL/CREATE m_e 0.0005 ’Electron mass (GeV)’
GLOBAL/CREATE m_mu 0.106 ’Muon mass (GeV)’

If executed inside a macro the global variable becomes visible there.

The GLOBAL/IMPORT command has an effect only when executed inside a macro. It allows to make global variables
visible which have been created elsewhere. The import list may contain “*” as a wildcard for any character
sequence, for example

GLOBAL/IMPORT m_x*

Only those global variables existing at the time the GLOBAL/IMPORT is executed become visible. Therefore, global
variables created in an inferior macro do not become visible even if they match the wildcard. For example, in

MACRO a
GLOBAL/IMPORT m_x
EXEC b

RETURN
MACRO b

GLOBAL/CREATE m_tau 1.784 ’Tau mass (GeV)’
RETURN

m_tau is not visible in macro a unless it is imported after executing b.

Deleting a global variable in an inferior macro, on the other hand, also deletes the associated local variables in the
macro call stack. For example, in

MACRO a
GLOBAL/IMPORT m_x
EXEC b

RETURN
MACRO b

GLOBAL/DELETE m_mu
RETURN

3.6. Macros 45

when returning from macro b the imported variable m_mu will become undefined.
Global variables can also be set and used from the command line, for example,
PAW > g/cre x 2

PAW > x=[x]*2

PAW > mess [x]
4

However, the implicit creation when assigning a value to an undefined variables does not apply:

PAW > y=0
**% Unknown command: y=0

Global variables are available only since the 95a release.

3.6.2 Flow control constructs

There are a variety of constructs available for controlling the flow of macro execution. Most for the constructs
extend over several lines up to an end clause. The complete block counts as a single statement and inside each
block may be nested other block statements.

The simplest form of flow control is provided by the

GOTO label

statement which continues execution at the statement following the target label:

label:

If the jump leads into the scope of a block statement, for example a DO-loop, the result is undefined. The target
may be given as an expression evaluating to the actual label name, e.g.

name = label

GO%G'[name]

lagéi:

In the label definition the colon must follow the label name immediately without any intervening blanks. The label
may be followed by a command on the same line, e.g.

label: MESS Hello

Conditional execution

IF expression THEN
statements

ELSEIF expression THEN
statements

ELSEIF expression THEN
statements

ELSE
statements

ENDIF

The general IF construct executes the statements following the first IF/ELSEIF clause for with the boolean expres-
sion is true and then continues at the statement following the ENDIF.

The ELSEIF clause can be repeated any number of times or can be omitted altogether. If none of the expressions
is true, the statements following the optional ELSE clause are executed.

46 Chapter 3. User interface - KUIP

IF expression GOTO label

This old-fashioned construct is equivalent to

IF expression THEN
GOTO label
ENDIF

CASE expression IN
(label) [statements]

(label) [statements]
ENDCASE

The CASE switch evaluates the string expression and compares it one by one against the label lists until the first
match is found. If a match is found the statements up to the next label are executed before skipping to the statement
following the ENDCASE. None of the statements are executed if there is no match with any label.

Each label is a string constant and the comparison with the selection expression is case-sensitive. If a label is
followed by another label without intervening statements then a match of the first label will skip to the ENDCASE
immediately. In order to execute the same statement sequence for distinct labels a comma-separated list of values
can be used. The “x” character in a label item acts as wild-card matching any string of zero or more characters, i.e.
“(*)” constitutes the default label.

Example for CASE labelswith wild-cards

MACRO CASE
READ FILENAME
CASE [FILENAME] IN

(x.ftn, *.for) TYPE = FORTRAN

(*.c) TYPE = C

(x.p) TYPE = PASCAL

(%) TYPE = UNKNOWN

ENDCASE

MESSAGE [FILENAME] is a [TYPE] file.
RETURN

Loop constructs

The loop constructs allow the repeated execution of command sequences. For DO-loops and FOR-loops the number
of iterations is fixed before entering the loop body. For WHILE and REPEAT the loop count depends on the boolean
expression evaluated for each iteration.

DO loop = start_expr, finish_expr [, step_expr]
statements
ENDDO

The step size defaults to “1”. The arithmetic expressions involved can be floating point values but care must be
taken of rounding errors. A DO-loop is equivalent to the construct

count = (finish_expr - start_expr) / step_expr
loop = start_expr
step = step_expr
label:
IF [count] >= 0 THEN
statements
loop = [loop] + [stepl
count = [count] - 1
GOTO label
ENDIF

3.6. Macros 47

where all variables except for Loop are temporary.
Note that “D0 i=1,0” results in zero iterations and that the expressions are evaluated only once. i.e. the loop

n = 10
DO i=1, [n]
MESS [i] [n]
n=1[n] -1
ENDDO

is iterated 10 times and leaves “i = 11” afterwards.

FOR name IN expr_1 [expr_2 ... expr_n]
statements
ENDFOR

In a FOR-loop the number of iterations is determined by the number of items in the blank-separated expression list.
The expression list must not be empty. One by one each expression evaluated and assigned to the variable name
before the statements are executed. The equivalent construct is the loop-unrolling

name = expr_1
statements
name = expr_2
statements

name = expr_n
statements

The expressions can be of any type: arithmetic, string, or garbage expressions, and they do not need to be all of
the same type. In general each expression is a single list item even if the result contains blanks. For example,

foobar = ’foo bar’
FOR item IN [foobar]

MESS [item]
ENDFOR

results in a single iteration. The variable [*] is treated as a special case being equivalent to the expression list
“[1]1 [2] ... [n]” which allows yet another construct to traverse the macro arguments:

FOR arg IN [x*]
ENDFOR

WHILE expression DO
statements
ENDWHILE

The WHILE-loop is iterated while the boolean expression evaluates to true. The loop body is not executed at all if
the boolean expression is false already in the beginning. The equivalent construct is:

label:
IF expression THEN
statements
GOTO label
ENDIF
REPEAT
statements
UNTIL expression

The body of a REPEAT-loop is executed at least once and iterated until the boolean expression evaluates to true.
The equivalent construct is:

48 Chapter 3. User interface - KUIP

label:
statements
IF .NOT. expression GOTO label

BREAKL [levels 1]

allows to terminate a loop prematurely. The BREAKL statement continues executing after the end clause of the
enclosing DO, FOR, WHILE, or REPEAT block.

NEXTL [levels 1]

allows to terminate one loop iteration and to continue with the next one. The NEXTL statement continues executing
just before the end clause of the enclosing DO, FOR, WHILE, or REPEAT block.

Both BREAKL and NEXTL allow to specify the number of nesting levels to skip as an integer constant.

Example of using BREAKL and NEXTL

WHILE 1=1 DO
IF expr THEN
BREAKL
ENDIF
DO i=1, [#]
IF [}il="-’ THEN
NEXTL
ENDIF
IF [}il=’--> THEN
NEXTL 2
ENDIF
ENDDO
ENDWHILE
Equivalent code using GOTOs
WHILE 1=1 DO

IF expr GOTO break_while

DO i=1, [#]

IF [%i]l=’-’ GOTO next_do

IF [%il=’--’ GOTO next_while
next_do:
ENDDO

next_while:
ENDWHILE
break_while:

Error handling

Each command returns a status code which should be zero if the operation was successful or non-zero if any kind
of error condition occurred. The status code is stored in the IQUEST (1) status vector and can be tested as, for
example

3.6. Macros 49

HISTO/FILE 1 foo.hbook
IF $IQUEST(1)<>0 THEN
*-- cannot open file
. do some cleanup
EXITM 1
ENDIF

ON ERROR GOTO label

installs an error handler which tests the status code after each command and branches to the given label when a
non-zero value is found. The error handler is local to each macro.

ON ERROR EXITM [expression]
and
ON ERROR STOPM

are short-hand notations for an ON ERROR GOTO statement with a EXITM or STOPM statement, respectively, at the
target label.

ON ERROR CONTINUE

nullifies the error handling. Execution continues with the next command independent of the status code. This is
the initial setting when entering a macro.

OFF ERROR
and
ON ERROR

allow to temporarily suspend and afterwards reinstate the previously installed error handling. Note that the OFF/0ON
settings do not nest, for example

ON ERROR EXITM

OFF ERROR | behave like ON ERROR CONTINUE

ON ERROR STOPM

OFF ERROR

ON ERROR | restore ON ERROR STOPM

ON ERROR | unchanged, i.e. not ON ERROR EXITM !

Another way of testing the status code of a command is to use the line separators “; &” and “; ! (see section 3.1.3).

These operators take precedence over the ON ERROR setting.
cmdl ;& cmd2 ; cmd3
is roughly equivalent to

OFF ERROR

cmdl

IF $IQUEST(1)=0 THEN
cmd?2
ON ERROR
cmd3

ENDIF

ON ERROR

except that the ON/OFF ERROR statements are virtual and do not overwrite the setting saved by a real OFF ERROR
statement.

50 Chapter 3. User interface - KUIP

3.7 Motif mode

3.7.1 TheBrowser Interface

The Browser interface is a general tool to display and manipulate a tree structure of objects. The objects contained
in the currently selected directory can be displayed in various forms: big icons, small icons, text only, etc. It is
possible to perform actions on these objects or the directories it-selves by accessing pop-up menus directly attached
to them: this behavior of the browser gives access to a “direct object manipulation” user interface by opposition to
the usual “command mode interface”.

Description of the “Main Browser” Window

When PAW++ start one browser is automatically created and displayed: it is called the “Main Browser”. Later
on it is possible to “clone” this browser (by pressing the corresponding button at the bottom/right) when it is in a
certain state. This will give to the user the possibility to have several instances of the browser window, and look at
the same time to different kind of objects.

A “browser window” is composed of (Fig. 3.5):

A menu bar with the menu entries “File” 00, “View” O, “Options” O, “Commands” O and “Help” O.
A two lines text/label area (O and O).

The middle part of the browser is divided into two scroll-able windows: the “FileList” or “Browsable
window” [at the left and the “DirList” or “Object window” [0 at the right.

Two lines of information at the bottom (O et O), plus a “Clone” O and a “Close” O buttons.

Below follows a description of the middle (and main) part of the browser which is divided into two scroll-able
windows on the left and right sides (Fig. 3.5):

— The left hand “FileList” or “Browsable window” O shows the list of all the currently connected browsables.
Some browsables can also be attached at run time by selecting the corresponding “Open” entry in the menu
“File” (e.g. ZEBRA/RZ files for access to histograms and Ntuples).

Pressing the right mouse button in this window shows a pop-up menu with all the possible actions which
have been defined for this browsable.

Selecting one item (or browsable) in this window with the left mouse button executes by default the “List”
action (first entry of the pop-up menu): it displays the content of the browsable in the right hand window
(“DirList” or “Object window™)

Note that the first entry of the pop-up menu of actions for one browsable is always “List” and that the last
entry is always “Help” : it should give information concerning the selected browsable.

— The right hand “DirList” or “Object window” O shows the content of the currently selected browsable
for the selected path. E.g. when you select the browsable “Macro”, you will get all the macro files and
sub-directories which are contained in the selected directory.

Objects are selected by clicking on them with the left mouse button. Pressing the right mouse button pops
up a menu of possible operations depending on the object type .

An item in a pop-up menu is selected by pointing at the corresponding line and releasing the right mouse
button. Double clicking with the left mouse button is equivalent to selecting the first menu item.

Each menu item executes a command sequence where the name of the selected object is filled into the appro-
priate place. By default the command is executed immediately whenever possible. (The commands executed
can be seen by selecting “Echo Commands” in the “Options” menu of the “Executive Window™.) In case
some mandatory parameters are missing the corresponding “Command Argument Panel” is displayed, and
he remaining arguments have to be filled in. The command is executed then by pressing the “OK” or “Exe-
cute” button. (Note that if it is not the last one in the sequence of commands bound to the menu item, PAW
is blocked until the “OK” or “Cancel” button is pressed.)

The two lines text/label area at the top displays information about (Fig. 3.5):

— the current path (or directory) for the selected browsable [0 (entry “Path:”). The directory can be changed by
pointing at the tail of the wanted sub-path and clicking the left mouse button. Clicking a second time on the
same path segment performs the directory change and updates the “DirList” window with the list of objects.

3.7. Motif mode 51

[] [] []
O
ot A— - v
File View Options Commands Help
Ge i Hneutronsicremel LT 4
V' ReadfWrite File : 10 Kuip Macro : 12 Directory : 2
Comimands n
Macto
civ edt.edt
A " A uip Macro cmzlugun.kuma[:i
Exec -
dokuip.kur ac Exec... 1.k ac
Edit 4 =
\ View N
kuip.0804.civ z Delete cf.c
File: }ist of all files
] GuneJ {:E{;{;{ﬂ]
| |
i

cmzlllgun.kuma[:: (Kuip Macro) *
N 0 |
[]

4 o
1= |
[L] [

Figure 3.5: “Main Browser” Window

— the number of objects of all the different classes defined for the selected browsable in the current directory
0.

The two lines of information at the bottom are filled with (Fig. 3.5):

— ashort description of the browsable which is currently selected O (entry “File:”),
— ashort description of the object which is selected in the “object window” for a given browsable 0.

Below follows a description of the different Browser menus:
File

The File menu in the paw++ “Main Browser” is shown below.

52

Open Hhook FI|E...I
Close Hhook File...

Exit

View

The View menu allows to change the way objects are displayed or selected.

Icons Icons
small lcons Small Icons
Mo lcons No Icons
Titles Titles
Select Al Select All
Filter... Filter...

Options

Raise Window -

Command Argument Fanel...

Raise Window

Open Hbook File...
Close Hbook File...
Exit

Chapter 3. User interface - KUIP

Open one ZEBRA/RZ file.
Close one ZEBRA/RZ file.
Exit from PAW.

display objects with normal size icons and names (default).
display objects with small icons and names.

display objects without icons, but names and small titles.

display objects without icons, but long titles.
select all the objects.

ask for a filter to be put on object names.

“cascade button” with the list of all opened windows. Selecting one of this window

will pop-up the window on top of the others.

Command Argument Panel

selecting this entry will prompt the user for a command name. If the command

is valid then the corresponding “Command Argument Panel” with the list and de-
scription of all parameters will be displayed. If the command is ambiguous (e.g.
command “list”) the user will be proposed a list of all the possible commands. He
can then select one and the corresponding “Command Argument Panel” will be
displayed. If the command does not exist an error message is displayed.

Commands
File View Options | Commands Help
Path: /KUIP iR HED
———— Macr Usage
e Menu : 2 Command : 12
Vector =
[Commands | Histogram & Edit i
Hos Function .- Last
Macro | i
e i Ntuple » Message W
Hhook Graphics =~ Shell
Hiins Picture - Wait
i [Fortran | Unils EDIT
Hetwork = Exit
Dzdoc = Quit
1 &a3T Alias i~ Create
Set_showr List
Delete
£ Translation
WAIT UNITS EIT
[[vd v
File: —
KUIP M {lase

This menu gives access to the com-
plete tree of commands. When a ter-
minal item (command) in this menu
is selected then the corresponding
“Command Argument Panel” is dis-
played. The functionality of this
menu is quite similar to the brows-
able “Commands” (this is just a mat-
ter of taste whether the user prefer to
access commands through this pull-
down menu or through the “Com-
mands” browser).

3.7. Motif mode 53

T T 1 ? T
—**_*_‘, kMtest Executive Window |<$iﬁj_
Rle Edit View Options Help
Transcript Pad ﬂ [] "E:l:erl;" bar entry
ile”.
KMtest> /KOT/KOTZ 0.025 0.8 10 1 o
+++ Command KOTZ2 [] Eﬂenq’ bar entry
NPAR = 4 Edit”.
PARL = 0.2500000037E-01
PARZ = 0.8000000119 [J Menu bar entry
FAR3 = 10 View”.
PARL = 1 [] Menu bar entry
“Options”.
T— - [] Menu bar entry
= A Help”.
Input Pad n(uI' _|ﬂ
KMtest> /KUT/KUT2 0.025 f.8 10 1] [& (] Input P"fld
A [] Transcript Pad
[] Current work-
ing directory
indicator.
[] Hold buttons.
¥
| [— e ——— | ——/ — | f— |
O O O O

Figure 3.6: “Executive Window”

Browser Setting or Initialization

The following PAW command can be used to set up the browser in a given state, without having to click with the
mouse:

/MOTIF/BROWSER browsable [path]

— browsable is the name of the file (browsable) you want to open (corresponding item is selected in the list of
browsables).

— path (optional) is the pathname to be used for this browsable.

E.g. If you want to open the browser in the state displayed in Fig. 3.5, without having to click with the mouse, you
can execute the PAW command:

/MOTIF/BROWSER Files /neutrons/kuip

3.7.2 The“Executive Window”

This terminal emulator combines Input Pad and Transcript Pad, (automatic file backup of Transcript Pad, string
search in pads, etc.), the Korn shell emacs-style command line editing and command line recall mechanism.

Description and Behavior
The *“Executive Window” is composed of three main parts (Fig. 3.6):

— A “menu bar” with the menu entries “File” 01, “Edit” O, “View”, “Options”, and “Help”0,.
— A Transcript Pad O which contains the text output.
— An Input Pad O which is an edit-able “scrolled window” where the user can type commands.

54 Chapter 3. User interface - KUIP

Commands are typed in the input pad behind the PAW prompt. Via the toggle buttons O labeled “H” the Input Pad
and/or Transcript Pad can be placed in hold mode. In hold mode one can paste or type a number of commands
into the Input Pad and edit them without sending the commands to PAW. Releasing the hold button will causes the
“Executive Window™ to submit all lines, up to the line containing the cursor, to PAW. To submit the lines below
the cursor, just move the cursor down. In this way one can still edit the lines just before they are being submitted
to PAW.

Commands can be edited in the Input Pad using emacs-like key sequences (see section 3.7.2). The Transcript
Pad shows the executed commands and command output. When in hold mode the Transcript Pad does not scroll
to make the new text visible.

Every time the current directory is changed, the Current working directory indicator O is updated. The current
working directory is the one which is currently selected in the “Main Browser™.

Below follows a description of the different “Executive Window” menus. All “Executive Window” menus can
be dynamically extended.

Edit
Cut Remove the selected text. The selected text is written to the Cut
& Paste buffer. Using the “Paste” function, it can be written to
Cut Shift+Del I any X11 program. In the Transcript Pad “Cut” defaults to the
= “Copy” function.
Copy Ciri+Ins Copy Copy the selected text. The selected text is written to the Cut
" & Paste buffer. Using the “Paste” function, it can be written to
EElStE Shift+ins any X11 program.
Search... CtH+s Paste Insert text from the Cut & Paste buffer at the cursor location
= into the Input Pad.
Search... Search for a text string in the Transcript Pad.
View
Show Input Show in a window all commands entered via the
Input Pad.
Show Input Command Panel Gives access to the “PANEL interface” for a
Comitiand. Banel Fi panel which has been predefined in a macro file

(see section 3.7.3).

New Command Panel F2 New Command Panel Gives access to the “PANEL interface” for set-
Browser F3 ting a new and empty panel to be filled interac-
— tively (see section 3.7.3).

Browser Display another instance of the browser.
Options

- Clear Transcript Pad Clear all text off of the top of the Transcript

Clear Transcrpt Pad Pad.
™ Echo Command Echo Command Echo executed commands in Transcript Pad.

Wi Timing Report command execution time (real and CPU
1—_“-"'“9 time)
Iconify Iconify Iconify “Executive Window” and all windows.
Raise Windows Raise Window Display a list of all windows connected. The user
= can select the window he wants to pop-up.

Edit Key Sequences

Please note that “C-b” means holding down the Control key and pressing the “b”-key. “M-" stands for the Meta or
Alt key.

3.7. Motif mode

C-b:

M-b:

Shift M-b:
M-[:

Shift M-[:
M-<:

C-a:

Shift C-a:
C-osflnsert:
Shift osfDelete:
Shift osflnsert:
Alt->:
M->:

C-e:

Shift C-e:
C-f:

M-]:

Shift M-]:
C-M-£:
C-d:

M-BS:

C-w:

C-y:

C-k:

C-u:
M-DEL:
C-o:

C-j:

C-n:
C-osfleft:
C-osfRight:
C-p:

C-g:

C-1:
C-osfDown:
C-o0sfUp:
C-SPC:
C-c:

C-h:

F8:

Shift F8:
Shift-TAB:

backward character

backward word

backward word, extend selection
backward paragraph

backward paragraph, extend selection
beginning of file

beginning of line

beginning of line, extend selection
copy to clipboard

cut to clipboard

paste from clipboard

end of file

end of file

end of line

end of line, extend selection
forward character

forward paragraph

forward paragraph, extend selection
forward word

kill next character

kill previous word

kill region

yank back last thing killed

kill to end of line

kill line

kill to start of line

newline and backup

newline and indent

get next command, in hold mode: next line
page left

page right

get previous command, in hold mode: previous line
process cancel

redraw display

next page

previous page

set mark here

send kill signal

toggle hold button of pad containing input focus
re-execute last executed command

put last executed command in input pad
change input focus

3.7.3 User Defi nable Pandls of Commands

55

The “PANEL interface” allows to define command sequences which are executed when the corresponding button
in the panel is pressed.

New Panel

It is possible to fill a new and empty panel interactively (see section 3.7.3) giving a label to each button.

In the top menu bar 3 pull-down menus (‘File”, “View” and “Help”) are available. The pull-down menu “File”,
whose contents is displayed, contains the 2 items “Save” (to save the actual panel configuration after editing) and
“Close” (to close the panel and erase it from the screen). The “View” menu contains various options for displaying
the same panel in different ways (see section 3.7.3), and the “Help” menu contains various items to help the user
concerning this panel interface.

This new panel definition can also be done with the command PANEL using the sequence

PANEL O
PANEL 4.06 ’

PANEL O D ’This is my first panel’ 250x200+500+600

56 Chapter 3. User interface - KUIP

_|| a2
File | View Help
Save | NEWPANEL 4 6 °First panel’ _
250 200 500 600
Close |‘ L)L
This command creates an empty panel with 4 rows and
_! _l HENENRN 6 columns of buttons. The title of this panel will be set
to “First panel”. The panel size in pixels is 250 (width)
| J X 200 (height), and the panel position (in pixels) is 500
] J =] = (along X axis), 600 (along Y axis).

Figure 3.7: New Panel of Commands

You can get automatically access to the command “NEWPANEL” (and its corresponding “Command Argument
Panel”) by selecting the menu item “New Command Panel” in the “View” menu of the “Executive Window” (Fig.
3.7.2).

Predefined Panel of Commands

The command “PANEL” for a key (or button) definition has to be used if you want to describe your panel in a
macro file in order to keep trace of the panel definition, and be able to retrieve it later on. You can predefine as
many panels as you want, and you can easily access them by selecting the menu item “Command Panel” in the
“View” menu of the “Executive Window” (section 3.7.2).

You have to describe in the macro file(s) each button individually. You can also request the macro(s) execution in
your “pawlogon.kumac” file so that the panel(s) will be automatically displayed at the beginning of the session.
The general syntax of the command “PANEL” for a key definition is:

panel x.y command [label] [pixmap]

X.y is the key position (column and row number),

command is the complete command (or list of commands) to be executed when the corresponding button is
pressed,

label (optional) is an alias-name for this command. If specified, this alias-name is used for the button label
(when the appropriate “View” option is selected) instead of the complete command (which is generally too
long for a “user-friendly” button label).

pixmap (optional) has to be specified for graphical keys (fully described in the next section 3.7.3).

An example of a panel definition is given in figure 3.8.

Panel with Graphical keys (Icons) and “View” Selection

As seen in the previous section, the general syntax of the command “PANEL” for a key definition allows the user
to define graphical keys (or buttons) where pixmaps are used instead of alpha-numerical labels:

panel x.y command [label] [pixmap]

The last parameter pixmap (optional) is the pixmap to be used for representing the key (button) graphically. If it is
specified the graphical representation is displayed by default. It is anyway always possible at run time to ask for
an alpha-numerical representation by selecting the appropriate entry in the “View” menu of the panel.

To create a new icon bitmap (or pixmap) one can use the X11 standard bitmap editor “bitmap”. E.g., to get a
20 x 20 pixel icon called “m1”, one can type: bitmap m1.bm 20x20. The output file m1.bm containing “#define

3.7. Motif mode

o O O
= ; Z B Macro for panel defi nition
file | View Help N
ia“ Y * MOTIF_PANEL panel_test.kumac
Close | | | *
| | | panel 0
- panel 3.02 ’list’
| 1e | [nun1100 1 100] panel 3.03 ’null 1 100 1 100
| | file | panel 4.03 ’file’
| | | panel 6.01 ’FUNDEMO’
= panel 6.03 ’null’
FUNDEMO | [Lnun || panel 0 d ’Test Panel’ 450x250+600+600
|
O O O

[] Close button (to close panel)
[] Save button (to save panel into a macro file)
[[] Access to various “helps” on the “PANEL interface”

[] [[] User defined buttons

Figure 3.8: Predefined Panel of Commands

57

ml_width 20 ..” has to be referred in the command “/MOTIF/ICON” (with the correct path for the filename),

e.g. /MOTIF/ICON mi1 /user/.../.../ml.bm

The following macro is a general example for a panel definition with graphical keys.

stk ke ks e ok sk s ksl s ks e ok sk s ksl sk sk sk e ok sk s ok ks ek sk sk ek sk sk ke ks sk sk sk ke ke sk ok
*

% panel.kumac **x* *

*

General example for a panel with icons definition *
*

* X X X X ¥

*
Kok KoK oK ok Kok KoK K o oK ok Kok oK oK ok K ok KoK oK ok oK oK oK o Kok oK K oK KoK ok K ok oK ok ok K
*

* Icon bitmaps

*

/motif/icon ml mki.bm

/motif/icon m2 mk2.bm

/motif/icon m3 mk3.bm

/motif/icon m4 mk4.bm

/motif/icon mb5 mk5.bm

*

* Panel keys definition

* N.B. General syntax:

* panel r.c command [label] [pixmap]

* label --> command alias

* (written in the panel and executed for <Button press>).
* if <label> (optional) is defined then:

* /KUIP/ALIAS/CREATE <label> <command>

* is automatically generated.

* if <label> is not defined then "command" is used

* for button label.

*

panel 0O

panel 2.01 null

58 Chapter 3. User interface - KUIP

panel 2.02 tex_1

panel 3.01 ’/example/general kuip.tex tex 1’ ’tex_1’ ml
panel 3.02 ’/example/general kuip.tex tex 2’ ’tex_2’ m2
panel 3.03 °’/example/general kuip.tex tex 3’ . m3

panel 3.04 ’/example/general kuip.tex tex 4’ . mé

panel 4.01 > ’ . mb

panel 4.02 ’tex_5’ . mb

panel 5.01 ’/example/general kuip.tex tex 6’ . sm_menu
panel 5.02 ’/example/general kuip.tex tex 6’ . big_menu
panel 6.01 ’/example/general kuip.tex tex 7’ ’tex_7’
panel 6.02 ’/example/general kuip.tex tex 7’ ’tex_7’ ml
panel 0 d ’Marker Types’ 300x300+500+500

Figure 3.9 shows the panel defined in the macro listed above with different “View(ing)” options. In the first window
(top/right) the “View” menu is displayed, with the different possibilities which are offered to the user to see the
same panel in different ways.

Panel Edition and Saving

All the panels (new or predefined) can be edited interactively. Clicking with the left mouse button on a panel button
removes its definition. Clicking with the right mouse button on an empty panel button the user will be asked to
give a definition to this button (figure 3.10).

The PANEL commands needed to recreate a panel can be automatically saved into a macro file by pressing the
”Save” button O (Fig. 3.8). The panel configuration with its current size and position (which can be modified
interactively) is kept into the macro. Panels can be reloaded either by executing the command 'PANEL 0 D’
or by pressing the "Command Panel” button in the "View” menu of the “Executive Window” and entering the
corresponding macro file name.

Some characters in the panel keys/buttons have a special meaning:

— The dollar sign inside a key is replaced by additional keyboard input. For example:
>V/PRINT V($)’ | entering 11:20 will execute V/PRINT V(11:20)

— Keys ending with a double minus sign make an additional request of keyboard input. For example:
V/PRINT V--’° | entering AB will execute V/PRINT VAB

“Multi’ panel” or Palette of panels Definition

It may be nice or more user-friendly to group a certain number of panels (related to similar actions or objects to be
manipulated) in a so-called “palette” of panels. This is possible with the command “MULTI_PANEL” which opens
such a widget. 4

/MOTIF/MULTI_PANEL [title] [geometry]

E.g. MULTI_PANEL ’My Palette’ ’200x100+0+0’ will display a "multi panel” widget with title “My Palette”
and geometry “200x100+0+0" (Position=0,0 in X and Y, width=200, height=100). When this command is exe-
cuted all panel definitions and executions will go into this "multi panel” (or palette) widget. This can be done
simply by executing macro(s) containing your panel definition(s), or by selecting the "Add button” entry in the
menu “File” available in the ”multi’panel” widget. To terminate a "multi-panel” setting one just have to type:
MULTI_PANEL end. This means that the following panel definitions and executions will be displayed as individ-
ual panels and will not go into this "palette” anymore, unless another palette is opened (by executing again the
command “MULTI PANEL”). Then the panels will go into that new palette.

The following sequence of commands (which can be put inside a macro) can be used to set up a palette:

“For those who are familiar with the “UIMX” User Interface Management System, this is an emulation of the “Palette” widget which is
built-in inside this program.

3.7. Motif mode

e

=] Gtest Marker Tupes

fexample/general kuip.tex tex 2i

fexamplefgeneral...| lexample/g

le/g .:kuip.mexmexsi

tex_7 | tex_7

S —

fexample/general kuip.tex tex 4|

tex_5 |

File View Help File View Help
—— ByMName
| #Bylcon | | | |
null By Name and lcon | |
__' By Command (normal) | 5 |
—— By Command (1 col)
*] L]
=§ Gtest Marker Tupes = 1E=] Gtest Harker Tupes [=10]
Eile !iew Eelp File View Help
| null l R
null | tex_1 le/g al kuip.tex Iex1|
tex_1 | tex_2 fexample/general kuip tex tex 1 |
| tex_5

59

‘‘By Name’’ (bottom left): The pane is dis-

played with alphanumeric labels. If the alias-name

“label” is specifi ed in the “panel” command it is
used for the button label, otherwise the complete
command is displayed.

“‘By Icon’’ (top right): The panel is displayed
with graphical labels (icons), if “pixmap” is speci-
fi ed in the “panel” command. Otherwise “1abel” or
the complete command are used instead (no graph-
ical representation). This “view” setting is the de-
fault one (the setting can be changed interactively
at run time, and the default setting can be changed
with the appropriate resource in the “.Xdefaults”
for each user individually).

‘‘By Name and Icon’’: The panel is displayed
with both alphanumeric and graphica (if any) la-
bels. (Not yet implemented ...).

¢ ‘By Command (normal)’’ The pane is dis-
played with the complete command names. The
arrangement of the buttons stay the same (which
might not be very convenient ... See below).

‘‘By Command (1 col.) (bottom right): The
panel is displayed with the complete command
names BUT the arrangement of the buttonsis mod-
ifi ed: al buttons are displayed on one column, and
“pblank” buttons are suppressed (this can save alot
of space, and is more user-friendly, for this kind of
viewing option).

Figure 3.9: Panel “View” Selection

= | Ktest Prompt

Give text to map in this button

Help |

ok | cancel|

Figure 3.10:
definition

Interactive panel button

User-defi ned “palette”
with 3 panels:

“Various Icons” : this
panel is not displayed

e BE (arrow turned left to
e : right) at the moment.
One would just have
. to pressthe arrow but-
Elﬁj s ton to make it visible
mng
= [| “Marker Types’ : this
T user-defi ned panel is
visible (arrow turned
= top to down). One
] J can turned it off by
| | pressing the arrow
button.
"Other Various
Icons’ : this user-
defi ned panel is aso
visible.

Figure 3.11: Multi"panel (or Palette)

60 Chapter 3. User interface - KUIP

MULTI_PANEL

EXEC PANEL1.KUMAC
EXEC PANEL2.KUMAC
EXEC PANEL3.KUMAC
MULTI_PANEL end

N.B. panell.kumac, panel2.kumac, and panel3.kumac are macro files with “usual” panel setting and defini-
tion.

Figure 3.11 shows an example of a user-defined palette (with some predefined panels). The “arrow buttons” can
be pressed either to reduce the panel to a label containing the panel title (arrow button is then turned left to right)
or to display it (arrow button turned up to down). One can see that the “palette” is a good way to have many panels
defined and save space on the screen.

3.7.4 X-Windows Resources

X-Windows resources control the appearance and behavior of an application. PAW resources be can redefine
them by specifying new values in the standard X11 way : i.e. by editing the “.Xdefaults” file or the system wide
“/usr/1ib/X11/app-defaults/<appl_class>”.

Each new resource has to be specified on a separate line. The syntax for editing one specific resource is always the
following:

<appl._class>*<resource_name>: <resource_value>

where:

— “appl. class” has to be replaced by “Paw++".

— “resource value” is the value to be given to the corresponding “resource'name”. It can be an integer, a
boolean value, a color, a font, or any kind of predefined syntax (e.g. for geometry).

The following is a non exhaustive list of the most important or frequently used X-Windows resources. The default
values are put inside “[]”.

Background and foreground color for all windows (except KXTERM):

.. .*background:
...xforeground:
— Geometry ([width]x[height]+[xpos]+[ypos]) of the “Executive Window” (KXTERM):
...xkxtermGeometry: ... [650x450+0+0]
— Geometry of the Browser(s):
...*kuipBrowser_shell.geometry: ... [-0+0] (1) or [+0+485] (2)

(1) without any graphics window - (2) with graphics window(s) managed by HIGZ.
— Geometry of the Graphics Window(s) (if any):
...*kuipGraphics_shell.geometry: ... [600x600-0+0]
— Character font for menus, buttons and dialog area:

...xfontList: ... [-adobe-helvetica-bold-r-normal--12-120-75-75-p-70-1s08859-1]
— Character font for the Input Pad and Transcript Pad (KXTERM):

...xkxtermFont: ... [*-courier-medium-r-normal*-120-%]
— Character font for the “HELP” windows:

...xhelpFont: ... [*-courier-bold-r-normal*-120-%]
— Character font for all “Text” widgets:

...*XmText*fontList:

... *XmTextField*fontList:
— Character font for the icon labels in the browser(s) “Object window;

...xdirlist*fontList:

3.8. Nitty-Gritty 61

Background and foreground colors for the “Object window” in browser(s):

...*dirlist*background:

...xdirlist*foreground:

— Background and foreground colors for the icons associated to the object class “objclass”:
...*dirlist#*<objclass>*iconBackground: ... [white]
...xdirlist*<objclass>*iconForeground: ... [black]

— Background and foreground colors for the icon-labels associated to the object class “objclass”:
...xdirlist*<objclass>*iconLabelBackground: ... [whitel
...xdirlist*<objclass>*iconLabelForeground: ... [black]

— Possibility to turn on/off the zooming effect when traversing directories structures inside the browser(s):

...xzoomEffect: ... [on]
— Speed of the zooming effect in the browser(s) when turned on:

...xzoomSpeed: ... [10]

— Double click interval in milliseconds (time span within which 2 button clicks must occur to be considered
as a double click rather than two single clicks):

...xdoubleClickInterval: ... [250]
— Background and foreground colors for the “Browsable window™ in browser(s):

...xfileList*background:

...xfilelList*foreground:
— Focus policy:

.. .*¥keyboardFocusPolicy:

If “explicit” focus is set by the mouse or a keyboard command. If “pointer” focus is determined by the
mouse pointer position.

The appearance and behavior of the “Executive Window” are managed by “KXTERM” whose class-name is
“KXterm”. It means that, for instance, to change the background and foreground color of the “Executive Win-
dow”, one has to override the following resources:

KXterm*background:
KXterm*foreground:

Concerning the appearance of the built-in icons (browsers for “Commands”, “Files” and “Macro”), the classes of
objects which are currently predefined are:

Cmd -- Command

InvCmd —- Deactivated command
Menu —- Menu tree

MacFile -- Macro File

RwFile —- Read-write file
RoFile -- Read-only file
NoFile —-- No access file
ExFile —-- Executable file
DirFile -- Directory

DirUpFile -- Up directory (..)

3.8 Nitty-Gritty

3.8.1 System dependencies

PAW tries to provide as far as possible a homogeneous environment across different operating systems and hard-
ware platforms. Here we want to summarize the remaining system-dependencies. To a large extend the comments
made on Unix apply also to the MS-DOS and Windows/NT implementations.

62 Chapter 3. User interface - KUIP

SHELL command

The SHELL command allows to pass a command line to the underlying operating system for execution. If used with-
out arguments the SHELL command suspends PAW and allows to enter OS commands interactively. When leaving
the subprocess, either with the command return or exit depending on the system, PAW resumes execution.

Unix The command HOST_SHELL defines the shell to be invoked. The start-up value is taken from the
environment variable SHELL or set to an appropriate default such as /bin/sh. On some Unix
implementations the SHELL command can fail if there is not enough free swap space to duplicate
the current process.

VMS The SHELL command spawns a subprocess with a DCL command processor. This is notoriously
slow and there is no way to combine several DCL commands into one SHELL command.

EDIT command

The EDIT command allows to edit a file without leaving the PAW. The command HOST_EDITOR defines the editor
to be invoked. The start-up value is taken from the environment variables KUIPEDITOR, EDITOR, or set to a system
dependent default.

HOST_EDITORsets the shell command (sans filename) for starting the editor. Some values have a system dependent
special meaning.

Unix The default editor is vi. The shell command containing a “&” does not necessarily mean that the
editor will run as a background process (see section 3.8.2).

VMS The special names EDT and TPU use the callable interface to these two editors. The startup time is
much less than, for example EDIT/TPU which spawns a subprocess. However, there is a problem
with the callable EDT. If any error condition occurs (invalid filename etc.) the callable EDT will be
unusable for the rest of the session.

Exception handling

PAW installs a signal handler in order to catch exceptions and return to the command input prompt. The command
“BREAK OFF” disables the signal handler, i.e. PAW aborts in case of an exception. For some systems “BREAK ON”
allows to request a traceback of where the exception has happened.

There are two major types of exceptions caught by the signal handler. Program exceptions indicate either a bug in
PAW or insufficient protection against invalid user input:

Floating point exceptionsare caused by divide by zero, floating point overflow, square root of negative numbers
etc. Floating point underflows are usually silently ignored and the result is treated as being zero.

Segmentation violation indicates an attempt to read or write a memory location outside the address space reserved
by the process, e.g. if an array index is out of bounds. In C code it is most often caused by dereferencing
a NULL pointer which is prohibited on many systems.

Buserror is usually caused by an unaligned access. Most RISC processors have strict requirements for properly
aligned data.

Illegal instruction can mean that PAW tries to executed data as code, for example if the return address on the stack
has been overwritten.

Don’t be surprised if PAW shows irregular behavior after an exception!
The second type of exceptions handled by the PAW signal handler are user breaks. Hitting the break key (usually
Ctr1-C) aborts a running command and returns to the input prompt.

Unix The actual break key can be changed with the Unix command stty. The default setup usually is
“stty intr ~C”. Unix provides a second kind of keyboard interrupt which is intentionally not
caught by the PAW signal handler to allow killing run-away processes. A convenient setting is
“stty quit ’\\’”

User break interception does not work for Windows/NT. Tell Microsoft that signal handlers are
pretty useless if they are not allowed to use printf and longjmp.

VMS The user break key is Ctrl-C. Ctrl-Y is treated like Ctrl-C, i.e. it does not bring up the DCL
prompt.

3.8. Nitty-Gritty 63

3.8.2 Theedit server

By default editing from within a PAW is synchronous, i.e. PAW is suspended until the editor terminates. On
a workstation this is an inconvenient restriction because the editor can run in a separate window while PAW
continues to accept commands.

To take care of this problem PAW provides a facility called the “edit server”. Instead of calling the editor directly,
PAW starts the editor server as a background process which leaves PAW ready to accept more commands. The
server invokes the editor and waits for it. When the editor terminates the server informs PAW about the file which
is ready.

The processing routine cannot be called at the very instant the file is ready. PAW waits until the user hits the
RETURN-key to execute the next command. The file is then checked in before the command just entered is executed.
As a protection especially for users working alternately on a terminal or on a workstation PAW does not try
asynchronous editing if one of the following conditions is missing:

— The edit server module kuesvr must be found in the search path.
— The editor command set by HOST_EDITOR must end with an ampersand (“&”).
— The environment variable DISPLAY must be set.

Note that the editor command must create its own window, possibly by wrapping the editor into a terminal window.
For convenience “HOST_EDITOR ’vi &’”is interpreted automatically as “xterm -e cmd &”.

Some Unix windowing editors tend to fork themselves as a detached process by default. For example the jot
editor found on Silicon Graphics systems requires a special option “-noFork”. Otherwise the edit server and PAW
think that the editor has already terminated leaving the file unchanged.

In Paw++ it is essential to use the edit server mechanism. Otherwise invoking the editor from a pop-up menu
freezes the screen when the right-hand mouse button is pressed before the subprocess terminates.

The screen can only be unlocked by logging in remotely and killing the PAW.

For asynchronous editing on VMS either the Motif version of TPU must be used or the hosteditor command must
create its own terminal window, e.g.

HOST_EDITOR TPU/DISPLAY=MOTIF
HOST_EDITOR ’CREATE/TERM/WAIT EDT’

Chapter 4: Vectors

Vectors are named arrays of numerical data, memory resident, which can be created during a session, loaded from
HBOOK obijects, typed in by hand, read from disk files, operated upon using the full functionality of SIGMA or
COMIS. Vectors can be used to produce graphics output, and, if necessary, stored away on disk files for further
usage. Vectors provide a very convenient mechanism to transport numerical information between different PAW
objects, and to manipulate mathematically their content. At the end of an interactive session, they are lost, unless
previously saved onto disk files.

Vectors can have up to 3 dimensions (in fact they are “arrays”, called “vectors” for historical reasons). They can
be handled by using VECTOR/... commands.

Simple arithmetic operations can be applied to vectors. In addition, as SIGMA is part of PAW, powerful array
manipulation operations are available, through the SIGMA, $SIGMA and APPLICATION SIGMA commands (see
section 5.1 on page 67).

4.1 Vector creation and fi lling

A vector is created either by the PAW command VECTOR/CREATE, by the SIGMA function ARRAY. or by the
COMIS statement VECTOR.

Example of vector creation

VECTOR/CREATE X (100) will create a 100-components vector, values = 0.
SIGMA X=ARRAY(100,1#100) will create a 100-components vector and assign
to each element the values 1,2,...100
VECTOR X(100) in a COMIS routine creates a 100-components vector
and initialises each element to zero

Once the vector is created, it can be manipulated using the following PAW commands:

VECTOR/INPUT vlist Input from the terminal values into the vector elements specified by the list v1iist.
VECTOR/READ vlist Values can be read in from a file into the vector elements specified by the list vlist.
VECTOR/COPY v1 v2 Values in v1 are copied into v2.

VECTOR/WRITE vlist Values in the vector elements specified by the list vlist can be saved on a file.
VECTOR/PRINT vlist Values of the vector elements specified in v1ist will be printed on the terminal.
VECTOR/LIST A list of existing vectors and their characteristics is printed on the terminal.
VECTOR/DELETE Allows global or selective deletion of vectors.

4.2 \Vector addressing

Indexing of vectors is possible. The indexing permitted in PAW can be considered as a superset of that permitted
by FORTRAN.

Example of vector indices

Vec for all elements

Vec(13) for element 13

Vec(12:) for elements 12 up to the last
Vec(:10) for elements 1 to 10

Vec(5:8) for elements 5 to 8

Sub-elements of the two-dimensional vector Vec (3,100) (3 columns by 100 rows) may be addressed by:

64

4.3. Vector arithmetic operations 65

Using two-dimensional vectors

Vec(2,5:8) for elements 5 to 8 in column 2

Vec(2:3,5:8) for elements 5 to 8 columns 2 to 3

Vec(2,5) for element 5 in column 2

Vec(:,3) for all elements in row 3

Vec(2) for all elements in the 2-nd column (SPECIAL CASE)

4.3 Vector arithmetic operations

A number of basic vector arithmetic operations is available:

VBIAS v1 bias v2 v2(I) = bias + v1(I)
VSCALE v1 scale v2 v2(I) = scale x v1(I)
VADD vl v2 v3 v3(I) = vi(I) + v2(I)
VMULTI v1 v2 v3 v3(I) = vi(I) * v2(I)
VSUBTR v1 v2 v3 v3(I) = vi(I) - v2(I)
VDIVID v1 v2 v3 v3(I) = vi1(I) / v2(I), if v2(I)<>0

In all operations only the minimum vector length is considered, i.e. an operation between a vector A of dimension
10 and a vector B of dimension 5 will involve the first 5 elements for both vectors. If the destination vector does
not exist, it is created with the same length as specified in the source vector.

4.4 Vector arithmetic operationsusing SIGMA
A more complete and convenient mechanism for the mathematical manipulation of entire vectors is provided by

SIGMA. SIGMA-generated arrays are stored as PAW vectors and therefore are accessible to PAW commands, and
PAW vectors are accessible to SIGMA. The facilities available via SIGMA are described in the next chapter.

45 Usingvectorsin a COMISroutine

The declaration VECTOR vector_name may be used inside a COMIS routine to address a PAW vector. If the
vector does not exist, it is created with the specifications provided by the declared dimension.

4.6 Usage of vectorswith other PAW objects

Vectors can be used to transport numerical information between different PAW objects, and to manipulate mathe-
matically their content.

VECTOR/HFILL VNAME ID Each vector element of VNAME is used to fill the existing histogram ID.
HISTOGRAM/GET_VECTOR/CONTENT Provides an interface between vectors and histograms.
HISTOGRAM/PUT_VECTOR/CONTENT Provides an interface between histograms and vectors.

4.7 Graphical output of vectors

VECTOR/DRAW VNAME Interprets the content of the vector VNAME as a histogram contents and draw a
graph.
VECTOR/PLOT VNAME Vector elements are considered as individual values to be entered into a his-

togram and a graph is produced. If VNAME is the name of a vector, then each vec-
tor element of VNAME is used to fill a histogram which is automatically booked
with 100 channels and plotted. If VNAME has the form VNAME1%VNAME2 then a
scatter-plot of vector VNAME1 versus VNAME2 is plotted.

A number of graphical primitives are available in PAW. Those directly related to the graphical output of vectors
are:

66 Chapter 4. \ectors

GRAPH N X Y Draw a curve through a set of points defined by arrays X and Y.
HIST N X Y Draw an histogram defined by arrays X and Y.
PIE X0 YO RAD N VAL Draw a pie chart, of N slices, with size of slices given in VAL, of a radius RAD,

centered at X0, YO.

4.8 Fitting the contents of a vector

A user defined (and parameter dependent) function can be fitted to the points defined by the two vectors X and Y
and the vector of associated errors EY. The general syntax of the command to fit vectors is:

VECTOR/FITx y ey func [chopt np par step pmin pmax errpar]
For more information have a look at the online help of this command in PAW.

Chapter 5: SSIGMA
51 Accessto SIGMA

The SIGMA array manipulation package can be accessed in three different ways in PAW:

Precede the statement by the prefi x SSIGMA

Example

PAW > SIGMA xvec=array(100,-pi#pi*2)
PAW > SIGMA y=sin(xvec)*xvec

Note the use of the predefined constant PI in SIGMA with the obvious value.

The PAW command: APPLication SIGMA

All commands typed in after this command will be directly processed by SIGMA. The command EXIT will return
control to PAW, e.g.

PAW > APPLication SIGMA

SIGMA > xvec=array(100,-pi#pix2)
SIGMA > sinus=sin(xvec)*xvec
SIGMA > cosinus=cos(xvec)*xvec
SIGMA > exit

PAW > vector/list

Vector Name Type Length Dim-1 Dim-2 Dim-3
XVEC R 100 100
SINUS R 100 100
COSINUS R 100 100

Total of 3 Vector(s)

The PAW system function $SIGMA

The expression to be evaluated must be enclosed in parentheses. The function will return the numerical value of
the expression (if the result is a scalar) or the name of a temporary vector (if the result is a vector).

Assuming that the computation of the function sin(x)*x in the above example would be only for the purpose
of producing a graph, (i.e. the result is not needed for further calculations), then one could just have typed the
following commands:

PAW > SIGMA xvec=array(100,-pi#pix*2)
PAW > GRAph 100 xvec $SIGMA(SIN(XVEC)*XVEC)

5.2 Vector arithmetic operationsusing SSGMA

A complete and convenient mechanism for the mathematical manipulation of vectors is provided by SIGMA. In
the following, we use the words “array” and “vector” as synonyms. In both cases, we refer to PAW vectors, in the
sense that SIGMA offers an alternative way to generate and to manipulate PAW vectors (see section 4 on page 64).
The notation of SIGMA is similar to that of FORTRAN, in the sense that is based upon formulae and assignment
statements.

The special operator ARRAY is used to generate vectors:
vname = ARRAY (argl,arg2)
vname Name of the vector (array) being created.

argl Defines the array structure, i.e. the Number of COmponents (NCO) of the array.

arg2 Provides the numerical values filling the array row-wise.
If arg?2 is absent (or does not provide enough values) the array is filled with 1.

67

68 Chapter 5. SIGMA

5.2.1 Basicoperators

+ Add

- Subtract
* Multiply
/ Divide

*x Exponentiation
& Concatenation

Note that ill defined operations will give 0. as result. For instance: a division by zero gives zero as result.

5.2.2 Logical operators

Logical operators act on entities that have Boolean values 1 (true) or 0 (false). The result is Boolean.

AND Logical operation AND
NOT Logical operation NOT
OR Logical operation OR
EQ EQualto

GE Greater or Equal to

GT Greater Than

LE LessorEqual to

LT Less Than

NE Not Equal

5.2.3 Control operators
'PRINT Provides the automatic printing of every newly created array or scalar.
INOPRINT Suppresses the automatic printing of every newly created array or scalar.
Examples
A=ARRAY (6,1#6) 2 3 4 5 6

11

1

A=ARRAY (4) 11

A=ARRAY (5,2&3%-1&2&1.2) 2 3 -1 2 1.2
3
1

A=ARRAY (3)*PI .1415927 3.1415927 3.1415927
A=ARRAY (1,123E4) 230000.0

5.3 SIGMA functions

SIGMA provides some functions which perform a task on a whole array. These functions have no analogues in
FORTRAN because all FORTRAN functions operate on one or more single numbers. Presently available SIGMA
functions are listed in table 5.1 below.

5.3.1 SIGMA functions- A detailed description.

In the following description of the SIGMA functions, the letter R always denotes the result and arg denotes one or
more arguments. Any argument may itself be an expression. In that case arg means the result of this expression.
Let OP denote any of the above array functions, then the statement:

R = OP (argl,arg2,...)

produces R without doing anything to the contents stored under the names appearing in argl,arg2, Thus,
although in the description we may say “...0P does such and such to arg ...”, in reality it leaves arg intact and
works on the argument to produce R.

5.3. SIGMA functions 69

Name Result Explanation

ANY Scalar The result is a Boolean scalar of value 1 (true) if at least one component of the argu-
ment is true and 0 (false) otherwise.

DEL Vector Analog to the Dirac-DELta Function. V1=DEL (V) sets each element of v1 t0 0.0 (if
corresponding element in V is non-zero) or to 1. 0 (if corresponding element is zero).

DIFF Vector V2=DIFF(V) forward difference of v. The rightmost value in V1 is obtained by
quadratic extrapolation over the last three elements of V.

LS Vector V1=LS(V,N) shifts index of V to the left by N steps (cyclic).

LVMAX Scalar S1=LVMAX (V1) sets S1 equal to the index (location) of the maximum value in vector
V1.

LVMIM Scalar S1=LVMIN(V1) sets S1 equal to the index (location) of the minimum value in vector
V1.

MAX Vector V3=MAX(V1,V2) sets each element of V3 equal to the maximum of the corresponding
elements in V1 and v2.

MAXV ~ Vector V1=MAXV(V) sets each element of V1 equal to the maximum value in V.

MIN Vector V3=MIN(V1,V2) setseach element of V3 equal to the minumum of the corresponding
elements in V1 and v2.

MINV Vector V1=MINV(V) sets each element of V1 equal to the minimum value in V.
NCO Scalar V1=NCO(V) Number of COmponents of vector of V.

ORDER \ector V1=0RDER(V,V2) finds a permutation that brings V2 in a non-descending order and
applies it to V to generate V1.

PROD Vector V1=PROD(V) V1 is the running product of V.

QUAD Vector V2=QUAD(V1,H) The quadrature function QUAD numerically integrates each row of V1
with respect to the scalar step size H.

SUMV Vector V2=SUMV (V1) running sum of V.

VMAX Scalar S1=VMAX (V1) sets S1 equal to the maximum value in vector V1.
VMIN Scalar S1=VMIN(V1) sets S1 equal to the minimum value in vector V1.
VSUM Scalar S1=VSUM(V) sum of all components of V.

Table 5.1: SIGMA functions

R = ANY (arg)

The function ANY considers the result of the argument expression as a Boolean array. SIGMA represents “true” by
1 and “false” by 0. Thus the components of arg must be either 0 or 1, otherwise an error is generated.

If at least one component of the result of the argument expression is 1, than ANY returns the scalar 1. If all
components of the result of the argument expression are 0 then ANY returns the scalar 0. If arg is a Boolean scalar,
R = arg.

Example of the ANY command

PAW > APPL SIGMA

SIGMA > !PRINT | Print newly created vectors and scalars
SIGMA > W=(-2)**ARRAY(10,1#10)
NCO(W)= 10
W =
-2.000 4.000 -8.000 16.00 -32.00 64.00
-128.0 256.0 -512.0 1024.
SIGMA > X=W GT 0O
NCO (X)= 10
X =

0.0000 1.000 0.0000 1.000 0.0000 1.000

70 Chapter 5. SIGMA

0.0000 1.000 0.0000 1.000
SIGMA > R=ANY(X)
NCO(R)= 1
R 1.000

R = DEL (arg)

DEL is a discrete analogue of a Dirac delta function. DEL works independently on each row of the argument array.
If the elements of any row of the argument are denoted by X, X5, ..., X;, ..., X, then the corresponding row
of the result of the delta function operation will be Z1, Z,, ..., Z;, ..., Z, where all Z; = 0 except in three
cases, in which Z; = 1, namely:

1 When the component X; is itself zero.
2 When X;_, X; are of opposite sign and | X;| < |X;_1]| If i = 1 then linear extrapolation to the left is used.

3 When X;, X;., are of opposite sign and |X;| < |X;4+1| If ¢ = 1 then linear extrapolation to the right is
used.

If arg is a scalar, the value of DEL (arg) will be 1 if arg is zero, and 0 otherwise.

Example of the del command

SIGMA > W=array(11,-1#1)

NCO(W)= 11

W =
-1.000 -0.8000 -0.6000 -0.4000 -0.2000 -0.2980E-07
0.2000 0.4000 0.6000 0.8000 1.000

SIGMA > X= (W+1.01)*W*(W-.35)*(W-.42)

NCO(X)= 11

X =

-0.1917E-01 -0.2357 -0.2384 -0.1501 -0.5524E-01-0.4425E-08
0.7986E-02 -0.5640E-03 0.4347E-01 0.2476 0.7578

SIGMA > R=del(x)

NCO(R)= 11
R =
1.000 0.0000 0.0000 0.0000 0.0000 1.000
0.0000 1.000 0.0000 0.0000 0.0000

R = DIFF (arg)

The DIFF function generates the forward difference of each row of the argument array, say X, Xo, ...,
X;, ..., X, and creates an array with components equal to the forward difference of X: X, — X3, X3 — Xo,

.., Xn — X1, X0 where the rightmost value X is obtained by quadratic extrapolation over the last three
elements of the result of arg. Applied to a scalar DIFF gives a zero result.

Example of the DIFF command

SIGMA > x=array(6,5#0)

NCO (X)= 6
X =
5.000 4.000 3.000 2.000 1.000 0.0000
SIGMA > Y=x*x
NCO(Y)= 6
Y =
25.00 16.00 9.000 4.000 1.000 0.0000
SIGMA > Z=Diff (Y)
NCO(Z)= 6
VA =

-9.000 -7.000 -5.000 -3.000 -1.000 1.000

5.3. SIGMA functions 71

R = LS (argl,arg2)

The LS rearrangement function performs a left shift. arg1 is the array to be shifted; arg2 must be a scalar value
(rounded if necessary by the system), interpreted as the number of places the array has to be shifted to the left. The
scalar arg2 can be negative, in which case LS shifts to the right a number of places equal to the absolute value of
arg2.

It should be noted the the shift is performed circularly modulo N, where N is the number of components in the
rows of the array to be shifted. Hence, LS (X, N+1) shifts the N component rows of X by 1 to the left, and LS (X, -1)
shifts the rows by N-1 to the left (or by 1 to the right). If argl is a scalar, R = argl.

Example of the left shift command

SIGMA > X=array(4&5,array(20,1#20))

NCO(X)= 4 5

X =
1.000 2.000 3.000 4.000
5.000 6.000 7.000 8.000
9.000 10.00 11.00 12.00
13.00 14.00 15.00 16.00
17.00 18.00 19.00 20.00

SIGMA > y=1s(x,1)

NCo(Y)= 4 5

Y =
2.000 3.000 4.000 1.000
6.000 7.000 8.000 5.000
10.00 11.00 12.00 9.000
14.00 15.00 16.00 13.00
18.00 19.00 20.00 17.00

SIGMA > y=1s(x,-3)

NCo(Y)= 4 5

Y =
2.000 3.000 4.000 1.000
6.000 7.000 8.000 5.000
10.00 11.00 12.00 9.000
14.00 15.00 16.00 13.00
18.00 19.00 20.00 17.00

SIGMA > X=array(5,1#5)

NCO (X)= 5

X 1.000 2.000 3.000 4.000 5.000
SIGMA > z=1s(x,3)

NCO(Z)= 5

Z 4.000 5.000 1.000 2.000 3.000
SIGMA > z1=1s(x,-4)

NCO(Z1)= 5

Z1 2.000 3.000 4.000 5.000 1.000

R = LVMAX (argl) and R = LVMIN (argl)

The functions LVMAX and LVMIN returns as a scalar result the index (position) of the largest or smallest element,
respectively, in the argument array.

Example of using the LVMAX and LVMIN commands

SIGMA > x=sin(array(10,1#10))
NCO(X)= 10
X =

72

0.841
0.989

0.909
0.412

SIGMA > r=lvmax(x)

NCO(R
R

)= 1
8.00

0.141
-0.544

R = MAX (argl,arg2)

-0.757 -0.959 -0.279

and R =

Chapter 5. SIGMA

0.657

MIN (argl,arg?)

The functions MAX and MIN work independently on each element of their arguments. arg2 can be a scalar. The
result has the same dimension as the argument array arg1 and each element of the result is set equal to the largest
or smallest element, respectively, of the corresponding element of the argument arrays.

Example of using the MAX and MIN commands

SIGMA > x=sin(array(10,1#10))

NCO(X

SIGMA >

)= 10

0.909
0.412

0.141
-0.544

y=cos(array(10,1#10))

NCO(Y

Y
0.540

-0.146

SIGMA >
NCO(Z

A

0.540
-0.146

)= 10

-0.416
-0.911

z=

min(x,y)

)= 10

-0.416
-0.911

R = MAXV (arg)

-0.990
-0.839

-0.990
-0.839

-0.757 -0.959 -0.279
-0.654 0.284 0.960
-0.757 -0.959 -0.279

and R =

0.657

0.754

0.657

MINV (arg)

The extrema functions MAXV and MINV work on each element of their argument and the result has the same di-
mension as the argument array arg1. Each element of of the result is set equal to the largest or smallest element,
respectively, of the corresponding row of the argument array.

All these functions, if applied to a scalar argument, yield R=arg.

Example of using the MAX and MIN commands

SIGMA > x=array(10,0#10)

NCO(X
X
0.0000
6.667

)= 10

1.111
7.778

SIGMA > s=sin(x)*x

NCO(S
S
0.0000
2.494

SIGMA >
NCO(X
X
-5.440
-5.440

)= 10

0.9958
7.755

x=minv(s)

)= 10

-5.440
-5.440

2.222
8.889

-5.440
-5.440

3.333
10.00

-0.6352
-5.440

-5.440
-5.440

4.444

-4.286

-5.440

5.556

-3.695

-5.440

5.3. SIGMA functions

R = NCO

(arg)

73

The “Number of COmponents” (NCO) control function obtains the NCO vector of the arg. The NCO vector of a
scalar is the scalar 1. For any argument the NCO (NCO (arg)) gives the number of dimensions of the arg.

Using the NCO command

SIGMA > x=array(4&3&2,array(24,2#48))

NCO(X

X =
2.000
10.00
18.00

26.00
34.00
42.00

)= 4 3 2
4.000 6.000
12.00 14.00
20.00 22.00
28.00 30.00
36.00 38.00
44.00 46.00

SIGMA > r=nco(x)

NCO(R)= 3
R 4.000 3.000
SIGMA > ndim=nco(nco(x))
NCO(NDIM)= 1
NDIM 3.000

R = ORDER (argl,arg2)

8.000
16.00
24.00

32.00

40.00
48.00

2.000

The ordering function ORDER acts independently on each row of argl. arg2 must have the same row length as

argl.

ORDER finds the permutation that brings arg?2 into a non-descending sequence (row-wise) and constructs the result
by applying this permutation to arg1. It may in some cases be expanded to that structure by using the techniques
of the topological arithmetic. This is particularly useful if arg2 is a single vector with the length of the rows of

argl.

Using the ORDER command

SIGMA > X = 1&1&284&-3%1&3
NCO (X)= 7
X =
1.00 1.00 2.00 4.00 -3.00 1.00 3.00
SIGMA > P = ORDER(X,X)
Nco(p)= 7
P =
-3.00 1.00 1.00 1.00 2.00 3.00 4.00
SIGMA > P = ORDER(X,-X)
Nco(p)= 7
P =
4.00 3.00 2.00 1.00 1.00 1.00 -3.00
SIGMA > Y = ARRAY(7,1# 7)
NCco(Y)= 7
Y =
1.00 2.00 3.00 4.00 5.00 6.00 7.00
SIGMA > P = ORDER(Y,X)
Nco(p)= 7
P =
5.00 1.00 2.00 6.00 3.00 7.00 4.00
R = PROD (arg)
The PROD function generates the running product of each row of the argument array, say X, X»,..., X, and
creates an array with components equal to the running product of the component of the argument: X, X5, ..., X,,

)(1,)(1 X)(2,..

.y)(1 X)(2 X ...)(n

74 Chapter 5. SIGMA

Using the TIMES command

SIGMA > x=array(6&4,array(24,1#24))

NCO(X)= 6 4

X =
1.000 2.000 3.000 4.000 5.000 6.000
7.000 8.000 9.000 10.00 11.00 12.00
13.00 14.00 15.00 16.00 17.00 18.00
19.00 20.00 21.00 22.00 23.00 24.00

SIGMA > y=prod(x)

NCO(Y)= 6 4

Y =
1.000 2.000 6.000 24.00 120.0 720.0
7.000 56.00 504.0 5040. 0.5544E+05 0.6653E+06
13.00 182.0 2730. 0.4368E+05 0.7426E+06 0.1337E+08
19.00 380.0 7980. 0.1756E+06 0.4038E+07 0.9691E+08

R = QUAD (argl,arg2)

The quadrature function QUAD numerically integrates each row of argl with respect to the scalar step size h
defined by arg?2.

The result R has the same dimension as arg1 and the integration constant is fixed by choosing the first point of the
result to be zero.

The method uses a four-point forward and backward one-strip-formula based on Lagrange interpolation. We have
for the first point of the result:

Ry :/ (argl)dz =0

1

for the second and third points

h
Riy1 =R+ ﬂ(gfi +19fiv1 — 5fivo + fiys)

and for all subsequent points

h
Ri=Ri_1+ ﬂ(fze?) —5fi—a+19fi1+9fs)

where the f; are elements of arg1 and are assumed to be values of some functions evaluated at equidistant intervals
with interval width equal to h (h being equal to the value of arg?2).

R = SUMV (arg)

The SUMV function generates the running summation of each row of the argument array, say X, Xo, ...,
X;, ..., X, and creates an array with components equal to the running sum of the X; namely: X;, X; + Xo,
e Xi+ X+ X L X+ X+ X

Using the SUM function

SIGMA > x=array(6&4,array(24,1#24))

NCO (X)= 6 4

X =
1.000 2.000 3.000 4.000 5.000 6.000
7.000 8.000 9.000 10.00 11.00 12.00
13.00 14.00 15.00 16.00 17.00 18.00

19.00 20.00 21.00 22.00 23.00 24.00

5.3. SIGMA functions

SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
NCO(D
DX

SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
PAW >
PAW >

>
>
>
>
>
>
>
>
>
>
>
>
X

>
>
>
>
>
>
>
>
>
>
>

steskook ok sk ok sk sk ok sk ke ok sk ok ok sk ok ok
* SIGMA application *
* showing use of *
* QUAD numeric *
* integration *
steskook ok sk ok sk sk sk sk ke k sk ok ok sk ok
x=array(101,0#2*pi)
* Function value array
y=sin(x)
* Step size
dx=0.6283186E-01
print dx

)= 1

0.6283186E-01

* Integration of SIN(X)
* in interval O0<=X<+2%PI
f=quad(y,dx)
* Analytical result
* is 1-C0S(X)
g=1-cos(x)
* Compute the difference
erro=(g-£)*10%x6
* Plot the difference
* in units of 107°
exit

opt GRID
gra 101 x erro

SIGMA > y=sumv(x)

NCO(Y)= 6 4

Y =
1.000 3.000 6.000
7.000 15.00 24.00
13.00 27.00 42.00
19.00 39.00 60.00

R = VMAX (arg)

R = VSUM (argl)

75

0.2 I
01 I /VNL%V

|1

0

i
-0.1 I
02 | \/A
ol \/AUAU/\V/\VI\
-0.4 I X\J
-0.5 I

0 1 2 3 4 6

Figure 5.1: Using numerical integration with SIGMA
10.00 15.00 21.00
34.00 45.00 57.00
58.00 75.00 93.00
82.00 105.0 129.0
and R = VMIN (arg)
The functions VMAX and VMIN return a scalar equal to the largest or smallest element of the array arg.
, X4y ..., X, and

The VSUM function generates the sum of each element of the argument array, say X1, Xo, ...
creates a scalar whose value is equal to the sum of all the components of X namely: X; + X + X3, ...

Using the VSUM function

SIGMA > x=array(10)

NCO (X

)= 10
1.00 1.00
1.00 1.00

SIGMA > r=vsum(x)

NCO(R
R

)= 1
10.0

1.00

1.00

? X’IL

76 Chapter 5. SIGMA

5.4 Availablelibrary functions

The library functions available under SIGMA are listed below. All these functions have a single argument, unless
otherwise indicated. The number indicated between parentheses corresponds to the number of the same function
in the CERN program library.

ABS ABSolute value

Acos ArCOSine

ALOGAM LOGarithm of the GAMma Function (C341)
ASIN ArcSINe

ATAN ArcTANgent

ATAN2 ArcTANgent2 (2 arguments)

BESIO Mod. Bessel Function 10 (C313)
BESI1 Mod. Bessel Function 11 (C313)
BESJO Bessel Function JO (C312)

BESJ1 Bessel Function J1 (C312)

BESKO Mod. Bessel Function K0 (C313)
BESK1 Mod. Bessel Function K1 (C313)
BESYO Bessel Function YO0 (C312)

BESY1 Bessel Function Y1 (C312)

Cos COSine

COSH Hyperbolic COSine

COSINT COSineINTegra (C336)

DILOG DILOGarithm Function (C304)
EBESIO exp(—|z|)Io(z) (C313)

EBESI1 exp(—|z|)Ii(z) (C313)

EBESKO exp(z)Ko(x) (C313)

EBESK1 exp(z)Ki(x) (C313)

ELLICK Complete Elliptic Integral K (C308)
ELLICE Complete Elliptic Integral E (C308)

ERF Error Function ERF (C300)
ERFC Error Function ERFC (C300)
EXP EXPonential

EXPINT EXPonentia INTegral (C337)
FREQ Normal Frequency Function FREQ (C300)
GAMMA GAMMA Function (C305)

INT Takes INTegral part of decimal number

LOG Natural LOGarithm

LOG10 Common LOGarithm

MOD Remaindering

RNDM Random Number Generator: V1=RNDM(V), with NCO(V1)=NCO(V) generates random numbers between 0 and 1.
SIGN Transfer of SIGN: V2=SIGN(V,V1), V2=|V|*V1/|V1]

SIN SINe Function

SINH Hyperbolic SINe
SININT SINelNTegral (C336)

SQRT SQuare RooT
TAN TANgent
TANH Hyperbolic Tangent

11 defined functions will return 0. as result. (e.g. SQRT of a negative number is taken as 0). ‘

Chapter 6: HBOOK

6.1 Introduction

Many of the ideas and functionality in the area of data presentation, manipulation and management in PAW find
their origin in the HBOOK subroutine package [2], which handles statistical distributions (histograms and Ntuples).
HBOOK is normally run in a batch environment, and it produces generally graphics output on the line printer or,
optionally, via the HPLOT [7] package on a high resolution graphic output device.

The HBOOK system consists of a few hundred FORTRAN subroutines which enable the user to symbolically
define, fill and output one- and two-dimensional density estimators, under the form of histograms, scatter-plots
and tables.

Furthermore the analysis of large data samples is eased by the use of Ntuples, which are two-dimensional arrays,
characterised by a fixed number N, specifying the number of entries per element, and by a length, giving the total
number of elements. An element of a Ntuple can be thought of as a physics “event” on e.g. a Data Summary
Tape (micro-DST). Selection criteria can be applied to each “event” or element and a complete Ntuple can be
statistically analysed in a fast, efficient and interactive way.

6.1.1 Thefunctionality of HBOOK

The various user routines of HBOOK can be subdivided by functionality as follows:

Booking Declare a one- or two-dimensional histogram or a Ntuple
Projections Project two-dimensional distributions onto both axes
Ntuples Way of writing micro data-summary-files for further processing. This allows to

make later projections of individual variables or correlation plots. Selection mech-
anisms may be defined

Function representation Associates a real function of 1 or 2 variables to a histogram

Filling Enter a data value into a given histogram, table or Ntuple

Access to information Transfer of numerical values from HBOOK-managed memory to Fortran vari-
ables and back

Arithmetic operations On histograms and Ntuples

Fitting Least squares and maximum likelihood fits of parametric functions to histogramed
data

Smoothing Splines or other algorithms

Random number generation Based on experimental distributions

Archiving Information is stored on mass storage for further reference in subsequent pro-
grams

Editing Choice of the form of presentation of the histogramed data

6.2 Basicideas

The basic data elements of HBOOK are the histogram (one- and two-dimensional) and the Ntuple. The user
identifies his data elements using a single integer. Each of the elements has a number of attributes associated
with it.

The HBOOK system uses the ZEBRA [6] data manager to store its data elements in a COMMON block /PAWC/,
shared with the KUIP [4] and HIGZ [8] packages, when the latter are also used (as is the case in PAW). In fact
the first task of a HBOOK user is to declare the length of this common to ZEBRA by a call to HLIMIT, as is seen
in the programs shown in Section 6.3

In the /PAWC/ data store, the HBOOK, HIGZ and KUIP packages have all their own division (see [6] for more
details on the notion of divisions) as follows (figure 6.1):

1This is of course not necessary in PAW, which is aready precompiled when it is run. However when treating very large data samples or
in other specia applications, it might be necessary to specify a different value for the length of the dynamic store, which is defi ned by a call
to PAWINT from the main initidisation routine PAMAIN. The “default” value for the length of /PAWC/ is 500000 (Apollo), 200000 (IBM) or
300000 (other systems), with respectively 10000 and 68000 words initially reserved for HIGZ and KUIP.

77

78 Chapter 6. HBOOK

link work free HBOOK HIGZ KUIP | system
area area space div div div div

Figure 6.1: The layout of the /PAWC/ dynamic store

LINKS Some locations at the beginning of /PAWC/ for ZEBRA pointers.

WORKS Working space (or division 1) used by the various packages storing information in /PAWC/
HBOOK Division 2 of the store. Reserved to HBOOK

HIGZ Adivision reserved for the HIGZ graphics package.

KUIP Adivision reserved for the KUIP user interface package.

SYSTEM The ZEBRA system division. It contains some tables, as well as the Input/Output buffers for HRIN and
HROUT.

6.2.1 RZ directoriesand HBOOK files

An advantage of using ZEBRA in HBOOK is that ZEBRA’s direct access RZ package is available. The latter
allows data structures to be uniquely addressed via pathnames, carrying a mnemonic meaning and showing the
relations between data structures. Related data structures are addressed from a directory. Each time a RZ file is
opened via a call to HRFILE a supplementary top directory is created with a name specified in the calling sequence.
This means that the user can more easily keep track of his data and also the same histogram identifiers can be used
in various files, what makes life easier if one wants to study various data samples with the same program, since
they can be addressed by changing to the relevant file by a call to HCDIR first.

Example of using directories

CALL HRFILE(1,’HISTO01’,’ ’) ! Open first HBOOK RZ file (read only)
CALL HRFILE(2,’HIST02’,’U’) ! Open second HBOOK RZ file (update)
CALL HCDIR(’//HISTO1’,’ 7) ! Make HISTO1 current directory

!

CALL HRIN(20,9999,0) Read ID 20 on file 1

CALL HCDIR(’//HIST02’,’ 7) ! Make HISTO2 current directory

CALL HRIN(10,9999,0) ! Read ID 10 on file 2
CALL HROUT(20,ICYCLE,’ ’) ! Write ID 20 to file 2
CALL HREND(’HISTO01’) ! Close file 1
CALL HREND(’HISTO02’) ! Close file 2

In the previous example (and also in the code presented in section 6.3) it is shown how an external file is available
via a directory name inside HBOOK (and PAW), and that one can change from one to the other file by merely
changing directory, via the PAW command CDIR, which calls the HBOOK routine HCDIR.

6.2.2 Changing directories

One must pay attention to the fact that newly created histograms go to memory in the //PAWC directory (i.e. the
/PAWC/ common). As an example suppose that the current directory is //LUN1, and an operation is performed on
two histograms. These histograms are first copied to memory //PAWC, the operation is performed and the result is
only available in //PAWC,

6.3. HBOOK batch as the first step of the analysis 79

MAINFRAME WORKSTATION

Batch Job Interactive Data
Analysis with PAW

HBOOK
ZEBRA KUIP
Tapes HPLOT
Raw Data HBOOK
DST HIGZ
ZEBRA
SIGMA
COMIS
Many RZ Files I MINUIT
Tapes
A4
Ineractive access High quality

graphics output

or file transfer
using ZFTP

Figure 6.2;: Schematic presentation of the various steps in the data analysis chain

v

PAW > CDIR //LUN1
PAW > ADD 10 20 30

| Set current directory to //LUN1

| Add histograms 10 and 20 into 30
| Histogram 30 is created in //PAWC
PAW > Histo/Plot //PAWC/30 |
PAW > CD //PAWC I
PAW > Histo/plot 30 |

Show the result of the sum
Set the current directory to memory
Show the result once more

A\

Similarly when histograms or Ntuples are plotted (e.g. by the HISTO/PLOT command), they are copied to memory
possibly replacing an old copy of the same ID. As long as the copy in memory is not changed, each time the ID
is read from the external file. This is because in a real time environment, e.g. using global sections on VMS or
modules with OS9, the data base on the external medium can be changed by concurrent processes. However if
the HBOOK data structure, associated with the histogram or Ntuple in memory is altered (e.g. by a MAX, IDOPT,
FIT command), then it becomes the default for subsequent operations. If one wants the original copy one first
must delete the copy from memory or explicitly use the pathname for the external file.

PAW > Histo/file 1 his.dat | The file contains ID=10

PAW > Histo/Plot 10 | ID=10 read from file and plotted

PAW > H/plot 10 | ID=10 read again from file and plotted

PAW > H/fit 10 ! G | Read from file, make a Gaussian fit on //PAWC/10
PAW > H/plot 10 | ID=10 read from memory since it changed

PAW > H/del 10 | Delete histogram 10 from memory

PAW > H/plot 10 | ID=10 read again from file and plotted

6.3 HBOOK batch asthefirst step of the analysis

Although it is possible to define histograms interactively in a PAW session, and then read the (many thousands
of) events, in general for large data samples the relevant variables are extracted from the Data Summary Files or
DSTs and stored in histograms or an Ntuple. The histogram needs already that a certain choice has to be made as
to the range of values for the plotted parameter, because the binning, or the coarseness, of the distribution has to be
specified when the histogram is defined (booked). Also only one- and two-dimensional histograms are possible,
hence the correlations between various parameters can be difficult to study. Hence it seems in many cases more
appropriate to store the value of the important parameters for each event in an Ntuple. This approach preserves

80 Chapter 6. HBOOK

the correlation between the parameters and allows selection criteria to be applied on the (reduced) data sample at
a later stage.

In general, the time consuming job of analysing all events available on tape is run on a mainframe or CPU server,
and the important event parameters are stored in a Ntuple to allow further detailed study. For convenience the
Ntuple can be output to disk for each run, and then at a later stage the Ntuples can be merged in order to allow a
global interactive analysis of the complete data sample.

A typical batch job in which data are analysed offline and some characteristics are stored in HBOOK s like shown
below.

PROGRAM HTEST FUNCTION HTFUN2(X,Y)
PARAMETER (NWPAWC=20000) * Two-dimensional gaussian
COMMON/PAWC/H(NWPAWC) HTFUN2=HTFUN1 (X) *HTFUN1 (Y)
EXTERNAL HTFUN1,HTFUN2 END
*.
CALL HLIMIT(NWPAWC) FUNCTION HTFUN1(X)
* Book histograms and declare functions * Constants for gaussians
CALL HBFUN1(100,’Test of HRNDM1’,100,0.,1.,HTFUN1) DATA C1,C2/1.,0.5/
CALL HBOOK1(110,’Filled according to HTFUN1’,100,0.,1.,1000.) DATA XM1,XM2/0.3,0.7/
CALL HBFUN2(200,’Test of HRNDM2’,100,0.,1.,40,0.,1.,HTFUN2) DATA XS1,XS2/0.07,0.12/
CALL HSCALE(200,0.) * Calculate the gaussians
CALL HBOOK2(210,°Fill according to HTFUN2’,100,0.,1.,40,0.,1.,30.) A1=-0.5%((X-XM1) /XS1) %2
* Fill histograms A2=-0.5%((X-XM2) /XS2) **2
DO 10 I=1,10000 X1=C1
X=HRNDM1 (100) X2=C2
CALL HFILL(110,X,0.,1.) IF(ABS(A1).GT.0.0001)X1=C1+EXP (A1)
CALL HRNDM2(200,X,Y) IF(ABS(A2) .GT.0.0001)X2=C2*EXP (A2)
CALL HFILL(210,X,Y,1.) * Return function value
10 CONTINUE HTFUN1=X1+X2
* Save all histograms on file HTEST.HBOOK END

CALL HRPUT(O, ’HTEST.HBOOK’,’N’)
CALL HDELET(100)

CALL HDELET(200)

CALL HPRINT(0)

END

After opening the RZ HBOOK file, HBOOK is initialised by a call to HLIMIT, which declares a length of 20000
words for the length of the /PAWC/ dynamic store. Then the one- and two- dimensional histograms 110 and 210
are filled respectively according to the functions HTFUN1 and HTFUN2. The output generated by the program is
shown below

Filled according to HTFUNL Fill according to HTFUN2
HBOK 1D = 110 DATE 02/ 09/ 89 No= 2 HBOOK D= 210 DATE 02/09/89 NO= 4
340 - CHANNELS 100 0 1
330 ' 10 0 1 2 3 4 5 6 7 8 9 0
320 [1 4 1234 1234 1234567890
310 [
300 -1 oE . - OE
290 [975 40
280 [95 - w2 224k 43+ 4 + o+ 2+ 32 + 24rer +2 o+ * 39
270 ' ' 925 * 4+ 2w 3240e 422 226 4er o+ 444 22e2ekr 4DeE 4 4+ + 38
260 ' ' 9 - 223 +3+ +3 3++333223 +2 2 44 w2+ 4 2324320 Deed 424+ + v 37
250 -1 I- 875 +4 42++b+ 342533 443224+42 2+ + 4423+ +A2+3222033++43++42 224 ++ 4 + + * 36
240 ' ' 85 - ++ + 5+35+3333483475 65+2+ + ++ + +33+3 +2 +2335222+235 522 24+ 2 * 35
230 -1 | 825 * L 1205 5530507670650+ 2 124 + + 3 22045306204 35252+54 52+452++3 332 “““ - 34
220 ' I- 8+ ++ + 532 656562546 +2+23 423 43+ + 33
210 -1 ' 775+ »2 33 37587274 e R
200 ' ' 75 + + 443324 5223 2 + o381
190 ' -1 725 * + 223 24 342+ 30
180 ' 1 7 + 22 +2 735ABCABIGBCBAGDAS 765434322 75+3558647687. 3 + v 29
170 ' | - 675 * CH 4 3364mmm5945m933 2 5+3 44225243752 75787896@67 475443+ 32242422 2+ * 28
160 ' 1 PRSP 65+ + 4 77657445+ 2 27
150 ' - [R 625 * + 3 eﬂnmg(zm@gsaseszsszss a2 sz a2 44364 657735 735736733 4423234 4444+ 2
140 ' - Sl eret 6 - + 2424+ + 42 * 25
130 ' - -1 | 575 * ++ + +5 74535525677984573453422 +2 ++ 2 +++4+2 3526525235+4243342+32+ 23 2+ v 24
120 ' | . I 55 * -+ +2222 + +r 22+ + v 23
110 | I -1 I-- 525 * A++12465436+3AT5IDIGHILHHIIE ++ + +42 42 442+ 2242DA+32 2+ +a++ 2 + v 22
100 ' - -1 | 5 - 22 4+23+6425 84543+++42 +2 #4422 + 242+ 3+ 24442334223+ 223 42+ + v o2
% | - -1 [475 * + 4533447333422 442+ + 3+ 2 +4 432 2 22242 + 33++ 222 + +3++ + 20
80 -1 | -1 - 45 - + 433244307 24423232+ 24 +2 4 4424 24 42433 444 43 44243 4+ 19
70 | I -1 | 425+ + e 24 22246364I646454322 4 +4 4 2ev 4t 422eSTIIL 4AT2 4322442+ 18
60 -1 I-- -1 - - 4 - - 3237549588A9725H724545 +33+433 + + 2 24 4 +A4633 39 25636343322 82+ 17
50 | I-- 1-1 1-1- 375 +2+2342347- 16
40 | -1 [BeN 3B - m\ m a 7A635CH 15
30 -1 1-- 325 * + OFNHIRH HKLDDS X 245648 CAT 14
20 -1 - 3 - +4: 9 13
10 e | (IS 275 + + H NOECE 343442 42 12
25+ + 2344658A0DAJ PLDENQGDH) EEBAAO3 11
CHANNELS 100 O 1 225 * 3 256778BA6CE) Gl EAl CGOH 754546692 23 +4+ 10
0 o 1 2 3 4 5 6 7 8 9 0 2 - e ” 9
1 1234567890123456780012345678901234567890123456789012345678001234567890123456789012345678901234567890 175+ + 3 3436344766755264526++3 2+ + ++ +42 22 2+32345++353562 34 33+++4 +3 + 8
15+ 2+ + +3+44+262542+4225 232 ++++ 222 + 2+ +23+242 324222 2++342 22 22+ 2 + 7
CONTENTS 100 11 11111 1111111111111111111111 125 * + 42 4+e22432+ 3+4H2 4 owa2Z 4 26+ o+ 24 4+ 6
10 1 122245 789101 11 1 R -+ E et 5
1 19473830 157562761 1717653142735611669210337304276 o5 * +2 o+ 4
05 - 3
LowEDeE 1 111111111 025 * 2
"10°* 1 0 0123456789012345678901234567890123456789012345678901234567890123456789012345678001234567890123456789 . 1
D wo
* ENTRIES = 10000 * ALL CHANNELS = 0. 1000E+05 * UNDERFLON = 0. 0000E+00 * OVERFLON= 0. 0000E+00
* BIN WD = 0.1000E- 01 * MEAN VALUE = 0. 4846E+00 *R. M. S =0 2199E+00 LOVEDGE 0 0000000000111111111
0 123456789
N ' |
* ENTRIES = 10000 PLOT ceeeeeeee Pomemnnen Pomennnen
 SATURATION AT= 31 19991 1
" SCALE .,+2,3,.,., AB, STATISTICS --------- [R Pommemeas
STEP = 1 M N MUVEO ' I

6.3.1 Adding somedatatotheRZ file

The second run using program HTEST1 shows how to add some data to the HBOOK RZ file created in the job
HTEST. After opening the file in question in update mode (’U’ option) with the name EXAM2, a new directory
NTUPLE is created, known as //EXAM2/NTUPLE as seen in the output of HLDIR command at the end of the output.
A one- and a two-dimensional histogram and a Ntuple with identifiers of respectively 10, 20 and 30 are booked.
Each Ntuple element or “event” is characterised by three variables (labelled X, >Y? and *Z’). The Ntuple data,
when the initial size of 1000 words is exhausted, will be written to the directory specified in the call to HBOOKN,
i.e. //EXAM2/NTUPLE, and the data in memory are replaced with those newly read. A one- and a two-dimensional

6.4. Using PAW to analyse data 81

projection of X and X Y are then made onto histograms 10 and 20 respectively, before they are printed and written
on the HBOOK RZ file. At the end the current and parent directories are listed. The contents of the latter shows
that the data written in the first job (HTEST) are indeed still present in the file under the top directory //EXAM2.
The call to RZSTAT shows usage statistics about the RZ file.

Example of adding datatoa HBOOK RZ file

PROGRAM HTEST1
PARAMETER (NWPAWC=20000)

COMMON/PAWC/H (NWPAWC)

DIMENSION X(3)

CHARACTER*8 CHTAGS (3)

DATA CHTAGS/’ X *,» Y *,» 2z /

CALL HLIMIT (NWPAWC)
Reopen data base
CALL HROPEN(1,’EXAM2°, *HTEST.HBOOK’,0,°U’)
CALL HMDIR(’NTUPLE’,’S’)
CALL HBOOK1(10,’TEST1’,100,-3.,3.,0.)
CALL HBOOK2(20,’TEST2’,30,-3.,3.,30,-3.,3.,250.)
CALL HBOOKN(30,’N-TUPLE’,3,’//EXAM2/NTUPLE’ , 1000, CHTAGS)
DO 10 I=1,10000
CALL RANNOR(A,B)
X(1)=A
X(2)=B
X(3)=A*A+B+B
CALL HFN(30,X)
10 CONTINUE
CALL HPR0J1(10,30,0,0,1,999999,1)
CALL HPR0J2(20,30,0,0,1,999999,1,2)
CALL HPRINT(0)
CALL HROUT(0,ICYCLE,’)
CALL HLDIRC’ *,’ ?)
CALL HCDIR(’",’)
CALL HLDIRC’ *,’ ?)
CALL RZSTAT(® *,999,’ *)
CALL HREND (’EXAM2°)
END

6.4 Using PAW to analyse data

After transferring the HBOOK RZ file, which was created in the batch job as explained in the previous section,
we start a PAW session to analyse the data which were generated. The PAW session below shows that the file
HTEST.HBOOK is first opened via a call to HISTO/FILE. The data on the file are now accessible as the top di-
rectory //LUN1. When listing with the LDIR command the contents of the top directory //LUN1 and its NTUPLE
subdirectory, the same information (histograms and Ntuples) is found as in the batch job (figure 6.3)

6.4.1 Plot histogram data

The analysis of the data can now start and we begin by looking at the histograms in the top directory. Figure 6.4
shows the commands entered and the corresponding output plot. They should be compared with the lineprinter
output in Section 6.3.

6.5 Ntuples: A closer look

We now turn our attention to the NTUPLE directory to show the functionality and use of Ntuples. After making
NTUPLE the current directory the available HBOOK objects are listed. The structure of the Ntuple with identifier
30 is PRINTed. The contents of the various Ntuple elements (“events”) can be viewed by the NTUPLE/SCAN
command. As with most Ntuple commands a selection criterion can be given to treat only given “selected”
subsamples of the Ntuple (two examples are seen with the further NTUPLE/SCAN commands (see figure 6.5).

6.5.1 Ntuple plotting, variablesand selection mechanisms

The general format of the command NTUPLE/PLOT to project and plot a Ntuple as a (1-Dim or 2-Dim) histogram
with automatic binning, possibly using a selection algorithm is:

NTUPLE/PLOT idn [uwfunc nevent ifirst nupd chopt idh]

IDN Ntuple Identifier and variable(s) (see table 6.1)
UWFUNC Selection function (see table 6.2) - Default no function

82

TESTL TEST2
HBOK iD= 10 DATE 02/09/ 89 o= 1
HBOOK ID = 20 DATE 02/ 09/ 89 NO
280
270 - -
260 [CHANNELS 10 U O 1 2 30
250 N 1 N 123456789012345678901234567890 V
20 o e
220 o [OVE * oA 4232442+ 4+ *
§;§ : :: 2.8 * ++ 2 +2 + 2 + *
190 2.6 * 2 2+ +34+++ ++ + *
b ; 2.4 * 2+ 3322343+ 3++ + *
160 I-- 2.2 * + 2 247236663524+23++ + *
123 i 2 * + 2+23769597A75 6+2+ 2 *
130 - 1.8 * + 5508576EBCDAAS3357 2+ + *
120 I- 1.6 * ++3278CCOJFCBF98C86643+2+ *
b 1.4 344686AAGIJMEM DFG964232+ + *
90 1.2 * ++++44BBIGMQOPWNI CCGl 97322++ + *
g 1 * 2+545BGOMISX* WWTIMCFA755++2 *
60 .8 * 2+4799DHSRUX* * * * VXRQIC57635+ *
ig . .6 * 4 +25CBEKLZ********MXGGCl 4322 3 *
30 | .4 * 2 A+T7T9BNr Ur * * ** *x*x* YO FB862 *
20 MR I--- .2 * 2 ++266CCLR***x*xxxxkix Q) HAJG4+2 4 *
oo ! e * o+ B2BBECX*THA***axkxxxYKPC772 + *
CHANNELS 100 O 1 - .2 * 4 +423D6LDS* * Xx**x**xkx ZUMECE543+ 2 *
0 o 1 2 3 4 5 3 7 8 9 0
1 123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456 7890 N 4 ¥+ 2347CAHSSXURRRRUMGED2 3 4 *
- .6 * 2334AAKNL* VE* AR | HOTT3++ + *
CONTENTS 100 1111111111111 1 1111111111111 - 8 % 422565CLIL* X*** ¥+ * Z* TLOHOA8+ + *
10 1111 123434878888 496233109788775524421007777655443322222111
1. 12664878771279325875 75324963516 12194856211 - 1 * 2 2 32666EMLN***Q-ULLQVABB342+ 2 *
. - 1.2 * + 22377BDI US* P*** TTUNBDA545+2 *
1 3222222222222222211111111111111111 1111111111111 - L4 * 4+ 2 +689ETKKNWUNRI HICEAA72+++ + *
0 0988776554432211099887665543322100998776654433211000112334456677899001223345566788990112234455677889 - 1.6 * 2+3+74BCMJI GOl KEI AAD6643++ 2 *
0 - 1.8 * 4+ + +2222856AA8HGIACB6786+2+2++ *
* ENTRES = 10000 * ALL CHANNELS = 0. 9969E+04 * UNDERFLOW = 0. 1200E+02 * OVERFLOW = 0.1900E+02 - 2 * + 2 +273598EDC5977634++ *
* BIN WD = 0.6000E-01 * MEAN VALUE =0.3907E-02 *R. M. S =0 9857E+00 . 2.2 % 4 4+ +42+4274977548883++42 +++ *
- 2.4 % + +3367558445+442+ + *
- 2.6 * +2 + 2224+6++7234 + + *
- 2.8 * + 33+3+322++ + *
- 3 * o+ 22 2 +442 2 *
UND * + + 23 +2+++ + *
ok ko ok ok ko ko ko ko
LOWEDGE =~ ---------------
1. 32222211111 1111122222
0 086420864208642024680246802468
*
* ENTRIES = 10000 pLor -----
* SATURATION AT= 255 12
* SCALE .,+,2,3,.,., AB, STATISTICS -----
* STEP = 1 * M N MUMEO
PAW > histo/file 1 htest.hbook | open the HBOOK RZ file
* NTUPLE ID= 30 ENTRIES= 10000 N-TUPLE * PAW > 1dir | list current directory
* Var numb * Name * Lower * Upper * Fprkpkkkkkkkkk Directory > //LUN1 <=:
* 1 * X * —.422027E+01 * 0.386411E+01 * Created 890902/1955 Modified 890902/1958
* 2 * Y * -.411076E+01 * 0.378366E+01 *
* 3 * Z * 0.485187E-04 * 0.179518E+02 * ===> List of subdirectories
NTUPLE Created 890902/1958 at record 9

=> Directory : //EXAM2/NTUPLE
30 () N-TUPLE
10 (1) TEST1
20 (2) TEST2
=> Directory : //EXAM2
100 (1) Test of HRNDM1
110 (1) Filled according to HTFUN1
200 (2) Test of HRNDM2
210 (2) Fill according to HTFUN2
NREC ~ NWORDS ~ QUOTA(%) FILE(%) DIR. NAME
34 34064 0.85 0.85 //EXAM2/NTUPLE
41 40431 1.02 1.02 //EXAM2

===> List of objects

Chapter 6. HBOOK

HBOOK-ID CYCLE DATE/TIME NDATA OFFSET REC1 REC2
100 1 890902/1955 153 1 3
110 1 890902/1955 88 154 3
200 1 890902/1955 4335 242 3
210 1 890902/1955 767 481 7

NUMBER OF RECORDS =

PER CENT OF DIRECTORY QUOTA USED =

PER CENT OF FILE USED
BLOCKING FACTOR
PAW > 1dir ntuple

*kkkkkkkkkkkkk Directo:

Creat

=> List of objects

HBOOK-ID CYCLE
30 2 8
1 8
10 1 8
20 1 8

NUMBER OF RECORDS =
PER CENT OF DIRECTORY
PER CENT OF FILE USED
BLOCKING FACTOR

7 NUMBER OF MEGAWORDS = 0 +
0.175
0.175
= 74.540
| list directory in NTUPLE

6367 WORDS

=> //LUN1/NTUPLE <

Ty

ed 890902/1958 Modified 890902/1958

DATE/TIME NDATA OFFSET REC1 REC2
90902/1958 1082 215 41 42
90902/1958 1082 725 39 40
90902/1958 151 783 40
90902/1958 305 934 40 41

34 NUMBER OF MEGAWORDS =
QUOTA USED = 0.851

= 0.850

= 94.899

0 + 34064 WORDS

Figure 6.3: Adding and reading data on a HBOOK RZ direct access file

30
29
28
27
26
25
24

22
21

19
18
17
16
15
14

12
11

Ervowroo~

UNI

6.5. Ntuples: A closer look 83

Plotting histogram data

PAW > zon 1 2 | Divide picture into 2 vertically
PAW > set htyp -3 | Set hatch style for histogram

PAW > hi/pl 110 | Plot 1-dimensional histogram 110
PAW > hi/pl 210 | Plot 2-dimensional histogram 210

30 |-

300 [

250 |

20 |

150 |

100 |

50 |

0
0 02 04 06 08 1

Filled according to HTFUN1

1

08 |-

06 [

04 |-

02 [

o L v o
0 02 04 06 08 1

Fill according to HTFUN2

Figure 6.4: Plot of one- and two-dimensional histograms

NEVENT Number of events to be processed (default is 999999)

IFIRST First event to be processed (default is 1)

NUPD Frequency with which to update histogram (default is 1000000)
OPTION Options

IDH Identifier of histogram to fill

With most Ntuple operations a “selection function” UWFUNC of a form described in table 6.2 can be used, i.e. it can
take the form of a simple or composed expression or an external FORTRAN function, executed by COMIS [1],
a cut or a mask. The selection function also acts as a weighting factor.

6.5.2 Masks

The mask facility allows the user to specify up to 32 selection criteria associated with a Ntuple. These criteria
are defined like cuts, but their value for each event are written to an external direct access file, from which the
information can be readily retrieved at a later stage, without recalculating the condition value in question. In the

84 Chapter 6. HBOOK

PAW > cd ntuple | move to NTUPLE directory
PAW > hi/li | list HBOOK objects

===> Directory : //LUN1/NTUPLE
30 (M) N-TUPLE
10 (1) TEST1
20 (2) TEST2

PAW > nt/print 30 | print summary for Ntuple 30
Seokokok ok ok ok sk ok ok ok ok ok ok ok ok ok koo ook ok ook

* NTUPLE ID= 30 ENTRIES= 10000 N-TUPLE *
%k %k k 3k 3k 3k 3k 3k >k ok ok ok ok ok 3k %k k k k.

* Var numb * Name * Lower * Upper *
eokok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ook ko ook ook

* 1 * X * —.422027E+01 * 0.386411E+01 *
* 2 * Y * -.411077E+01 * 0.378365E+01 *
* 3 * Z * 0.485188E-04 * 0.179518E+02 *
Sokkkkok sk ok ok ok ok ok ok ok ok ok ok ok ok ook ok ook

PAW > nt/scan 30 | scan the first elements
| Event | X | Y | VA |

| 1 | -1.06459 | -1.82194 | 4.45282 |

| 2 | -1.15619 | 0.106067 | 1.34802 |

| 3 | 0.923492 | 0.943671 | 1.74335 |

| 4 | -0.145332 | -0.57672 | 0.353727 |

| 5 | -1.18289 | 1.50525 | 3.66501 |

| 6 | -0.658942 | 1.17934 | 1.82504 |

| 7 | -0.071134 | 0.216755 | 0.0520428 |

| 8 | -1.45944 | 0.869828 | 2.88655 |

| 9 | 2.2881 | -0.103207 | 5.24604 |

| 10 | -0.70103 | -0.238115 | 0.548141 |

| 11 | 1.27792 | -0.633723 | 2.03468 |

| 12 | 0.046591 | 0.45629 | 0.210371 |

| 13 | -0.966939 | 0.441924 | 1.13027 |

| 14 | 0.299147 | 1.72798 | 3.07542 |

| 15 | 1.35417 | 0.425711 | 2.015 |

| 16 | 2.51372 | -1.17377 | 7.69653 |

| 17 | 0.974036 | -0.677181 | 1.40732 |

| 18 | 0.299531 | -1.10509 | 1.31094 |

| 19 | 0.407014 | 0.236156 | 0.22143 |

More...? (<CR>/N/G) n

PAW > nt/sc 30 z>16 | example of a condition on the Z variable

I Event | X |y ; Z |

i 1945 i -0.08474 [4.00098 i 16.015 i

| 7664 | 0.81875 | 3.9523 | 16.291 I

;=> 2 events satisfied the imposed cut;

PAW > nt/sc 30 abs(x)>4.or.abs(y)>4 | example of a more complex selection criterion
I Event | X |y ; Z |

| | 4.00098 ; 16.015 |

| 1945 | -0.08474

==> 1 event satisfied the imposed cuts

Figure 6.5: Print and scan Ntuple elements

example session below first a new mask file MNAME . MASK is defined. Next we define event selection criteria and
store their result at various bit positions in the mask vector MNAME.

Defi ning cuts and masks

PAW > NT/CUT $4 Z>X*%x2 | Define cut 4
PAW > MASK/FILE MNAME N

PAW > NT/PLOT 30.X X#*2+Y**2>2>>MNAME(1)

PAW > NT/PLOT 30.X $4.AND.Y>1>>MNAME(2)

PAW > NT/PLOT 30.Y SIN(Z).GT.SIN(Y)>>MNAME(3)

6.5. Ntuples: A closer look 85
Format Explanation Example
IDN.CHNAME The variable named "CHNAME" 30.x variable x

IDN.B%A

IDN.expression

IDN. exprlexpr2

Expression is any numerical expression of
Ntuple variables. It may include a call to a
COMIS function.

Scatter-plot of variable B versus A for each
event.

exprl and expr2 can be any numerical ex-
pression of the Ntuple variables. They can be

30. X**2+Y*%2 30 .X*xCOMIS.F

30.Y%X

Y versus X

30.SQRT (X**2+Y*%2) %SIN(Z)
30.COMIS1.F%C0S(Z)

COMIS functions.
Any combination of the above

30.3%COMIS2.F*SIN(X)

Table 6.1: Syntax for specifying Ntuple variables

function value is applied as a weight

Format Explanation Example
0 or missing No selection is applied (weight is 1). NT/PLOT 30.X
Combination A CUT or combination of CUTs, each created NT/PLOT 30.X $1 (use cut $1)
of cuts by the command NTUPLE/CUTS NT/PLOT 30.X $1.AND.$2
NT/PLOT 30.X .NOT.($1.AND.$3).0R.$2
Combination A MASK or combination of MASKSs, Assuming there is a mask vector MSK:
of masks each created by the command NT/PLOT 30.X MSK(4) (bit4)
NTUPLE/MASK/FILE NT/PLOT 30.X MSK(1).0R.MSK(6)
Logical ex- Any logical combination of conditions be- NT/PLOT 30.X X>3.14.AND. (Y<Z+5.)
pression tween Ntuple variables, cuts and masks. NT/PLOT 30.X $1.AND.MASK(3).0R.Z<10
Numerical ex- Any numerical combination of constantsand NT/PLOT 30.X Y weight X by Y
pression Ntuple variables. In this case the value of the NT/PLOT 30.X X**2+Yx*x2 weight X by
expression will be applied as a weight to the X2+Y?2
element being plotted.
Selection Name of a selection function in a text file of NTUPLE/PLOT 30.X SELECT.F
function the form fun. £ (Unix), FUN.FOR (VAX). The For each event the plotted value of X will be

multiplied by the value of the selection function
SELECT calculated for that event.

Any combination of the above

NT/PL 30.Y%F1.F*SIN(X) $1.0R.F2.F

PAW > MASK/LIST MNAME

MNAME

bit 1:
bit 2:
bit 3:

PAW > MASK/CLOSE MNAME

Events:

select
3577
1567
7050

Table 6.2: Syntax of a selection function used with a Ntuple

10000
Description
Xk 2+Y*k%2>2
$4.AND.Y>1
SIN(Z) .GT.SIN(Y)

(file MNAME.mask, read/write)

| Print mask definitions

| close MNAME.MASK file

Of course doing this kind of gymnastics makes sense only if a time consuming selection mechanism is used and
only a few events are selected. In a subsequent run the mask file can then be read to display the information much

more quickly.

86

Using amask fi le of a previousrun

PAW
PAW
PAW
PAW
PAW

Cuts

V V. V V VvV

MASK/FILE MNAME
NT/PLOT 30.X MNAME(1)

NT/PLOT 30.X MNAME(2)

NT/PLOT 30.Y MNAME(3)

MASK/CLOSE MNAME

Chapter 6. HBOOK

open the mask file for read
plot using bit 1

plot using bit 2

plot using bit 3

close MNAME.MASK file

A cut is identified by an integer (between 0 and 100) preceded by a $ sign and is a logical expression of Ntuple
elements, other cuts, masks or functions.

Example of cuts

PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW

V V V V V V V VYV

NT/CUT $1 4<X | variable

NT/CUT $2 0.4<X<0.8.AND.Y<SQRT(Z) | ditto

NT/CUT $3 FUN.F | external function
NT/CUT $4 FUN.F.AND.Z>X**2 | ditto plus variable
NT/CUT $5 ($1.AND.$2).0R.$4 | combination of cuts
NT/CUT $6 $1.AND.Z<0 | cut and variable
NT/CUT $7 X | event weight

NT/CUT $8 SQRT(Y) | ditto

NT/CUT $9 MASK(23).AND.$8 | mask and cut

Cut definitions can be written to a file and later re-read.

PAW
PAW
PAW
$4

vV V Vv

NT/CUT $0 W cuts.dat

NT/CUT $4 R cuts.dat

NT/CUT $4 P
FUN.F.AND.Z>X**2

Graphical cut

| write all cuts to file
| read cut 4 from file

| print cut 4

One can also define a cut on the screen in a graphical way, by pointing out the upper and lower limits (1-
dimensional case) or an area (2-dimensional case) by using the mouse or arrow keys (see figure 6.6).

Using graphical cuts

PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW
PAW

> gcut 1 30.x%y

> zon 1 2

> title ’Graphical cuts’

> 2d 211 °’X versus Y’ 50 -2.5 2.5 50 -2.5 2.5 0.
> 1d 212 ’X - Before and after cut’ 60 -3. 3. 0.
> 1d 213 ’Y - Before and after cut’ 60 -3. 3. 0.
> nt/pl 30.x%y idh=211

> cut $1 d

>zon 2 23 s

> nt/pl 30.x idh=212

> set htyp -3

> nt/pl 30.x $1 option=s idh=212

> set htyp O

> nt/pl 30.y idh=213

> set htyp -3

> nt/pl 30.y $1 option=s idh=213

COMIS selection function

graphical cut 1
define picture layout
title for picture
user binning
ditto
ditto
plot y versus x in histogram 211
draw graphical cut 1
redefine the picture layout
plot x BEFORE cut in histogram 212
use hatch for plot after cut
plot x AFTER cut on same plot
no hatch for plot without cut
plot y BEFORE cut in histogram 213
use hatch for plot after cut
plot y AFTER cut on same plot

In the definition of a selection criterion an external function (in the sense that it has not been compiled and linked
together with PAW) can be used. This function is interpreted by the COMIS [1] package. The CERNLIB functions
which are callable from within such a function are given in the online help of the command CALL.

The command NTUPLE/UWFUNC allows a selection function for a Ntuple to be prepared more easily. It generates
a function with a name specified by the user and with code making available the variables corresponding to the
given Ntuple identifier via a COMMON block. As an example consider the Ntuple number 30 used previously.

6.5. Ntuples: A closer look

 Graphical cuts

TSRS I S T SR N S

0.5 1 15 2 25

-25 -2 -15 -1 -0.5

X versus Y

450 450

400 400
350 350
300 300
250 250
200 200
150
100

50

0 Tl L1 0
-2 -1 0 1 2 3 -3

'
w

X - Before and after cut Y - Before and after cut

Figure 6.6: Graphical definition of cuts

Specifying a user selection function

PAW > NTUPLE/UWFUNC 30 SELECT.F EPT | Generate and edit SELECT.F
REAL FUNCTION SELECT (XDUMMY)
REAL X , Y , Z
COMMON/PAWIDN/IDNEVT,0BS(13),
+ X , Y , Z
DIMENSION XDUMMY(3)
CHARACTER*8 CHTAGS(3)
DATA CHTAGS/’ X L 4 ’/

SELECT=1.
PRINT 1000, IDNEVT
DO 10 I=1, 3
PRINT 2000,I,CHTAGS(I),XDUMMY(I)
10 CONTINUE

1000 FORMAT(8H IDNEVT=,I5)
2000 FORMAT(5X,I3,5X,A,1H=,G14.7)
END

87

The user can add further FORTRAN code with the command EDIT. Remember that the value of the function can

be used for weighting each event.

88

Pl

otting Ntuples

PAW
PAW

ZONE 1 2
OPTION STAT

PAW

| 2 histograms one above the other
| Write statistics on plot
| plot variable Z of Ntuple 30

1d 300 ’Z recalculated and user binning’ 100 0. 10.

PAW

>
>
PAW > NT/PLOT 30.Z
>
>

Chapter 6. HBOOK

NT/PLOT 30.X**2+Y*x2 IDH=300 | Recalculate variable Z + plot with user binning

1000 - D 1000000
o Entries 10000
Mean 2014
800 RMS 2.003
600
400
200
125 15 175
E) 300
500 - Entries 10000
H Mean 1.939
w | RMS 1811
30 [
200 |-
100 |
0 7\ [Il ‘ I | ‘ I | ‘ Il L1 ‘ Il I ‘ I | ‘ T
0 4 5 6 7 8 9 10

6.5.3 Examples

Z recalculated and user binning

Figure 6.7: Read and plot Ntuple elements

To put into practice the syntax explained above let us consider figure 6.7. We first plot variable Z with the binning
automatically calculated by HBOOK. Then we define a histogram with identifier 300 into which we want HBOOK
to plot the squared sums of the elements X and Y. This corresponds to the definition of the Z variable as can be seen
in the FORTRAN listing in figure 6.3. As the MEAN and RMS are only calculated on the events within the histogram
boundaries, they differ slightly between the top and bottom plot in figure 6.7.

6.6 Fittingwith PAW/HBOOK/MINUIT

Minuit[5]? is conceived as a tool to find the minimum value of a multi-parameter function and analyze the shape
of the function around the minimum. The principal application is foreseen for statistical analysis, working on

2The following information about Minuit has been extracted from the Minuit documentation.

6.6. Fitting with PAW/HBOOK/MINUIT 89

More complex Ntuple presentations

PAW > zone 2 2 | Divide plot in 4 zones
PAW > option STAT | Select option to write statistics on plot
PAW > set HTYP -3 | Define histogram hatch type
PAW > 1d 401 ’NT/PL - X’ 100. -2.5 2.5 | Book 1 dim histogram
PAW > nt/pl 30.1 idh=401 | Plot variable 1 (x) using histogram 401
PAW > 1d 402 ’NT/PL E option - Y’ 100. -2.5 2.5 | 1 dim histogram (different title)
PAW > set MTYP 21 | Select market type for points on plot
PAW > nt/pl 30.y option=E idh=402 | Plot y variable with Error bar option
PAW > 1d 403 ’NT/PL B option - X’ 40. -2.5 2.5 | 1 dim histogram (different title + binning)
PAW > set BARW 0.4 | Define bar width for bar chart
PAW > set BARO 0.3 | Define bar origin for bar chart
PAW > csel NB 0.33 | Print selection criterion on plot
PAW > set HCOL 1001 | Histogram colour black
PAW > nt/pl 30.x y>0 option=B idh=403 | Plot x variable as bar chart
PAW > 1d 404 ’NT/PL PL option - Y’ 100. -2.5 2.5 | 1 dim histogram (different title)
PAW > max 404 160 | Fix maximum for plotting hist 404
PAW > nt/pl 30.y sqrt(z)>1 -404 option=pl | Plot y variable with PL option
- 1D 401 240 — 1D 402
240 j ;ne‘:ﬂs -0. 163;?0‘2) : M ;":;ns 0. 267%
200 200 [~ ﬂ
- iy
, i MWW% $%
160 } 160 I w %&#
120 ; 20 'ﬁ% ﬁ%
80 |- 80 |- wﬁ“ #ﬁ#
r 20 | Eﬁwﬂ
“t :Wﬁw
- mm"ﬂ‘im
O \H\‘HH‘HH‘HH‘H\\‘\H\‘HH‘HH‘HH‘HH O EHH‘\\H‘\H\‘HH‘\H\‘\H\‘HH‘HH‘HH‘HHW
25 -2 -15 -1 -05 0 05 1 15 2 25 25 -2 -15 -1 05 0 05 1 15 2 25
NT/PL - X NT/PL E option - Y
© = 160 ™ o
:Y>O Entries 5012 7SQRT<Z> > w Entries 6090
280 - e o - e
r 140 — -
20 1 120 |
200 - 00 [
160 |- 0 [
120 | o [
g0 | w0 [
40 20 |(w!
0 N _u_u_u_ 0 \H‘\\H‘\H\‘HH‘\H\‘HH‘HH‘HH‘HH‘HH
25 -2 -15 -1 -05 0 05 1 15 2 25 25 -2 -15 -1 05 0 05 1 15 2 25
NT/PL B option - X NT/PL PL option-Y

Figure 6.8: Selection functions and different data presentations

90 Chapter 6. HBOOK

chisquare or log-likelihood functions, to compute the best-fit parameter values and uncertainties, including cor-
relations between the parameters. It is especially suited to handle difficult problems, including those which may
require guidance in order to find the correct solution.

6.6.1 Basic conceptsof MINUIT.

The MINUIT package acts on a multiparameter FORTRAN function to which one must give the generic name FCN.
In the PAW/HBOOK implementation, the function FCN is called HFCNH when the command Histo/Fit (PAW)
or the routine HFITH are invoked. It is called HFCNV when the command Vector/Fit or the routine HFITV are
invoked. The value of FCN will in general depend on one or more variable parameters.

To take a simple example, suppose the problem is to fit a polynomial through a set of data points with the command
Vector/Fit. Routine HFCNV called by HFITV calculates the chisquare between a polynomial and the data; the
variable parameters of HFCNV would be the coefficients of the polynomials. Routine HFITV will request MINUIT
to minimize HFCNV with respect to the parameters, that is, find those values of the coefficients which give the
lowest value of chisquare.

6.6.2 Basic concepts - Thetransformation for parameterswith limits.

For variable parameters with limits, MINUIT uses the following transformation:
Pex —a — .
P, = arcsin <2l)t—7a — 1) Pt =a+ b_2_a (sin Py + 1)

so that the internal value P,,,; can take on any value, while the external value P, can take on values only between

the lower limit a and the upper limit b. Since the transformation is necessarily non-linear, it would transform a
nice linear problem into a nasty non-linear one, which is the reason why limits should be avoided if not necessary.
In addition, the transformation does require some computer time, so it slows down the computation a little bit, and
more importantly, it introduces additional numerical inaccuracy into the problem in addition to what is introduced
in the numerical calculation of the FCN value. The effects of non-linearity and numerical roundoff both become
more important as the external value gets closer to one of the limits (expressed as the distance to nearest limit
divided by distance between limits). The user must therefore be aware of the fact that, for example, if he puts
limits of (0,10%°) on a parameter, then the values 0.0 and 1.0 will be indistinguishable to the accuracy of most
machines.

The transformation also affects the parameter error matrix, of course, so MINUIT does a transformation of the
error matrix (and the “parabolic” parameter errors) when there are parameter limits. Users should however realize
that the transformation is only a linear approximation, and that it cannot give a meaningful result if one or more
parameters is very close to a limit, where 0 Peyt /0Pt = 0. Therefore, it is recommended that:

— Limits on variable parameters should be used only when needed in order to prevent the parameter from
taking on unphysical values.

— When a satisfactory minimum has been found using limits, the limits should then be removed if possible, in
order to perform or re-perform the error analysis without limits.

6.6.3 How to get theright answer from MINUIT.

MINUIT offers the user a choice of several minimization algorithms. The MIGRAD (Other algorithms are avail-
able with Interactive MINUIT, as described on Page 96) algorithm is in general the best minimizer for nearly all
functions. It is a variable-metric method with inexact line search, a stable metric updating scheme, and checks for
positive-definiteness. Its main weakness is that it depends heavily on knowledge of the first derivatives, and fails
miserably if they are very inaccurate. If first derivatives are a problem, they can be calculated analytically inside
the user function and communicated to PAW via the routine HDERIV.

If parameter limits are needed, in spite of the side effects, then the user should be aware of the following techniques
to alleviate problems caused by limits:

6.6. Fitting with PAW/HBOOK/MINUIT 91

Getting the right minimum with limits.

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the existence of
limits has probably not prevented MINUIT from finding the right minimum. On the other hand, if one or more
parameters is near its limit at the minimum, this may be because the true minimum is indeed at a limit, or it may
be because the minimizer has become “blocked” at a limit. This may normally happen only if the parameter is so
close to a limit (internal value at an odd multiple of ig that MINUIT prints a warning to this effect when it prints
the parameter values.

The minimizer can become blocked at a limit, because at a limit the derivative seen by the minimizer 0F /0 P,y is
zero no matter what the real derivative 9F /0 Pex iS.

OF _ OF 0Py _ OF _
a-Pint B 8-Pext a-Pint B 8-Pext B

Getting the right parameter errors with limits.

In the best case, where the minimum is far from any limits, MINUIT will correctly transform the error matrix,
and the parameter errors it reports should be accurate and very close to those you would have got without limits.
In other cases (which should be more common, since otherwise you wouldn’t need limits), the very meaning of
parameter errors becomes problematic. Mathematically, since the limit is an absolute constraint on the parameter,
a parameter at its limit has no error, at least in one direction. The error matrix, which can assign only symmetric
errors, then becomes essentially meaningless.

6.6.4 Interpretation of Parameter Errors:

There are two kinds of problems that can arise: the reliability of MINUIT’s error estimates, and their statistical
interpretation, assuming they are accurate.

Statistical interpretation:

For discussion of basic concepts, such as the meaning of the elements of the error matrix, or setting of exact
confidence levels, see [9, 10, 11].

Reliability of MINUIT error estimates.

MINUIT always carries around its own current estimates of the parameter errors, which it will print out on request,
no matter how accurate they are at any given point in the execution. For example, at initialization, these estimates
are just the starting step sizes as specified by the user. After a MIGRAD or HESSE step, the errors are usually quite
accurate, unless there has been a problem. MINUIT, when it prints out error values, also gives some indication of
how reliable it thinks they are. For example, those marked CURRENT GUESS ERROR are only working values not
to be believed, and APPROXIMATE ERROR means that they have been calculated but there is reason to believe that
they may not be accurate.

If no mitigating adjective is given, then at least MINUIT believes the errors are accurate, although there is always
a small chance that MINUIT has been fooled. Some visible signs that MINUIT may have been fooled are:

— Wiarning messages produced during the minimization or error analysis.
— Failure to find new minimum.
— Value of EDM too big (estimated Distance to Minimum).

— Correlation coefficients exactly equal to zero, unless some parameters are known to be uncorrelated with the
others.

— Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally difficult
problem, and one which has been badly parameterized so that individual errors are not very meaningful
because they are so highly correlated.

— Parameter at limit. This condition, signaled by a MINUIT warning message, may make both the function
minimum and parameter errors unreliable. See the discussion above “Getting the right parameter errors
with limits”.

92 Chapter 6. HBOOK

The best way to be absolutely sure of the errors, is to use “independent” calculations and compare them, or compare
the calculated errors with a picture of the function. Theoretically, the covariance matrix for a “physical” function
must be positive-definite at the minimum, although it may not be so for all points far away from the minimum, even
for a well-determined physical problem. Therefore, if MIGRAD reports that it has found a non-positive-definite
covariance matrix, this may be a sign of one or more of the following:

A non-physical region: On its way to the minimum, MIGRAD may have traversed a region which has unphysi-
cal behavior, which is of course not a serious problem as long as it recovers and leaves such a region.

An underdetermined problem: If the matrix is not positive-definite even at the minimum, this may mean that
the solution is not well-defined, for example that there are more unknowns than there are data points, or that the
parameterization of the fit contains a linear dependence. If this is the case, then MINUIT (or any other program)
cannot solve your problem uniquely, and the error matrix will necessarily be largely meaningless, so the user must
remove the underdeterminedness by reformulating the parameterization. MINUIT cannot do this itself.

Numerical inaccuracies: It is possible that the apparent lack of positive-definiteness is in fact only due to ex-
cessive roundoff errors in numerical calculations in the user function or not enough precision. This is unlikely in
general, but becomes more likely if the number of free parameters is very large, or if the parameters are badly
scaled (not all of the same order of magnitude), and correlations are also large. In any case, whether the non-
positive-definiteness is real or only numerical is largely irrelevant, since in both cases the error matrix will be
unreliable and the minimum suspicious.

Anill-posed problem: For questions of parameter dependence, see the discussion above on positive-definiteness.
Possible other mathematical problems are the following:

Excessive numerical roundoff: Be especially careful of exponential and factorial functions which get big very
quickly and lose accuracy.

Starting too far from the solution: The function may have unphysical local minima, especially at infinity in
some variables.

6.6.5 Fitting histograms
The general syntax of the command to fit histograms is:

HISTOGRAM/FIT id func [chopt np par step pmin pmax errpar]

Only the parameters, which are of more general use, are described in detail. For an up to date description of this
command have a look in the online help or in the reference manual.

ID A histogram identifier (1-dim or 2-dim)
A bin range may be specified, e.g. Histo/Fit 10(25:56)

FUNC Name of a function to be fitted to the histogram.
This function can be of various forms:

1 The name of a file which contains the user defined function to be minimized. Function name and
file name must be the same. For example file FUNC.FOR is:

FUNCTION FUNC(X) or FUNC(X,Y) for a 2-Dim histogram
COMMON/PAWPAR/PAR(2)

FUNC=PAR (1) *X +PAR(2)*EXP(-X)

END

2 One of the keywords below (1-dim histograms only), which will use the parameterization de-
scribed at the right for the fit.

G Func=par(1)*exp(-0.5*%((x-par(2))/par(3))**2)
E Func=exp(par(1)+par(2)*x)
Pn Func=par (1) +par (2) *x+par (3) *x**2. . . +par(n+1) *x**n, 0<n<20

6.6. Fitting with PAW/HBOOK/MINUIT 93

3 A combination of the keywords above with the 2 operators + or *.

Note that in this case, the order of parameters in PAR must correspond to the order of the basic
functions. Blanks are not allowed in the expression.

CHOPT All options of the HISTO/PLOT command plus the following additional ones:
0 Do not plot the result of the fit. By default the fitted function is drawn unless the option “N” below
is specified.
B Some or all parameters are bounded. In this case vectors STEP,PMIN,PMAX must be specified.
Default is: All parameters vary freely.

D The user is assumed to compute derivatives analytically using routine HDERIV. By default, deriva-
tives are computed numerically.

L Use Log Likelihood method. Default is x2 method.

M Invokes interactive Minuit (See on Page 96)

N Do not st ore the result of the fit bin by bin with the histogram. By default the function is calculated
at the centre of each bin and the fit results stored with the histogram data structure.

Q Quiet mode. No output printed about the fit.

vV Verbose mode. Results are printed after each iteration. By default only final results are printed.

W Sets weights equal to 1.

NP Number of parameters in fit (0 < NP < 34)

PAR \ector containing the fit parameters.
Before the fit: Vector containing the initial values
After the fit: Vector containing the fitted values.

STEP Vector with step size for fit parameters
PMIN Vector with lower bounds for fit parameters
PMAX Vector with upper bounds for fit parameters
ERRPAR Vector with errors on the fitted parameters

When using predefined functions (case 2 for the FUNC parameter) initial values need not be specified when NP=0.
In this case the parameter vector PAR, if specified, is only filled with the fitted parameters on output.

6.6.6 A simplefitwith agaussian

Example of simplefit with gaussian in PAW

PAW > opt stat | Select option to show histogram statistics on plot
PAW > opt fit | Select option to show fitted parameters on plot
PAW > hi/fit 10 G | Fit histogram 10 with a single gaussian

setokokkskokok sk sk ok sk kskkok ksl ok sk sk ok sk ok ok stk ok sk sk ok sk sk ok sk sk ok sk ok

Function minimization by SUBROUTINE HFITGA
Variable-metric method
ID = 10 CHOPT =T

* X X X %
L R

stk ok sk ok sk ok ok ok ok sk sk sk ok ok ok sk sk sk ok ok ok sk sk ok sk sk ok sk sk ok ok ok o ok
Convergence when estimated distance to minimum (EDM) .LT. 0.10E-03

FCN= 96.97320 FROM MIGRAD STATUS=CONVERGED CALLS= 549 EDM= 0.26E-03
STRATEGY= 1 ERROR DEF= 1.0000
INT EXT PARAMETER STEP FIRST
NO. NO. NAME VALUE ERROR SIZE DERIVATIVE
1 1 Constant 239.83 2.8178 0.00000 0.57627E-02
2 2 Mean -0.53038E-02 0.77729E-04 0.00000 22.025
3 3 Sigma 0.98766 0.70224E-02 0.00000 -0.88534

CHISQUARE = 0.1021E+01 NPFIT = 98

94 Chapter 6. HBOOK

- ID 10
B Entries 10000
280 [~ Mean -0.3923E-02
B RMS 0.9857
3 X 1.021
B Constant 239.8
B Mean -0.5304E-02
240 — Sigma 0.9877
200 —
160 —
120 —
80 -
40 |
0 | | |
-3 -2 -1 0

TEST1

Figure 6.9: Example of a simple fit of a one-dimensional distribution

Fit parts of histogram separ ately

PAW > opt NSTA | Turn off option showing statistics on plot
PAW > ve/cr par(6) | Create a vector with 6 elements

PAW > set fit 111 | Show fitted parameters + errors on plot
PAW > hi/fit 110(1:50) G ! O par | Fit first half with a gaussian and plot

ok ok oK K K K oK oK oK oK K K oK oK oK oK K K o ok ok ok K K ok ok ok K ok ok ok K ok ok ok ok ok K

* *
* Function minimization by SUBROUTINE HFITGA *
* Variable-metric method *
* ID = 110 CHOPT = TR *
*

*
3k 3k 3k 3 3k 3k 3k 3k 3k 3k >k 3k >k ok >k >k 3k 3k 3k Sk Sk 3k 3k ok 3k 3k ok 3k >k >k >k 3k Sk Sk ok Sk ok ok ok >k >k ok sk k sk ok

Convergence when estimated distance to minimum (EDM) .LT. 0.10E-03

FCN= 90.66560 FROM MIGRAD STATUS=CONVERGED CALLS= 152 EDM= 0.68E-05
STRATEGY= 1 ERROR DEF= 1.0000
INT EXT PARAMETER STEP FIRST
NO. NO. NAME VALUE ERROR SIZE DERIVATIVE
1 1 Constant 300.28 5.0681 0.13342 0.97075E-04

2 2 Mean 0.30698 0.10511E-02 -0.13885E-04 -0.57797

6.6. Fitting with PAW/HBOOK/MINUIT

Parameter Input value Result of Figure 6.10 | Result of Figure 6.11
First Gaussian:

Height 1. (normalised) | 300. % 5. 308. £ 5.

Mean value 0.3 0.307 £ 0.001 0.303 £ 0.001

Width (sigma) 0.07 0.074 £ 0.001 0.070 £ 0.001
Second Gaussian:

Height 0.5 (normalised) | 153. + 3. 154. + 4.

Mean value 0.7 0.702 £ 0.002 0.703 £ 0.002

Width (sigma) 0.12 0.120 £ 0.002 0.119 £ 0.002

95

Table 6.3: Results for the fitted parameters of the gaussian distributions as compared to the initial values which the
gaussian distributions were generated in the “batch” job in Section 6.3. The table also includes the result of the
double gaussian fit in section 6.11.

3 3 Sigma 0.73832E-01 0.67896E-03 -0.57602E-04 -4.6407

CHISQUARE = 0.2159E+01 NPFIT = 45

PAW > hi/fit 110(50:99) G 0 O par(4) | Fit second half with gaussian, do not plot

ok oK oK K K K o oK oK oK KK oK oK oK K K K o ok ok ok K K ok ok ok K ok ok ok K ok ok ok K ok ok K

Function minimization by SUBROUTINE HFITGA
Variable-metric method
ID = 110 CHOPT = TR

* X X X ¥
EE R

ok oK oK K K K oK oK oK oK KK oK oK oK oK K K o ok ok ok K K ok ok ok K ok ok ok K ok ok ok kK ok ok K

Convergence when estimated distance to minimum (EDM) .LT. 0.10E-03
FCN= 30.16534 FROM MIGRAD STATUS=CONVERGED CALLS= 221 EDM= 0.87E-04
STRATEGY= 1 ERROR DEF= 1.0000
INT EXT PARAMETER STEP FIRST
NO. NO. NAME VALUE ERROR SIZE DERIVATIVE
1 1 Constant 163.27 3.0227 0.65005E-01 0.36877E-02
2 2 Mean 0.70186 0.19599E-02 0.40388E-03 4.8103
3 3 Sigma 0.11965 0.18242E-02 -0.25292E-03 6.9011
CHISQUARE = 0.6418E+00 NPFIT = 50

PAW > hi/plot 110 SFUNC |
PAW > ve/pr par(1:6) |

Plot result of fit on Same plot
Print the fitted parameters in PAR

PAR (1) = 300.2846
PAR (2) = 0.3069752
PAR (3) = 0.7383241E-01
PAR (4) = 153.2716
PAR (5) = 0.7018576
PAR (6) = 0.1196475

Example of a more complex fi t

PAW > * Create vector of 6 elements and give initial values for combined fit of two gaussians
PAW > ve/cr par2(6) r 200 0.3 0.1 100 0.7 0.1 | initial values for the 6 fit parameters

PAW > set fit 111 | display fitted parameters plus errors

PAW > hi/fit 110(2:99) G+G | perform the fit (sum of 2 gaussians)

! 6 par2

96 Chapter 6. HBOOK

3k >k 3k 3k 3k 3k >k 3K 3k 3k %k 3k 3k 3k 3k %k 3k 5k 3k 5k %k 3k 3k 3k %k >k 3k 3k 5k %k 3k 3k 3k 3k %k %k %k 3k 3k %k %k %k >k 3k 3k k

* *
* Function minimization by SUBROUTINE HFITH *
* Variable-metric method *
* ID = 110 CHOPT = R *
* *

Kok o oK ok ok oK ok oK oK oK o oK ok K ok o ok oK o sk ok ok ok o ok ok ok o ok o ok ok K ok o ok ok ok ok oK
Convergence when estimated distance to minimum (EDM) .LT. 0.10E-03

FCN= 57.41251 FROM MIGRAD STATUS=CONVERGED CALLS= 597 EDM= 0.10E-03
STRATEGY= 1 ERROR DEF= 1.0000
INT EXT PARAMETER STEP FIRST
NO. NO. NAME VALUE ERROR SIZE DERIVATIVE
11 P1 307.86 5.3896 1.3393 -0.51814E-03
2 2 P2 0.30265 0.10750E-02 0.18577E-03 3.5622
3 3 P3 0.70029E-01 0.86285E-03 0.19967E-03 11.689
4 4 P4 153.62 3.0170 0.73111 0.30406E-02
5 5 P5 0.70303 0.20652E-02 0.43051E-03 -1.2694
6 6 P6 0.11865 0.18645E-02 0.39360E-03 3.2237
CHISQUARE = 0.6524E+00 NPFIT = 94

6.7 Doing morewith Minuit

When the HISTO/FIT or VECTOR/FIT command is invoked, PAW/HBOOK will set a default environment for
Minuit. Control may be given to Minuit if the option “M” is specified in the command. In this case, the user may
enter Minuit control statements.

Overview of available MINUIT commands
CLEar

Resets all parameter names and values to undefined. Must normally be followed by a PARAMETER command or
equivalent, in order to define parameter values.

CONtour parl par2 [devs] [ngrid]

Instructs MINUIT to trace contour lines of the user function with respect to the two parameters whose external
numbers are parl and par2. Other variable parameters of the function, if any, will have their values fixed at the
current values during the contour tracing. The optional parameter [devs] (default value 2.) gives the number
of standard deviations in each parameter which should lie entirely within the plotting area. Optional parameter
[ngrid] (default value 25 unless page size is too small) determines the resolution of the plot, i.e. the number of
rows and columns of the grid at which the function will be evaluated.

EXIT
End of Interactive MINUIT. Control is returned to PAW.

FIX parno

Causes parameter parno to be removed from the list of variable parameters, and its value will remain constant (at
the current value) during subsequent minimizations, etc., until another command changes its value or its status.

HELP [SET] [SHOw]

Causes MINUIT to list the available commands. The list of SET and SHOw commands must be requested sepa-
rately.

350

300

250

200

150

100

X 2.159

Constant 300.3 +
Mean 0.3070 +
Sigma 0.7383E-01 +

4.921
0.1052E-02
0.6180E-03

0.2 04 06 08
Filled according to HTFUN1

Figure 6.10: Example of a fit using sub-ranges bins

350

300

250

200

150

100

X 0.6524
= 307.9 £
P2 0.3026 +
0.7002E-01 +
P4 1536 +
0.7030 +
P6 01187 +

5.346
0.1080E-02
0.8478E-03

3.012
0.2076E-02
0.1835E-02

0.2 04 06 08
Filled according to HTFUN1

Figure 6.11: Example of a fit using a global double gaussian fit

UNUIN yim alow Bulog 29

L6

98 Chapter 6. HBOOK

HESse [maxcalls]

Instructs MINUIT to calculate, by finite differences, the Hessian or error matrix. That is, it calculates the full matrix
of second derivatives of the function with respect to the currently variable parameters, and inverts it, printing out
the resulting error matrix. The optional argument [maxcalls] specifies the (approximate) maximum number of
function calls after which the calculation will be stopped.

IMProve [maxcalls]

If a previous minimization has converged, and the current values of the parameters therefore correspond to a local
minimum of the function, this command requests a search for additional distinct local minima. The optional
argument [maxcalls] specifies the (approximate) maximum number of function calls after which the calculation
will be stopped.

MIGrad [maxcalls] [tolerance]

Causes minimization of the function by the method of Migrad, the most efficient and complete single method,
recommended for general functions (see also MINImize). The minimization produces as a by-product the error
matrix of the parameters, which is usually reliable unless warning messages are produced. The optional argument
[maxcalls] specifies the (approximate) maximum number of function calls after which the calculation will be
stopped even if it has not yet converged. The optional argument [tolerance] specifies required tolerance on the
function value at the minimum. The default tolerance is 0. 1. Minimization will stop when the estimated vertical
distance to the minimum (EDM) is less than 0.001* [tolerance] *UP (See SET ERR).

MINImize [maxcalls] [tolerance]

Causes minimization of the function by the method of Migrad, as does the MIGrad command, but switches to the
SIMplex method if Migrad fails to converge. Arguments are as for MIGrad.

MINOs [maxcalls] [parno] [parno]...

Causes a Minos error analysis to be performed on the parameters whose numbers [parno] are specified. If none
are specified, Minos errors are calculated for all variable parameters. Minos errors may be expensive to calculate,
but are very reliable since they take account of non-linearities in the problem as well as parameter correlations,
and are in general asymmetric. The optional argument [maxcalls] specifies the (approximate) maximum number
of function calls per parameter requested, after which the calculation will be stopped for that parameter.

RELease parno

If parno is the number of a previously variable parameter which has been fixed by a command: FIX parno, then
that parameter will return to variable status. Otherwise a warning message is printed and the command is ignored.
Note that this command operates only on parameters which were at one time variable and have been FIXed. It
cannot make constant parameters variable; that must be done by redefining the parameter with a PARAMETER
command.

REStore [code]

If no [code] is specified, this command restores all previously FIXed parameters to variable status. If [code]=1,
then only the last parameter FIXed is restored to variable status.

SCAnN [parno] [numpts] [from] [to]

Scans the value of the user function by varying parameter number [parnol, leaving all other parameters fixed at
the current value. If [parno] is not specified, all variable parameters are scanned in sequence. The number of
points [numpts] in the scan is 40 by default, and cannot exceed 100. The range of the scan is by default 2 standard
deviations on each side of the current best value, but can be specified as from [from] to [to]. After each scan, if
a new minimum is found, the best parameter values are retained as start values for future scans or minimizations.
The curve resulting from each scan is plotted on the output unit in order to show the approximate behavior of the
function. This command is not intended for minimization, but is sometimes useful for debugging the user function
or finding a reasonable starting point.

6.7. Doing more with Minuit 99

SEEk [maxcalls] [devs]

Causes a Monte Carlo minimization of the function, by choosing random values of the variable parameters, chosen
uniformly over a hypercube centered at the current best value. The region size is by default 3 standard deviations
on each side, but can be changed by specifying the value of [devs].

SET ERRordef up

Sets the value of up (default value= 1.), defining parameter errors. MINUIT defines parameter errors as the change
in parameter value required to change the function value by up. Normally, for chisquared fits up=1, and for
negative log likelihood, up=0.5.

SET LIMits [parno] [lolim] [uplim]

Allows the user to change the limits on one or all parameters. If no arguments are specified, all limits are removed
from all parameters. If [parno] alone is specified, limits are removed from parameter [parno]. If all arguments
are specified, then parameter [parno] will be bounded between [lolim] and [uplim]. Limits can be specified in
either order, MINUIT will take the smaller as [lolim] and the larger as [uplim]. However, if [lolim] is equal to
Luplim], an error condition results.

SET PARameter parno value

Sets the value of parameter parno to value. The parameter in question may be variable, fixed, or constant, but
must be defined.

SET PRIntout level

Sets the print level, determining how much output MINUIT will produce. The allowed values and their meanings
are displayed after a SHOw PRInt command. Possible values for level are:

-1 No output except from SHOW commands

Minimum output (no starting values or intermediate results)

Default value, normal output

Additional output giving intermediate results.

Maximum output, showing progress of minimizations.

w N =, O

SET STRategy level

Sets the strategy to be used in calculating first and second derivatives and in certain minimization methods. In
general, low values of level mean fewer function calls and high values mean more reliable minimization. Currently
allowed values are 0, 1 (default), and 2.

SHOw XXXX

All SET XXXX commands have a corresponding SHOw XXXX command. In addition, the SHOw commands
listed starting here have no corresponding SET command for obvious reasons. The full list of SHOw commands
is printed in response to the command HELP SHOw.

SHOw CORrelations

Calculates and prints the parameter correlations from the error matrix.
SHOw COVariance

Prints the (external) covariance (error) matrix.

SIMplex [maxcalls] [tolerance]

Performs a function minimization using the simplex method of Nelder and Mead. Minimization terminates either
when the function has been called (approximately) [maxcalls] times, or when the estimated vertical distance to
minimum (EDM) is less than [tolerance]. The default value of [tolerance] is 0.1*UP (see SET ERR).

Chapter 7: Graphics (HIGZ and HPLOT)

7.1 HPLOT, HIGZ and local graphics package

Graphics input/output in PAW is handled by the two packages HPLOT (Histograms PLOTting) and HIGZ (High
level Interface to Graphics and Zebra). HIGZ is the basic graphics system of PAW interfacing an basic graphics
package while HPLOT, sitting on top of HIGZ, is used for plotting HBOOK objects (Histograms, Ntuples, etc.).
The figure below shows the hierarchy between HPLOT, HIGZ and the basic graphics package (X Windows, etc...).

Graphics could be produced in PAW either directly by HIGZ commands or by HPLOT commands. In both cases,
all the graphics is under the control of HIGZ. Two distinct modes are available in HIGZ: one is purely graphics (the
G mode) interfacing the basic graphics package, and the second (the Z mode) allows the management of the HIGZ
structures (pictures). As an example, the simple PAW command HISTOGRAM/PLOT is handled at the different levels
as follows:

PAW Level HISTOGRAM/PLOT ID
HPLOT Level Takes care of ZONE, SET, OPTION, etc.
HIGZ Level Windows and Viewport, Axis, Boxes, Histogram, Text and Attributes

Basic graphics Line, Text, Attributes, etc.

7.2 Themetafiles

Metafiles are text files used as device independent sources of graphics output for printers of different type. The
most widely use metafile in PAW is the PostScript metafile. This type of metafile can be sent directly to a PostScript
printer The PostScript metafile type (second parameter of the comman METAFILE have the following format:

- [Format] [Nx] [Ny] [Typel
Where:

Format Is an integer between 0 and 99 which defines the format of the paper. For example if Format=3 the
paper is in the standard A3 format. Format=4 and Format=0 are the same and define an A4 page.
The AO format is selected by Format=99. The US format Letter is selected by Format=100. The US
format Legal is selected by Format=200. The US format Ledger is selected by Format=300.

Nx, Ny Specify respectively the number of zones on the x and y axis. Nx and Ny are integers between 1 and 9.
Type Can be equal to:

1 Portrait mode with a small margin at the bottom of the page.

2 Landscape mode with a small margin at the bottom of the page.

4 Portrait mode with a large margin at the bottom of the page.

5 Landscape mode with a large margin at the bottom of the page.

The large margin is useful for some PostScript printers (very often for the colour printers) as they
need more space to grip the paper for mechanical reasons.

Note that some PostScript colour printers can also use the so called "special A4” format permitting
the full usage of the A4 area; in this case larger margins are not necessary and Type=1 or 2 can
be used.

3 Encapsulated PostScript. This Type permits the generation of files which can be included in other
documents, for example in IATEX files. Note that with this Type, Nx and Ny must always be equal
to 1, and Format has no meaning. The size of the picture must be specified by the user via the
SIZE command. Therefore the workstation type for Encapsulated PostScript is -113. For example
if the name of an Encapsulated PostScript file is example.eps, the inclusion of this file into a
IATEX file will be possible via (in the IATEX file):

\begin{figure}

\includegraphics{example.eps}

\caption{Example of Encapsulated PostScript in LaTeX.}
\label{EXAMPLE}

\end{figure}

100

7.3. The HIGZ pictures 101

PAW

HPLOT

Basic Graphics Package

Figure 7.1: HPLOT and HIGZ in PAW

Note that all the figures in this manual are included in this way.

With Type=1,2,4 and 5 the pictures are centered on the page, and the usable area on paper is proportional to the
dimensions of A4 format.

Examples:

-111 or -4111 defines an A4 page not divided. -6322 define an A6 landscape page divided in 3 columns and 2
rows.

6

The first picture will be drawn in the area 1. The next image will appear in the next area in the order defined above.
If a page is filled, a new page is used with the same grid. Note that empty pages are not printed in order to save
paper.

Ignoring formats smaller than A12, the total number of possible different PostScript workstation types is: 4 x 9 x
9x13+1=4213!

The command GRAPHICS/METAFILE LUN METAFL is designed to produce metafiles. LUN is the logical unit num-
ber of an open FORTRAN file and METAFL the metafile type. For example, the following four commands will
produce a HIGZ/PostScript metafile with the name "PAW.PS" containing the graphics representation of histogram
number 10:

PAW > FORTRAN/FILE 66 PAW.PS
PAW > GRAPHICS/META 66 -111
PAW > HISTO/PLOT 10

PAW > FORTRAN/CLOSE 66

7.3 TheHIGZ pictures
The HIGZ pictures have four main goals:

e HIGZ graphics primitives and attributes can be stored in a ZEBRA structure in memory in order to display
them later.

102 Chapter 7. Graphics (HIGZ and HPLOT)

e They can be stored on direct access files (in a very compact way), in order to build a picture data base.
e They can be modified with the graphics editor.

e They are structured i.e. they can contains so called “graphics objects” which are used to retrieve objects
names and type in the “direct graphics mode” of PAW++,

7.3.1 Picturesin memory

The general command to manage pictures in memory is: PICTURE/IZPICT. This command has two parameters:

PNAME Picture name:
CH Character string specifying picture name (must begin with a letter)
N Picture number as displayed by PICT/LIST.
* All pictures in memory.
> > Ablank indicates the current picture.

CHOPT Option value:

=
=

Give a full listing of the pictures in memory.

Picture PNAME becomes the current picture.

Display the picture PNAME.

First picture in memory becomes the current picture.
List pictures in memory.

Make a new picture in memory with the name PNAME.
Next picture in memory becomes the current picture.
Print the contents of the picture PNAME.

Scratch picture PNAME from memory.

0 v =2 =2 0 MmO Q

In addition, simpler and more mnemonic commands are available:

PAW > PICT/CREATE PNAME | Create a picture in memory
PAW > PICT/LIST | List pictures in memory
1: PNAME <-- Current Picture

The last created picture in memory is called the current picture. All graphics primitives (line, text, histogram,
etc.) produced by PAW commands will be stored in this picture if it is active, i.e. if mode Z is on.

PAW > SWITCH Z | Switch Z mode on
PAW > PICT/LIST
1: PNAME <-- Current Picture (Active)

Note that the command PICTURE/CREATE will switch automatically Z mode on.
PAW > PICT/PLOT PNAME

will display picture PNAME. If picture PNAME is not in memory and if the current working directory (as given by
CDIR) is a picture file, PAW will try to take this picture from the file before displaying it.

HIGZ pictures can be created automatically by HPLOT via the command:
PAW > OPTION ZFL
If this command has been typed, each new plot produced by HPLOT will result in a HIGZ picture created in

memory. The following example shows how for each HIST/PLOT ID command a new HIGZ picture is created
with an automatic naming:

7.3. The HIGZ pictures 103

PAW > HIST/PLOT 10

PAW > HIST/PLOT 110

PAW > HIST/PLOT 20

PAW > PICT/LIST

PICT1

PICT2

PICT3 <-- Current Picture (Active)

w N =

A similar command is given by:
PAW > OPTION ZFL1

which works exactly like OPTION ZFL except that only the last created picture is kept in memory. For example, if
we had typed OPTION ZFL1 instead of OPTION ZFL in the example above, the result would be:

PAW > PICT/LIST
1: PICT3 <-- Current Picture (Active)

The following example is a useful macro showing how to use the HIGZ pictures (via OPTION ZFL1) and the
metafiles in order to produce a hard copy of the graphics screen:

M acro showing how to convert the current picture in PostScript

MACRO POST
FORTRAN/FILE 66 PAW.PS | Open the FORTRAN file PAW.PS on unit 66
META -66 -111 | PAW.PS is an A4 PostScript file
PICT/PLOT ° ° | Convert the current picture in PostScript
|
|

CLOSE 66 Close PAW.PS
SHELL PRINT PAW.PS Send PAW.PS to the local printer
RETURN

Typing EXEC POST, the current HPLOT picture on the screen will be sent to the printer using the SHELL command
which issues a system-dependent “print” command to the local operating system (e.g. 1p or 1pr on Unix).
The command PICTURE/PRINT do the same thing:

PAW > PICT/PRINT PAW.PS

This command transform the current picture into a printable file. The file type is defined according to the extension
of the file name i.e.

e FILE = filename.ps A PostScript file is generated (-111)
e FILE = filename.eps A Encapsulated PostScript file is generated (-113)
e FILE = filename.tex A LaTex file is generated (-778)

With this command the metafile type is predefined. It is not possible to change it like in the macro POST previously
described. If FILE=HIGZPRINTER or FILE=> ’ the PostScript file paw.ps (-111) is generated and the operating
system command defined by the environment variable HIGZPRINTER is executed. The environment variable
HIGZPRINTER could be defined as follow:

setenv HIGZPRINTER ’xprint -p513-pub paw.ps’

Note that if the environment variable HIGZPRINTER is not defined the file paw . ps is created but not printed.
Other available commands working on pictures in memory are:

PAW > PICT/RENAME PNAME PNAME2
PAW > PICT/COPY PNAME PNAME2
PAW > PICT/DELETE PNAME

e PNAME can be the complete name, the picture number in memory or > .

e PNAME2 is the complete picture name.

104 Chapter 7. Graphics (HIGZ and HPLOT)

7.3.2 Pictureson direct accessfiles

HIGZ pictures are stored on direct-access files and hence access times to pictures are fast. Moreover, due to the
fact that HIGZ uses high level primitives to describe the picture’s structural tree, a storage compaction factor as
compared to the equivalent GKS metafiles of between 10 and 100 is routinely obtained.

As HIGZ is interfaced to various basic graphics packages, a picture file can be created on one system (e.g.
DECGKS, X11, GL etc.) and transported to another machine to be interpreted with a different graphics pack-
age (e.g GKSGRAL, GDDM, DI3000 etc.).

All available commands to handle pictures with ZEBRA files are shown below. Note that in the example the picture
names could be “x” (all pictures in memory), “ ” (current picture) or a number (picture number in memory).

Handling pictureswith ZEBRA

PAW > * Open an existing picture file PICT.DAT on LUN 4 in Update mode
PAW > PICT/FILE 4 PICT.DAT ! U | Open the existing file PICT.DAT
PAW > LDIR | List the content of the file PICT.DAT

sk >k 5k 3k 3k >k >k >k 3k 3k %k >k 3k k Directory ===> //LUN4 <===
Created 890512/1110 Modified 890622/1732

===> List of objects

PICTURE NAME CYCLE
UNIX 1
ZEBRA 1
CERN 1
MARKER 1
PAW > IZIN CERN | Put picture "CERN" in memory
PAW > PICT/LIST | List pictures in memory
1: CERN
PAW > IZOUT CERN | Store picture "CERN" in PICT.DAT
PAW > LDIR | List the content PICT.DAT
*)kkkkkkkkkkkkk Directory ===> //LUN4 <===

Created 890512/1110 Modified 890622/1732

===> List of objects

PICTURE NAME CYCLE
UNIX 1
ZEBRA 1
CERN 1
2
MARKER 1
PAW > PURGE | Purge the file PICTURES
PAW > SCRATCH ZEBRA | Delete the picture ZEBRA from PICT.DAT
PAW > LDIR | List the content of PICT.DAT
*kkkkkkkkkkkkk Directory ===> //LUN4 <===

Created 890512/1110 Modified 890622/1732

===> List of objects

PICTURE NAME CYCLE
UNIX 1
CERN 2

MARKER 1

7.4. Setting attributes 105

7.3.3 Automatic storage picturesin memory
After typing the command:
PAW > SET AURZ 1

the AURZ mode is on and all the subsequent created pictures are stored automatically in the last picture file opened
via the command PICTURE/FILE.

Example of the use of picturesin memory

PAW > PICT/FILE 4 PICT.DAT ! N | Open a new picture file PICT.DAT

PAW > HIST/FILE 3 HEXAM.DAT | Open an existing histogram RZ file

PAW > LDIR | List the contain of HEXAM.DAT
*kkokkkkkkkkkk Directory ===> //LUN3 <===

Created 880104/1414 Modified 880104/1414

===> List of objects
HBOOK-ID CYCLE DATE/TIME NDATA OFFSET REC1 REC2

10 1 880104/1414 75 725 32

20 1 880104/1414 1815 800 32 33

30 1 880104/1414 1066 567 34 35
PAW > OPT ZFL | Each new plot will result in a HIGZ picture
PAW > SET AURZ 1 | Each new HIGZ picture is stored in PICT.DAT
PAW > HIST/PLOT 0 | All histograms in HEXAM.DAT are plotted
PAW > CDIR //LUN4 | Set the current working directory on PICT.DAT
PAW > LDIR | List the content of PICT.DAT

>k 5k 3k 3k >k >k >k 3k 3k 5k >k >k 3k >k Directory ===> //LUN4 <===

Created 890928/1024 Modified 890928/1024

===> List of objects

PICTURE NAME CYCLE
PICT1 1
PICT2 1
PICT3 1

Note that if the command PICTURE/FILE is invoked with the option *A’, the AURZ mode is automatically enable.

7.34 HIGZ picturesgenerated in aHPLOT program

HIGZ pictures can be generated in a batch HPLOT program and later visualized in an interactive session with PAW.
The HIGZ picture file, like any HBOOK file, can be exchanged between computers using the FTP in binary mode.
As the size of the picture data base (see page 101), and hence the associated disk storage requirements, is much
smaller than the size of the metafile generated by the basic graphics package, transfer times are drastically reduced.
The example below show how to interactively visualize (with PAW) HIGZ pictures produced by HPLOT. In the
same way we can visualize and edit pictures generated by any HIGZ based application (GEANT, event scanning
programs, etc.)

7.4 Setting attributes

Attributes are parameters like: colour, character font, etc. which could be changed interactively in PAW via the
commands PICTURE/IGSET, GRAPHICS/SET and GRAPHICS/OPTION. Each attribute is linked to one or more
objects (lines, histogram, etc.). The aim of this section is to give a complete description of the attributes available
in PAW and to clarify the differences between IGSET, which changes attributes at the HIGZ level, and SET and
OPTION, which act at the HPLOT level.

106 Chapter 7. Graphics (HIGZ and HPLOT)

Store HPLOT pictureswith HIGZ Using the picture in Paw

PROGRAM HPICT PAW > PICT/FILE 20 HPICT.DAT
*, mmmmmmmmm=> Paw > IDIR
*. HPLOT Program to demonstrate how to store HPLOT Directory ===> //LUN20 <===
*. pictures onto direct access HIGZ picture file
*, =========> Created 891006/1026 Modified 891006/1026
COMMON/PAWC/H(20000)
DIMENSION SIG(2) ===> List of objects
CHARACTER*20 TITLE PICTURE NAME CYCLE
*. PICT1 1
*. PICT2 1
CALL HLIMIT(20000) PICT3 1
* —= Create histograms PICT4 1
DO 10 ID=1,10 PICTS 1
WRITE(TITLE,1000)ID PAW > META 10 -111
1000 FORMAT (’Test number’,I3) PAW > PICT/PLOT PICT2
CALL HBOOK1(ID,TITLE,100,-3.,3.,0.) PAW > CLOSE 10
10 CONTINUE PAW > * Print metafile
* —= Fill histograms PAW > * (seepages 101 and following)
DO 30 ID=1,10 PAW > SHELL print PAW.METAFILE
DO 20 I=1,1000 PAW > EXIT

CALL RANNOR(A,B)
CALL HFILL(ID,A,0.,1.)

20 CONTINUE
CALL HFITGA(ID,COEFF,AV,SIGM,CHI2,2,SIG)

30 CONTINUE
* = Initialize HPLOT. Set various graphics options. =
CALL HPLINT(0) » b D 3
CALL HPLZON(1,2,1,’) E 06923
CALL HPLOPT(’ZFL’,1) 28 F Constant 2365
CALL HPLOPT(’FIT’,1) a | Mean -0.1082E-01
CALL HPLOPT(’STAT’,1) E Sgma 0.9680
CALL HPLSET(’STAT’,1.) 20
CALL HPLSET(’HTYP’,244.) 6 b
CALL HPLSET(’FWID’,5.) E
CALL HPLSET(’VFON’,-40.) 12
CALL HPLSET(’TFON’,-60.) s &
CALL HPLSET(’PWID’,4.) E
CALL HPLSET(’BCOL’,1.01) 4=
CALL HPLSET(’CSIZ’,0.25) 0
3

CALL HPLSET(’CFON’,-10.) 0 1 2 3

*
* Open a picture file called "hpict.dat". Testnumber 3
* Option ’A’ means "Automatic saving of pictures" =
* Option ’N’ means "New file" E 1D 4
* (option ’U’ instead of ’N’ updates an existing file) 35 0.8654
M E Constant 2208
30 F . y
CALL IZOPEN(1,’Pictures’,’hpict.dat’,’AN’,1024,ISTAT) E Mean 0.9535E-02
E 1023
* 5
* Select HIGZ option to store graphics in ZEBRA memory only E
% No calls to the local graphics package. 20 =
* 15 F
CALL IGZSET(’Z’) E
* - Plot all histograms 10
CALL HPLOT(0,” ’,” ’,0) 5 B
CALL HPLEND E
* 0 =
3 [)

END

Test number 4

Figure 7.2: Visualising a HIGZ picture produced in a batch HPLOT program

IGSET [CHOPT VAL]

This command is used to set the value of attributes related to primitives and macroprimitives. The first parameter
is the mnemonic name of the attribute, the second is the value to be assigned.

CHOPT Character variable specifying the name of the attribute to be set. This a character string of 4 characters.

VAL Value of the attribute. A value of 0 or no value specified, indicates that the attribute value must be reset
to its default value.

Examples of IGSET commands

PAW > IGSET MTYP 20 | Change marker type to 20.
This new marker is used by all subsequent
| commands using the current marker type.

PAW > IGSET LWID | Set the line width to its default value.
PAW > IGSET | Display actual and default values of all HIGZ attributes
PAW > IGSET = | Set ALL HIGZ attributes to their default values

Note that the command SET calls IGSET if it is called with a IGSET option.

7.4. Setting attributes

OPTION

107

[CHOPT 1]

The OPTION command has one optional parameter:

CHOPT Option name (four characters). Special values are:

Set all HPLOT options to their default values
Display actual and default values of all HPLOT options

)%

) J

SET [CHOPT VAL]

Sets an HPLOT parameter; see table 7.3 and figures 7.3, 7.4, 7.5 and 7.6 for details.

CHOPT Character variable of length 4 identifying the parameter to be redefined (must be given in uppercase).
Special values are:

7*J

> SHOW’

All parameters are set to their default values.

A list of all parameters and their values is printed.

VAR New value for the parameter specified. Special values are:

0. The corresponding parameters is set to its default value.
Table 7.1: Parameters and default values for IGSET

NAME default Explanation

"AURZ” 0. If 1. the last current picture is automatically saved on disk when a new picture is
created.

AWLN" 0.0 Axis wire length. Default is length=0 (no grid)

'BARQ° 0.25 Offset of the left edge of the bar with respect to the left margin of the bin for a bar
chart (expressed as a fraction of the bin width).

'BARW’ 0.50 Width of the bar in a bar chart (expressed as a fraction of the bin width).

'BASL” 0.01 Basic segment length in NDC space (0-1) by (0-1) for dashed lines

’BORD” 0. Border flag. If = 1., a border is drawn in boxes, pie charts,. ...

’CHHE’ 0.01 CHaracter HEight.

’CSHI’ 0.02 Distance between each shifted drawing of a character (in percentage of character
height) for characters drawn by TEXT

'FACT” 1. Fill Area Colour Index.

'FAIS’ 0. Fill Area Interior Style (0.,1.,2.,3.).

FAST’ 1. Fill Area Style Index.

’LAOF” 0.013 LAbels OFfset.

'LASI’ 0.018 LAbels Slze (in World coordinates).

'LTYP’ 1. Line TYPe.

LWID’ 1.00 Line WIDth.

'MSCF’ 1.00 Marker SCale Factor.

'MTYP” 1. Marker TYPe.

'PASS’ 1. Text width (given by number of PASSes) of characters drawn by TEXT. The width is
simulated by shifting the “pen” slightly at each pass.

’PICT 1. Starting number for automatic pictures naming.

’PLCI’ 1. PolyLine Colour Index.

'PMCI’ 1. PolyMarker Colour Index.

"TANG” 0.00 Text ANGlIe (for calculating Character up vector).

TMSI’ 0.019 Tick Marks Slze (in world coordinates)

"TXAL” 0. 10*(horizontal alignment)+(vertical alignment).

108

Chapter 7. Graphics (HIGZ and HPLOT)

Table 7.1: Parameters and default values for IGSET (continued)

NAME default Explanation
'TXCI” 1. TeXt Colour Index.
"TXFP’ 10. 10*(TeXt Font) + (TeXt Precision).
(0: hard, 1: string, 2: soft)
"% All attributes are set to their default values.
’SHOW’ The current and default values of the parameters controlled by IGSET are displayed.
Table 7.2: Parameters and default values for OPTION
Default Alternative | Effect
> ’A07, Picture size. Predefined options are: A0, A1, A2, A3, A4, A5, A6
A1, ...
"NOPG’ TP’k %P’, Suppresses ("NOPG”) or adds a 1, 2 or 3 digit page numbers to a plot (Each ’>*°
T¥ k%P’ stands for a digit). The page numbers are incremented automatically
'NEAH’ EAH’ Plots Errors bars And Histogram, if both are present
"VERT’ "HORI’ Vertical or horizontal orientation of paper
"NAST’ AST’ Functions are drawn with (AST) or without ("NAST’) asterisks in each channel.
"NCHA’ "CHA’ Scatter plot are plotted with dots randomised within each bin ("NCHA’) or by
printing a single character in the middle of the bin ("CHA *)
"SOFT’ "HARD’ Use SOFTware or HARDware characters
"TAB ’ "NTAB’ tables (HTABLE) are plotted as tables ("TAB) or as scatter plots ("NTAB’)
HTIT’ UTIT Option for printing titles. "HTIT’ means use the hbook titles, while "UTIT’ sig-
nals the use of user titles
LINX’ LOGX’ The scale for the X axis is linear or logarithmic.
"LINY’ "LOGY’ The scale for the Y axis is linear or logarithmic.
Note that if in hbook the HIDOPT option "LOGY’ or HLOGAR was selected for a
particular ID and if neither options "LINY’ nor "LOGY” are selected then the scale
will be logarithmic. If HLOGAR or HIDOPT with option "LOGY’ was called and the
option "LINY’ is selected then the scale will be linear
"LINZ’ "LOGZ’ The scale for the Z axis is linear or logarithmic (for lego plots or surfaces).
'BOX ’ "NBOX’ By default a rectangular box is drawn around a picture. 'NBOX’ suppresses this
box
NTIC’ 'TIC’ Cross-wires are drawn ("TIC ’) or not drawn (’NTIC’) after each plot
"NSTA’ "STA’ Statistics information are printed ("STA) or not printed ("NSTA’) on the picture
'NFIT’ FIT’ Fit parameters are printed CFIT ’) or not printed ("NFIT") on the picture
"NSQR’ "SQR’ The size of the histogram boxes is set to the largest square (SQR)
"NZFL’ ZFL’ The picture is stored ("ZFL) or not stored ("NZFL’) in a ZEBRA data base The
procedure to create a higz picture is given below.
"NZFL’ ZFL1’ "ZFL1" has the same effect as "ZFL ’, but only the picture last created is kept in
memory.
"NPTO’ PTO’ “Please Turn Over”. With "PTO ’ a carriage return is requested between each
new plot.
"NBAR’ "BAR’ 1-dimensional histograms are plotted as “Bar charts” ("BAR ’) or as contours
(’NBAR’)
"DVXR’ DVXI’ Real ("DVXR’) or integer ("DVXI’) labels are computed for the X axis
'DVYR’ DVYT’ Real ("'DVYR’) or integer ('DVYI’) labels are computed for the Y axis
"GRID’ "NGRI’ Grid on X and Y axis
"NDAT’ "NDAT’ The date is printed or not on each plot

7.4. Setting attributes

Table 7.2: Overview of the HPLOPT options (continued)

109

Default Alternative | Effect
'NFIL’ NFIL’ The file name is printed or not on each plot
Table 7.3: Parameters and default values in SET
CHOPT | VAR (default) | Explanation

ASIZ 0.28 cm | axis label size
BARO 0.25 | bar offset for “bar charts”
BARW 0.5 | bar width for “bar charts”
BCOL 1 | zone fill area colour index
BTYP 0 | zone fill area style index
BWID 1 | box line width
CFON 2 | comment font (10*font+precision)
CSHI 0.03 | character shift between two pass
CSIZ 0.28 cm | comment size
DASH 0.15 | length of basic dashed segment for dashed lines
DATE 2 | date position
DMOD 1 | line style for histogram contour (see HPLOT)
ERRX 0.50 | error on X (% of bin width)
FCOL 1 | function fill area COLor
FILE 1 | file name position
FIT 101 | fit values to be plotted
FPGN 1 | first PaGe Number
FTYP 0 | function fill area TYPe
FWID 1 | function line width
GFON 2 | global title font (10*font+precision)
GRID 3 | grid line type
GSIZ 0.28 cm | global title size
HCOL 1 | histogram fill area colour index
HMAX 0.90 | histogram maximum for scale (in percent)
HTYP 0 | histogram fill area style index
HWID 1 | histogram line width
KSIZ 0.28 cm | Hershey character size (cf. KEY)
LFON 2 | axis labels font (10*font+precision)
NDVX 10510.00 | number of divisions for X axis
NDVY 10510.00 | number of divisions for Y axis
NDVZ 10510.00 | number of divisions for Z axis
PASS 1. | number of pass for software characters
PCOL 1 | picture fill area colour index
PSIZ 0.28 cm | page number size
PTYP 0 | picture fill area style index
PWID 1 | picture line width
SMGR 0. | stat margin right (in percent)
SMGU 0. | stat margin up (in percent)
SSIZ 0.28 cm | asterisk size (for functions)
STAT 1111 | stat values to be plotted

110 Chapter 7. Graphics (HIGZ and HPLOT)

Table 7.3: Parameters and default values in SET (continued)

CHOPT | VAR (default) | Explanation
TFON 2 | general comments font (10*font+precision)
TSIZ 0.28 cm | histogram title size
VFON 2 | axis values font (10*font+precision)
VSIZ 0.28 cm | axis values size
XCOL 1 | Xaxis COLor
XLAB 1.40 cm | distance Y axis to labels
XMGL 2.00cm | X margin left
XMGR 2.00cm | X margin right
XSIZ 20.0cm | length of picture along X
XTIC 0.30cm | X axis tick mark length
XVAL 0.40 cm | distance between the Y axis and the axis values
XWID 1 | Xticks width
XWIN 2.00cm | X space between zones
YCOL 1 | Y axis COLor
YGTI 1.50 cm | Y position of global title
YHTI 1.20cm | Y position of histogram title
YLAB 0.80 cm | distance X axis to labels
YMGL 2.00cm | Y margin low
YMGU 2.00cm | Y margin up
YNPG 0.60 cm | Y position for the page number
YSIZ 20.0cm | length of picture along Y
YTIC 0.30cm | Y axis tick mark length
YVAL 0.20 cm | distance between the X axis and the axis values
YWID 1 | Y ticks width
YWIN 2.00cm | Y space between zones
2S81Z 0.28 cm | scatter plot and table character. size

75 Moreon labels

By default, labels used by AXIS and PIE are numeric labels. The command GRAPHICS/PRIMITIVES/LABELS (or
LABELS for short), allows the user to define up to nine alphanumeric set of labels (numbered from 1 to 9). These
labels can then be used in subsequent commands using PIE or AXIS primitives of HIGZ.

The LABELS command has three parameters:

LABNUM An integer between 1 and 9. It identifies the labels set.
NLABS The number of items to be placed on the labels (up to 50).
CHLABS NLABS character strings specifying the label items.

The label sets thus defined can be used for axes on all plots produced by PAW (HPLOT histograms, graphs, vectors
drawing, etc.) via the SET NDVX (NDVY) command. These commands have the following structure:

Example of NXDV specifi cation

SET NDVX i e.g. SET NDVX 512
or
SET NDVX i.jk e.g. SET NDVX 10.25

7.5. More on labels

5 5
= N g
s 2/ HBOOK GLOBAL TITLE
180 BARW 180 |- iHMAx
160 [160
140 |- BARO 140
120 |- M 120 &
XMGL [1~ XWIN | XMGH
100 100 "
80 [80 |-
60 | 60 |-
40 40 |-
20 [20
OﬂH 0: \‘\\\‘\\\‘\\\‘\\\
0 02 04 06 08 1 002 04 06 08 1
Z N
)]
XLAB HISTOGRAM TITLE S| HISTOGRAM TITLE >
<>
Z, 200 SMGU |
5 - ERRYX ID 2
FECHS \ J(Entries 5000
§ - N JHH(Mean 4982
3 150 = YTIC j(J(RMS { 2205 |
2 s | 1 2
125 = T csiz »
100, +
7 L 1l
- XVAL il xsiz |
N I |
o | e
N - + xTic 4 L4
g125 |- g g, AT
SR T+
0 o 4H+4h | | ‘ | | | ‘ | | ‘ | | | | ‘ | @
_~lo1 T o2 0.3 04 T o5 06/ %
YVAL Q = 51 Gevic '~
s %] HISTOGRAM TITLE

Figure 7.3: A graphical view of the SET parameters

111

112 Chapter 7. Graphics (HIGZ and HPLOT)

In the first case the number i contains 100 times the number of secondary divisions plus the number of primary
divisions. (e.g. 512 means 12 primary and 5 secondary division. By adding 10000 times N3 to i a third level of
divisions is available.

In the second case the number in front of the dot (i) indicates the total number of divisions, the first digit following
the dot (j) the label identifier (LABNUM) (if this number is equal to 0 numeric labels are drawn). The second digit
after the (k) dot indicates the position where the labels have to be drawn (i.e. the text justification parameter,
in this case 5, indicating horizontally written text centered on the interval). Study figures 7.4 and 7.5 for details.
These two figures show that the labels can be centered on the tick marks (1 to 4) or on the divisions (5 to 8). If the
labels are centered on the tick marks, note that the number of items in the command LABELS must be equal to the
number of tick marks (which is equal to the number of divisions plus one), otherwise the last alphanumeric label
on the axis will be undefined.

By default, the number of primary divisions given by SET NDVX n, SET NDVY n or SET NDVZ n is optimized to
have a reasonable labelling. The number of primary divisions is also optimized according the number of zones
(command ZONE) i.e : along the X direction the number of primary divisions is divided by the_number_of_X
_zones along the Y direction the number of primary divisions in divided by (the_number_of_Y_zones) /2.

If the number of divisions has to be exactly equal to the number given by SET NDVX n, SET NDVY n or SET NDVZ
n, a negative value must be used i.e.:

Forcing an exact number of divisions

SET NDVX -i e.g. SET NDVX -512
or
SET NDVX -i.jk e.g. SET NDVX -10.25

For example to label each subsequent X-axis with the names of the months of the year centered in the middle of
each bin one can use:

Example of alphanumeric labels on an axis

PAW > LABEL 1 12 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
PAW > SET NDVX -12.15

7.6 Colour, linewidth, and fill areain HPLOT

The aspect of HPLOT pictures can be modified via the xWID, xTYP and xCOL attributes, where x can be H, B, P, or
F, defined as follows:

zone Box
Function

Histogram

‘v @ T w

Page

The values given to the parameters PTYP, BTYP, HTYP, and FTYP are the HIGZ fill area interior styles. Interior style
provided by the basic graphics package (i.e. GKS) can be used (cf the corresponding documentation) but in order
to have the same result on all devices, numbers greater than 100 (HIGZ styles: 7.7) should be used. Figure 7.6
shows how to use the xTYP parameter.

The parameters PCOL, BCOL, HCOL and FCOL are equivalent to PTYP, BTYP, HTYP, and FTYP respectively, but instead
of changing the hatch style, they change the colour of the same areas. It is possible to specify both the border and
the inside color for the Histogram, Box Page, and Function (HCOL, BCOL, PCOL, FCOL).

7.6. Colour, line width, and fill area in HPLOT

If NDVX=12.10 the default value is taken (12.15)

NDVX

If NDVX=9.00 the default valueis taken (9.01)

L1 1218 | | | 1 1 I -9.08
Zp %f:zz:3235 3538 ¢ c « a e« e e~ =
L 1 1 1 1 1 1 1 1 1 1 1] 1217 L 1 1 1 1 1] -9.07
Ll 1216 L | | | | | | -9.06
J M M 3 A o N D 0 1 2 3 4 5 6 7 8
A E A P A U U U E C O E
N R R Y G T c
IS I I Iy N S B - 1} L | | 1 1 1 I -9.05
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 0 1 2 3 4 5 6 7 8
Ll 1| | 1214 | | | | | | | -9.04
IS S I Sy I S B - K | | | 1 1 1 I -9.03
s m s %2 5 & g & B 8 8 R o = © s oo v~ ® o
zZ2 w3 » X z Ff 6 ©8 % 2 o
L 1 1 1 1 1 1 1 1 1 1 1] 1212 L 1 1 1 1 1 1] -9.02
J MoOA M J A S O N D 0 1 3 4 5 7 8 9
A E A P A U U U E C O E
N R R Y L 6 P T c
IS S I I S N S B % & L | | | | | 1 I -9.01
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 0 1 3 4 5 7 8 9
Figure 7.4: Example of labelling for horizontal axes
If NDVY=12.10 the default value is taken (12.16)
12.11 12.12 12.13 12.14 12.15 12.16
Left Center Right Left Center Right
December December December
December [— December — December — — — —
November November November
November — November — November — — — —
October October October
October [— October — October — — — —
September September September
September— September — September — — — —
August August August
August August August | — | — | — | —
July July July
July — July — July — — — —
June June June
June — June — June — — — —
May May May
May — May — May — — — —
April April April
April — April — April — — — —
March March March
March — March — March — — — —
February February February
February — February — February — — — —
January January January
January — January — January — — — —

Figure 7.5: Example of labelling for vertical axes

113

114 Chapter 7. Graphics (HIGZ and HPLOT)

Example of HCOL specifi cation

Ex:
+---- 1 The Histogram is filled
| 0 Only the border is drawn
|+--- Border color (here 2) if the histogram is filled
| |++- Inside color (here 3) if the histogram is filled
[l Border color if the histogram is not filled

[T
VvV
SET HCOL 1203

The same mechanism is also available for FCOL, BCOL and PCOL.

If PCOL, BCOL, HCOL or FCOL are between 1 and 99, then only the contour of the corresponding area is changed. If
they are between 1001 and 1099, then the surface is filled with the colour determined by the corresponding fill area
colour index (1 to 99). If they are between 1199 and 1999, then the surface is filled with the colour determined by
the corresponding fill area colour index (1 to 99) and the border is drawn with the corresponding line color index
(1t09).

If one of the *COL is greater than 1000 the corresponding value of the Fill Area Interior Style (for HTYP, BTYP,
PTYP or FTYP) is automatically set to 1 (solid).

In addition, BCOL has two digits after the dot. The first one specifies the colour of the zone box shadowing and the
second the colour of the statistic box shadowing.

7.7 Information about histograms
Four options are available to plot additional informations on HPLOT pictures: DATE, FILE, STAT and FIT.

PAW > OPTION DATE
PAW > OPTION FILE
PAW > OPTION STAT
PAW > OPTION FIT

| Plot date and hour on current HPLOT picture
| Plot file name of current histogram

| Plot statistics of current histogram

| Plot Fit parameters of current histogram
For each of these OPTION commands a corresponding SET parameter is available:

PAW > SET DATE i | Default is 2
PAW > SET FILE i | Default is 1

where i defines the position of the date or file name:

1 Top left corner of page/current histogram.
2 Top right corner

i = 3 : Bottom left corner
4 Bottom right corner

For example the command:
PAW > SET DATE 3

sets the position of the date to the bottom left corner of the HPLOT pictures.

PAW > SET STAT i | Default is 1111

where i corresponds to binary status bits AOURMET as follows:

A=1 Draw the contents of all channels
0=1 Draw number of overflows
U=1 Draw number of underflows

7.7. Information about histograms

R=1 Draw R.M.S.

M=1 Draw mean value

E=1 Draw number of entries
I=1 Draw histogram identifier

For example the command:

PAW > SET STAT 10

sets the statistics informations to be only the number of entries.
PAW > SET FIT i | Default is 101

where i corresponds to binary status bits CEP as follows:

C=1 Draw y?2

E=1 Draw errors

P=1 Draw fit parameters

For example to draw only the result of the x? fit one would use:

PAW > SET FIT 100

115

For all these OPTIONS, the character size is specified with the command SET CSIZ and the character font used

with SET CFON.

Fill area style, marker and linetype

The Fill Area Interior Style, The Fill Area Style Index, the Marker TYPe and the Line TYPe are set respectively

using the IGSET parameters FAIS, FAST, MTYP and LTYPE.

Example

PAW > IGSET FAIS 3 | Fill area are hatched

PAW > IGSET FASI 244 | with the style index

PAW > IGSET MTYP 25 | Marker type is an empty square
PAW > IGSET LTYP 15 | Line type is dotted

HIGZ provides some portable fill area styles index coded using three digits ijk as follows:

i: Distance between each hatch in mm
j: Angle between 90 and 180 degrees
k: Angle between 0 and 90 degrees

These numbers are coded according to table 7.4 and examples are shown in figure 7.7.

Example
PAW > IGSET FAIS 3 | Fill area interior style is hatched
PAW > IGSET FASI 190 | Hatch type is 190

These commands will yield hatching with two sets of lines at 90° and 0° spaced 1 mm apart.

/

/

/

/

/

NN — —
o o o ™ <t © N~ © o2}
n [T} i} [t} Ty} n [T} Irs} n
™ ™ ™ ™ ™ ™ ™ ™ ™
| —

/

/

/

/

— n
2L
>
=
17}
<

— 2

] ©

1 =

] — @

A = = 3
[T} 0 Te} [T} Ty) Ty} T} [Te} [T} +
o ! N ™ < © ~ © o2} =
™ ™ ™ ™ ™ ™ ™ ™ ™ m.
- — N

—)

— I
~
<5}
S
>
(@2
Lo

< < < < < < < <
< < < < ~ < < <
N [} < [To) © ~ © o
—_] N —
o N e
> 7 o
~ -
P \
) g _ =
L T C 1@ o
a —
o > & © © 5
c ol - ;
a m . < o H
_ -~ B B c
o T £
> ‘ - 2
= E e 5
H.. A T ;c, ‘,‘, an e [,ﬁ o < -ﬁonnnononnnnnononononom M ..nm
[a ® § TERXUIRRIES o o
> — @ © < N o o~ [1 B
- o o o o =) = a —
_ = - =
Q o T Y =
o [S)
> - SRR [<5)
] IR S
= 7 RS RIS 2
] S OTosooTesesesatetetetetetotels o
[a B dw IR RIRSIRIILLILKILKL <«
— ™~ RN D
...m 1o S RRERS, CRKHKS
o . o
) qw ~ N~
9 1o S o
Q. 1 5
S 18 =)
< 1o 4 w
n :]
,,77,,,77,,,77, 11 77,, ,,77,,,77,,,\.0 ,,77,,,77,,,77,,,77,,,77,,,77,,,77, 7 | o
o o o o o o o o o o o o o o o o o o
© < N o o © < N © < N o 0 © < N
— G <« 4 — 4

(LO1dH pue z9IH) soydets 2 asideyd 91T

7.7. Information about histograms 117

Marker Type Marker

31

30

29

28

27

26

25

24

23

22

21

OE» A0 [< g XK

20

Figure 7.8: HIGZ portable marker types

Line Index Line Type

15 |

13 S

Figure 7.9: HIGZ portable line types

Colour Index : 0 Colour Index : 1

Colour Index : 2 Colour Index : 3

Colour Index : 4 Colour Index : 5

Colour Index : 6 Colour Index : 7

Figure 7.10: PostScript grey level simulation of the basic colours

118 Chapter 7. Graphics (HIGZ and HPLOT)

i Distance j Angle k Angle

0 180° 0 0°
1 0.75mm 1 170° 1 10°
2 1.50mm 2 160° 2 20°
3 2.25mm 3 150° 3 30°
4 3.00mm 4 135° 4 45°
5 3.75mm 5 notdrawn 5 notdrawn
6 4.50mm 6 120° 6 60°
7 5.25mm 7 110° 7 70°
8 6.00mm 8 100° 8 80°
9 6.75mm 9 90° 9 90°

Table 7.4: Codification for the HIGZ portable fill area interior styles

7.8 Text drawing
In PAW, text output can be produced in two ways:

1. Automaticaly with commands like GRAPH or HISTO/PLQOT in which a lot of text is drawn: the axis labels,
the histogram title, the global title, the statistics etc. . The attributes (font, colour or size) and the placement
of these texts are controled with the command SET. In the rest of the chapter, the text produce automaticaly
will be called HPLOT text

2. Directly with the commands ITX and TEXT. The attributes of ITX are controlled with the command IGSET
whereas the attributes of TEXT are given with the command parameters.

Text placement

The text placement specify where the text must be drawn. For the HPLOT text, the text position is always in
centimeters whereas for ITX or TEXT the current coordinate system is used.

HPLOT text

The possible text placements for HPLOT text are described in the following example:

PAW > SET XVAL 0.40 | distance between the Y axis and the axis values
PAW > SET YVAL 0.20 | distance between the X axis and the axis values
PAW > SET YLAB 0.80 | distance X axis to labels

PAW > SET XLAB 1.40 | distance Y axis to labels

PAW > SET YGTI 1.50 | Y position of global title

PAW > SET YHTI 1.20 | Y position of histogram title

PAW > SET YNPG 0.60 | Y position for the page number

PAW > HISTO/PLOT 10 | the histogram 10 is drawn with previous settings

See figure 7.3 for more details.
ITX
In the command ITX the text position is defined with two mandatory parameters (X and Y):

PAW > SELNT 1 | cm coordinates
PAW > ITX 5 5 ’Hello’ | ’Hello’ is drawn at the position (5,5)

7.8. Text drawing 119

TEXT
In the command TEXT the text position is defined with two mandatory parameters (X and Y):

PAW > SELNT 1 | cm coordinates
PAW > TEXT 5 5 ’Hello’ 1 | ’Hello’ is drawn at the position (5,5)

Text size
For all the texts drawn with PAW commands, the text size is always specified in centimeters.
HPLOT text

The possible text sizes for HPLOT text are described in the following example:

PAW > SET ASIZ 0.28 | axis label size

PAW > SET CSIZ 0.28 | comment size

PAW > SET GSIZ 0.28 | global title size

PAW > SET KSIZ 0.28 | Hershey character size

PAW > SET 2SIZ 0.28 | scatter plot and table character. size

PAW > SET TSIZ 0.28 | histogram title size

PAW > SET VSIZ 0.28 | axis values size

PAW > HISTO/PLOT 10 | the histogram 10 is drawn with previous settings

See figure 7.3 for more details.
ITX

The text character heigh attribute for use by future invocations of ITX is set using the CHHE parameter as follows:

PAW > IGSET CHHE 1 | set the character heigh to 1 cm.
PAW > ITX 5 5 ’Hello’ | the size of ’Hello’ is 1 cm.

TEXT
In the command TEXT the text size is a mandatory parameter (SIZE).

PAW > TEXT 5 5 ’Hello’ 1 | the size of ’Hello’ is 1 cm.

Text orientation

The text orientation is an angle (in degrees) between the X axis and the text axis. By default this angle is equal to
0.

HPLOT text

Text orientation cannot be changed with some SET parameters for the HPLOT text. It is always automaticaly
computed. For example in the command ATITLE, which draws the axis titles, the title on the Y axis is automaticaly
drawn with an angle of 90 degrees.

ITX

The text orientation attribute for use by future invocations of ITX is set using the TANG parameter as follows:

PAW > IGSET TANG 90 | set the text angle to 90 degrees.
PAW > ITX 5 5 ’Hello’ | ’Hello’ is drawn with an angle of 90 degrees.
TEXT

In the command TEXT the text orientation is an optional parameter (ANGLE).

PAW > TEXT 5 5 ’Hello’ ! 90 | ’Hello’ is drawn with an angle of 90 degrees

120 Chapter 7. Graphics (HIGZ and HPLOT)

Horizontal alignment Vertical alignment
3 Righti e e Centre
2 Céntre ,,
3 lor2:Top
0 or 1: Left (Normal) iioO: Bottom (Normal).............__

Figure 7.11: Text alignment

Text alignment

The text alignment controls the placement of the character string with respect to the specified text position.
HPLOT text

Text alignment cannot be changed for the HPLOT text. It is automaticaly computed.

ITX

The text alignment attributes for use by future invocations of ITX are set using the TXAL parameter as follows:

PAW > IGSET TXAL (10*(horizontal alignment) + (vertical alignment))

The horizontal and vertical alignments parameters must be in the range 0-3. The horizontal alignment specifies
which end of the string (or its geometric center) is aligned with the specified point given in ITX. The vertical
alignment controls whether the top of tall characters (or the bottom of capital letters) line up with the specified
point (see figure 7.11).

ITXALH horizontal alignment

0 normal (usually same as 1)

1 left end of string at specified point
2 center of string at specified point

3 right end of string at specified point

ITXALH vertical alignment
0 normal
1 top of tallest chars plus any built in spacing

2 top of tallest chars
3 halfway between 2 and 4

PAW > IGSET TXAL 23 | The horizontal and vertical alignments are centered
PAW > ITX 5 5 ’Hello’ | ’Hello’ is drawn center adjusted
TEXT

In the command TEXT the text alignment is an optional parameter (CHOPT). Only the horizontal alignment can be
changed among three possible values: Left, Center or Right.

PAW > TEXT 5 5 ’Hello’ 1 ! L | ’Hello’ is drawn left adjusted (default)
PAW > TEXT 5 5 ’Hello’ 1 ! C | ’Hello’ is drawn center adjusted
PAW > TEXT 5 5 'Hello’ 1 ! R | ’Hello’ is drawn right adjusted

7.8. Text drawing 121

Text colour

The text colour is define via a colour index in the colour table.

HPLOT text
PAW > SET XCOL 2 | X axis color
PAW > SET YCOL 3 | Y axis color

PAW > HISTO/PLOT 10 | the histogram 10 is drawn with previous settings

ITX

The text colour attribute for use by future invocations of ITX is set using the TXCI parameter as follows:

PAW > IGSET TXCI 3 | set the text colour to green.
PAW > ITX 5 5 ’Hello’ | ’Hello’ is drawn in green.
TEXT

The text colour attribute for use by future invocations of TEXT is set using the TXCI parameter as follows:

PAW > IGSET TXCI 2 | set the text colour to red.
PAW > TEXT 5 5 ’Hello’ ! | ’Hello’ is drawn in red.

Text font and precision

Text font selects the desired character font e.g. a roman font, a sans-serif font, etc. Text precision specifies how
closely the graphics package implementation must follow the current size and orientation attributes. String (0)
precision is most liberal (hardware), stroke (2) precision is most strict. Character precision is in the middle (1).
The value of text font is dependent upon the basic graphics package used. However, font number 0, with precision
2 is always available, independently from the basic graphics package used.Hardware characters are available with
all the basic graphics packages. With X11, a large variety of font is available. They are the same as the PostScript
fonts (see figure 7.15).

HPLOT text

PAW > SET CFON -60 | comment font is Helvetica Bold

PAW > SET GFON -20 | global title font is Times Bold

PAW > SET LFON -60 | axis labels font is Helvetica Bold

PAW > SET TFON -20 | general comments is Times Bold

PAW > SET VFON -60 | axis values font is Helvetica Bold

PAW > HISTO/PLOT 10 | the histogram 10 is drawn with previous settings

Note that SET *FON ffp set all the HPLOT text font to the same value f£p.
ITX
Text font and precision attributes for use by later invocations of ITX are set with TXFP as follows:

PAW > IGSET TXFP (10*(Text font) + (text precision))

TEXT

This command draws a software character text, independently from the basic graphics package used by HIGZ. It
can produce over 300 different graphic signs. The way in which software characters are defined is via a string of
valid characters, intermixed by other characters, acting as “escape” characters (e.g. a change of alphabet, upper or
lower case). The string is interpreted by TEXT and the resulting characters are defined according to the figure 7.12,
which shows the list of available software characters. This command allows the user to mix different types of
characters (roman, greek, special, upper and lower case, sub and superscript). There are a total of 10 control
characters.

122 Chapter 7. Graphics (HIGZ and HPLOT)

List of escape characters and their meaning

< | goto lower case go to upper case (default)

[| goto greek (Roman = default) end of greek

go to special symbols end of special symbols

T | go to superscript go to subscript

o|FH|—|V

! | go to normal level of script backspace one character

$ | termination character (optional)

Note that characters can be also entered directly in lower case or upper case instead of using the control characters
<and >,

The boldface characters may be simulated by setting the attributes "PASS” and *CSHI’ with IGSET. The meaning

of these attributes is the following: Every stroke used to display the character is repeated PASS times, at a distance
(in percentage of the character height) given by CSHI.

PostScript text fonts

PostScript files the text can be generated with PostScript fonts. The figure 7.15 shows all the PostScript fonts

available on most PostScript printers. Note that the fonts -15 to -24 are the same than -1 to -14, but they are
drawn in hollow mode.

The correspondence between ASCII and ZapfDingbats font is given on figures 7.16 and 7.17. TEXT control
characters are taken into account. In addition the character ~ switches to the ZapfDingbats character set.

List of escape characters and their meaning
< | go to lower case (optional) go to upper case (optional)
[| goto greek (Roman = default) end of greek
go to special symbols end of special symbols
~ | goto ZapfDingbats end of ZapfDingbats
T | go to superscript go to subscript
I | gotonormal level of script backspace one character
$ | termination character (optional)

|| |H®|—|V

The PostScript fonts can be used with precision 0 or precision 1. On the screen, a PostScript font used with

precision 1 appears like the TEXT characters, with precision 0 its appears as hardware character (X11 fonts). In
both cases the PostScript file is the same.

Note that characters can also be entered directly in lower or upper case instead of using the escape characters <
and >. Examples of PostScript text and math are shown in Figures 7.13 and 7.14.

123

7.8. Text drawing

= ®

D -

s 8 i\@$!#>?f:;<[]§§§VB%%@&X@%ODAO*%T%¢?D?+,*/:()

- @

58

= i\%ﬁl#>?/:;<[]%%§J®@O&&X%%WW&W%%T%¢9O?+,*/:()

=l

ol

wm TU TO WARNNS 2 Y< 3AN0KEDQOEIXIWDAro - 8 0 ¢ 0 o~ o o - PN TN

0 O

s 3

SO <DITAUBL X ——X<ZZOLOA WEEXCIHIFINO—AMTDONOD - ~+ | * >l ——

D0

T

Mm OO0 0DV ODC— =X - ECOQTL W+ 3>ZTX >NNo -~ o o or oo - - & N e A

S

T

S E| AD0OOWLOT - 5X 153Z00 0K D>EX>NO-NMTOONO® - -+ | x>l ~——
[e]

o

Figure 7.12: Characters available in IGTEXT

124 Chapter 7. Graphics (HIGZ and HPLOT)

PAW > IGSET LWID 6
PAW > BOX 0 16 0 5
PAW > IGSET CHHE 0.5
PAW > IGSET TXAL 3
PAW > IGSET TXFP -130
PAW > ITX 3 4 ’K\355nstler in den gr\345\373ten st\311ldten
PAW > ITX 3 3 ’\253\265 1’’\372uvre on conna\333t 1’’artisan\273
PAW > ITX 3 2 ’\(proverbe fran\32lais\
PAW > ITX 3 1 ’\252\241Ma\337ana\41 \322ag&\306!das&\313!\272, dit 1’’\3231\325ve.
Klnstler in den grof3ten Stadten
A it Iarti
«A I'ceuvre on connait I'artisan»
(proverbe francais).
f. N N H 1 AT A
iManana! Cadag, dit I'éleve.
Figure 7.13: Example of PostScript text (result of input above)
PAW > IGSET LWID 6
PAW > BOX 0 16 0 5
PAW > IGSET CHHE 0.5
PAW > IGSET TXAL 23
PAW > IGSET TXFP -130
PAW > ITX 8 4 ’e"+le"-! "B# Z 0! "B# 11&"-!, qq&~\261!’
PAW > ITX 8 3 ’| a&~[\256]! \267 b&~[\256]! | = [\345] a"i?&jk!+b"kj?&i’
PAW > ITX 8 2 ’i ("d#7[m!yl&"\261![g™m]! + m [yl&"\261!) = 0" r# ("r# + m"2!) [yl = O’
PAW > ITX 8 1 ’L?em! = e J"[m]?&em! A?[m]! , J~[m]7&em!=1&"\261![g?m]!1 , M~j?&i! = [\345&?al! A?7[a! t-alj?&i! ’

ee - Z2°- 1,99
|asb|=3 a+b;
i@y +my)=0~ (0+m)yp=0
L,=ed A, L :I_yuI,MJingan”

em” 'y’ Yem

Figure 7.14: Example of PostScript text and maths (result of input above)

7.8. Text drawing

125

Font/Prec PostScript Font Style
-1/0 ABCDEFghijlk0123456789 Times-ltalic
-2/0 ABCDEFghijlk0123456789 Times-Bold
-3/0 ABCDEFghijlk0123456789 Times-Boldltalic
-4/0 ABCDEFghijlk0123456789 Helvetica
-5/0 ABCDEFghijlk0123456789 Helvetica-Oblique
-6/0 ABCDEFghijlk0123456789 Helvetica-Bold
-7/0 ABCDEFghijlk0123456789 Helvetica-BoldOblique
-8/0 ABCDEFghi j | k0123456789 Courier
-9/0 ABCDEFghi j | k0123456789 Courier-Oblique
-10/0 ABCDEFghi j 1 k0123456789 Courier-Bold
-11/0 ABCDEFghi j | k0123456789 Courier-BoldOblique
-12/0 ABHAE®yX11Ak0123456789 Symbol
-13/0 ABCDEFghijlk0123456789 Times-Roman
-14/0 dooooottdide OO 0O O O0OOMOIO ZapfDingbats
-15/0 ABCDEFghijlk0123456789 Times-ltalic
-16/0 ABCDEFghijlk0123456789 Times-Bold
-17/0 ABCDEFghijlk0123456789 Times-Boldltalic
-18/0 ABCDEFghijlk0123456789 Helvetica
-19/0 ABGCDEFghijlk0123456789 Helvetica-Oblique
-20/0 ABCDEFghijik0123456789 Helvetica-Bold
-21/0 ABCDEFghifik071234567869 Helvetica-BoldOblique
-22/0 ABXAEDYNipAK0123456789 Symbol
-23/0 ABCDEFghijlk0123456789 Times-Roman
-24/0 XxefoofoPp <> KeBH O cocdy/ (/ XE K KR ZapfDingbats

Figure 7.15: PostScript text fonts.

Chapter 7. Graphics (HIGZ and HPLOT)

126

Lower
Zapf

OOO000000000 eOeOOOO«rO0 ~H00 oo opgfoooooodoooOoond

00...0ooo0oooooo, Uolo,o0 - 0 oy, 00,00

Lower
Greek Soecial

m TOACWWWS>X——X¥<dI>0EFE®abrox3wiv - O HFROVA——HOC— o300
-
mm COQOT VO ——X—ECO0QT-N+=I3>IX>XN -+~ — =R VAr—— FH< O odeh !
|
= n [{e] [{e]
W T Q OT DV DE — =X — ECOQT = MW+ 35> X >N o _|%WW%mBWmBWWWMN

—_— - - -

WM Y e e e e o L
Wm iIDE!#>?I:;<[]2{TVQV0éSx%mEDEO.ﬂTelH.,+ED+¢s"{}
Wm COTIUBL X ——¥<SZO0COQLNF>XCIIFNOANMINONOO® - -+ | O~ I Y~~~
mwm <COOAWLOIT - X I1SZ00 00X NFID>SSIX>NOANMSINONOD - ~+ 1 x ~ || e

Input

COO0OAWLOI—"PY¥Y ISZ0AQOENEFEFDSZIX>NOANMITO OMNOO® - -4 1 % ~ || — —~o

Figure 7.16: PostScript characters (1).

7.8. Text drawing

127

Inout Upper Upper Upper Upper Inout Lower Lower Lower Lower
npu Roman Greek Special Zapf npu Roman Greek Special Zapf
\241 i Y Y O \321 O O O
\242 ¢ ! ! U \322 é U U |
\243 £ < < Il \323 e O Il U
\244 / / / O \324 E O O O
\245 ¥ 0 o0 O \325 e U U >
\246 g f f O \326 E -
\247 » & O \327 é O O 1
\250 a ¢ 'S &» \330 E - - O
\251 ! v v ¢ \331 e O O O
\252 “ 4) v \332 E O O O
\254 < - - N \334 | O O O
\255 > 1 1 O \335 | O O O
\256 fi > N O \336 | O O O
\257 fl ! ! O \337 q) O O O
\260 a ° ° [l \340 N O O O
\261 — + + O \341 Y= O O O
\262 T " " O \342 0 O O O
\263 ¥ > > O \343 a O O O
\264 - x x 0 \344 o] O 0 0
\265 A 0 0 0 \345 0 % % u
\266 i 0 0] \346 O O
\267 . . . O \347 a O O O
\270 , + + 0 \350 b 0 0 0
\271 " Z Z a \351 (%] O a O
\272 " = =] \352 E O O O
\273 » = = [] \353 ° a a O
\274 O \354 U O O O
\275 %o O O O \355 u O O O
\276 a O O O \356 U O O O
\277 ‘ O O O \357 a O O O
\300 A O O [l \360

\301 A O O O \361 O O O
\302 0 O 0 \362 f I]; I]; O
\303 - O O O \363 y O
\304 ~ O O O \364 Y O
\305 - O O O \365 I JD JEI O
\306 ” O 0 il \366 a 0
\307) n n] \367 A O O O
\310 - O O O \370 } O O O
\311 a O O O \371 @ O O O
\312 ° O O O \372 f02) O O O
\313 | [l [l \373 R U | [l
\314 A 0 0 0 \374 N 0 0 0
\315 ” O O N \375 U O O O
\316 O [l [l \376 O O O
\317 ¢ 0 0 0 \377

Figure 7.17: PostScript characters (2).

128 Chapter 7. Graphics (HIGZ and HPLOT)

Attributes menus

A
v

Box interior style Hatch P e <« To work on primitives

Box style index -3 Windows <« Towork on Normalization Transf.
Box color index Green Pictures <« To work on pictures

Border Yes Files <« Towork on picturesfiles

Exit <« Exit the graphics editor

Software text
Text

Fill area
Polyline
Polymarker
Axis

Arc

Box
Paving-block
Frame box
Arrow
Change Att.
Delete

Move

Front

Grid <« Draw agrid
Att.‘ Redr.‘Undo
A A

Create new primitives

Modify existing primitives

Editing space Undo the last commands

Redraw the picture
Invoke the attributes menu

Figure 7.18: The HIGZ graphics editor

7.9 TheHIGZ graphicseditor

The HIGZ pictures in memory can be modified interactively with the HIGZ graphics editor. The command
PICT/MODIFY invokes the HIGZ editor (see figure 7.18 for more details):

PAW > PICT/MODIFY PNAME

PNAME can be the complete name, the picture number in memory or > .

Chapter 8: Distributed PAW

8.1 Accesstoremotefilesfrom a PAW session

When running PAW, it is often necessary to access files (e.g. HBOOK files) which reside on a different computer.
The ZFTP program described above can be used if a very frequent access to the file is required. A more convenient
mechanism is the possibility to access the files directly. On many systems, one may now use NFS [12] for this
purpose. Under some circumstances, for example if the HBOOK file is not in exchange mode and it is to be
accessed from a computer running a different operating system, an alternate approach is required. To fill this gap
the PAW server is provided. This works using a conventional Client/Server model. The client (PAW) typically
runs on a workstation. When the PAW command RLOGIN is invoked, a PAW server is automatically started on
the remote machine, normally a mainframe or data server.

Once the RLOGIN REMOTE command has been executed, the PAW Current Directory is set to //REMOTE. The
PAW client can now instruct the PAW server to attach a file using the RSHELL command (e.g. rshell file
pawtest.dat). If an histogram with HBOOK ID=10 is on the remote file, than the PAW command Histo/Plot
10 will plot this histogram on the local workstation. The histogram resides on //PAWC like other histograms
coming from local files.

The RSHELL command may be used to communicate with the PAW server. The expression typed following RSHELL
is passed to the server. The current implementation of the PAW server recognizes the commands:

rshell file filename Server connects filename
rshell cdir //lunili Server changes current directory

rshell 1d Server lists current directory
rshell 1d // Server lists all connected files
rshell message Server pass message to operating system

Accessto remote fi les from a workstation

file HRZTEST.DAT to //PAWC
change directory to CERNVM
creates a new file on the D disk
write all histograms from //PAWC
to CERNVM file NEW DAT D

PAW > cdir //CERNVM
PAW > rshell file NEW.DAT.D 1024 N
PAW > hrout O

PAW > rlogin CERNVM | connect to CERNVM
PAW > rshell file HRZTEST.DAT | PAW server connects HRZTEST DAT A to //LUN11
PAW > histo/plot 10 | plot histogram 10 from CERNVM
PAW > histo/fit 20 G | fit histo 20 with a gaussian and plot it
PAW > rlogin VXCRNA | connect to VXCRNA
PAW > rshell file DISK$DL: [PAWIHEXAM.DAT;3 | PAW server on VXCRNA connects file to //LUN11
PAW > histo/plot 110 | plot histogram 110 from VXCRNA
PAW > rshell file HRZTEST.DAT | PAW server on VXCRNA connects file to //LUN12
PAW > histo/plot 110 s | plot histogram 110 from HRZTEST.DAT
| on VXCRNA on the existing picture
PAW > rshell 1d // | list all files connected on VXCRNA
PAW > cdir //CERNVM | Change current PAW directory to CERNVM
PAW > histo/plot 110 | plot histogram 110 from CERNVM
PAW > histo/plot //VXCRNA/110 | plot histogram 110 from VXCRNA
PAW > cdir //PAWC | current directory to local memory
PAW > histo/list | list all histograms in //PAWC
PAW > Histo/delete 0 | delete all histograms in memory
PAW > hrin //VXCRNA/O | read all histograms from VXCRNA
|
|
I
|
|

129

130

Chapter 8. Distributed PAW

8.2 Using PAW asa presenter on VM S systems (global section)

In addition to the facilities described in the previous section, the standard version of PAW may be used as an online
presenter on VMS systems using the mechanism of global sections. It is possible for two processes to reference
the same histograms using global sections. For example, the first process may be a histogram producer (e.g. a
monitoring task) and the second process PAW. As the histograms are being gradually filled by the first task, PAW
can view them, and even reset them. To use the global sections, it is also necessary to ”page align” the common
which is in the global section. This is achieved in the "link step” when making the process (see example). The
relevant statements are SYS$INPUT/OPTIONS to tell the linker that some options follow the link statement, and

PSECT=PAWC,PAGE which is the option to page align the /PAWC/ common.

1000

2000

10

20

99

$ fort produce
$ link produce,SYS$INPUT/OPTIONS,-

PROGRAM PRODUCE

PARAMETER MAXPAGES=100
COMMON/PAWC/IPAWC (128*MAXPAGES)
CHARACTER*8 GNAME

INTEGER*4 HCREATEG

GNAME="GTEST’
WAIT_TIME=1.
NUMEVT=1000
.......... Create Global section
NPAGES=HCREATEG (GNAME, IPAWC, 128*MAXPAGES)
IF(NPAGES.GT.0) THEN
PRINT 1000,GNAME
FORMAT(’ Global Section:
ELSE
IERROR=-NPAGES
PRINT 2000,IERROR
FORMAT(’ Global Section Error’, 16)

> A,’ created’)

PAW > edit produce
macro produce ntimes=100
nt=[ntimes]
zone 1 2
histo/plot 10 K
histo/plot 20 K
loop:
histo/plot 10 U
histo/plot 20 U

wait > ’ 1

nt=[nt] -1

if nt>0 goto loop
return

PAW > global GTEST
PAW > exec produce ntimes=20

GO TO 99
ENDIF
CALL HLIMIT(128+*NPAGES)
.......... Book histos.
CALL HBOOK1(10,’Test1$’,50,-4.,4.,0.)
CALL HBOOK1(20,’Test2$’,50,-4.,4.,0.)
.......... Fill histos.
DO 20 I=1,NUMEVT
DO 10 J=1,100
CALL RANNOR(A,B)
CALL HFILL(10,A,0.,
CALL HFILL(20,B,0.,
CONTINUE
CALL LIB$WAIT(WAIT_TIME)
CONTINUE

1.)
1.)

STOP
END

320
280
240
200
160
120

80

40

280
240
200
160
120

80

40

o

& T T I I I T

& [T I I T

cern$library:packlib/1ib,kernlib/1ib

PSECT=

PAWC,PAGE

8.3. Using PAW as a presenter on OS9 systems

8.3 Using PAW asa presenter on OS9 systems

131

The technique described in previous sections may also be used to access HBOOK histograms being filled by a
monitoring task on OS9 systems from a standard PAW session running on a machine with the TCP/IP software.

*

10
20

99

INDIRECT PAWC
PROGRAM PRODUCE

Monitoring task MT1 in processor 0P2.

PARAMETER NWPAW=10000
COMMON/PAWC/IPAWC (NWPAW)

CALL HLIMIT(NWPAW)
Book histos.

CALL HBOOK1(10,’TEST1$’,50,-3.,3.,0.)
CALL HBOOK1(20,’TEST2$’,50,-3.,3.,0.)
Fill histos.

NUMEVT=10000
DO 20 I=1,NUMEVT
DO 10 J=1,100
CALL RANNOR(A,B)
CALL HFILL(10,A,0.,1.)
CALL HFILL(20,B,0.,1.)
CONTINUE
CONTINUE

STOP
END

OP1 || OoP2
MT1 MT1, MT2, MT3
PAW Client
running on PAW Server (one server per client)
a computer running on (shared code)
with TCP/IP TCPIP_| one OS9 node
(Apollos, SUNs
(Il(':wjv Central VA;) OSONET
MT1, MT2
PAW >
<— Ethernet
(many clients)
OP3 || OP4
MT1, MT2 MT1

OP1, OP2..: OS9 processors
MT1, MT2.. : Monitoring tasks

Example of how to access OS9 modules from PAW

PAW
PAW

PAW

PAW

PAW

PAW

PAW

PAW
PAW

PAW

rlogin 0-0PALO1
rshell module 0P2/MT1

histo/plot 10
hrin O
Histo/File 1 local.dat 1024 N

hrout 0

rshell module 0P3/MT2

Output 56 o0s9.listing
rshell 1dir

Output -56

connect to an 0S9 machine

PAW server connects to 0P2/MT1
(Processor 0P2, Monitoring Task MT1)
plot histogram 10

read all histograms into //PAWC
create a new file local.dat

on the client machine

save all histograms from //PAWC

to the local file

PAW server connects to another

0S9 monitoring task

Change output file on client

list all histograms in MT2

on file o0s9.listing

Change output file to default (unit 6)
file o0s9.listing is closed

Chapter 9: PAW++: A guided tour

PAW++ is a powerful OSF/Motif based Graphical User Interface to the popular Physics Analysis Workstation PAW.
The graphical user interface makes the full and rich command set of PAW available to even the naive user. Simple
point and click operations are enough to execute commands that were previously accessable only to expert users.
Figure 9.1 compares the functionalities of basic PAW with PAW++,

Basic PAW and PAW++

PAW++

Basic PAW

Command line interface and macros via KUIP.
Histogram Presenter.

Operations on histograms, fits,etc.

Arrays: Manipulation and Drawing.

Plotting of mathematical expressions.

Basic, and high level graphics.

Ntuple selection and histograming.

Fortran Interpreter: COMIS.

MOTIF interface.
Class/Object Browsers.

Direct Graphics Manipulation.

Ntuple viewer.

K Histogram style panel. /

Figure 9.1: PAW and PAW++ compared

At present PAW++ is available on Unix workstations and VAX/VMS.

PAW++ has, in addition to the conventional command line and macro types of interface, the following dialogue
modes:

Pull Down menus They are useful to understand the command structure of the PAW system.
Command panels They give a “panel representation” of the commands.
Object Browser This is in many ways similar to the well-known browsers in the PC/MAC utilities or the

visual tools on some workstations.

132

133

Direct graphics One can click in the graphics area and identify automatically which object has been
selected. A pop-up menu appears with a list of possible actions on this object. For
example, by clicking with the right mouse button on a histogram, one can make directly
a gaussian fit, a smoothing etc. Pop-up menus are available by clicking on the Graphics
Window to automatically produce PostScript, Encapsulated PostScript, IATEX files or
print the picture on your local printer.

Histogram Style Panel Buttons are available to change histogram attributes, colours, line styles, fonts, and axes
representation. 2-D histograms can be rotated interactively. Zooming and rebinning can
be performed interactively in real time.

Ntuple Viewer Just click on the Ntuple column name to histogram the column.

The new system is largely self-explanatory. Only a subset of PAW has been converted to this new user interface,
but work is currently in progress to offer many new facilities in future releases.

On all system on which CERNLIB is installed, it is enough to type paw++ to enter the system.
PAW++ starts up with three windows on the screen:

The “PAw++ Executive Window”

The “Paw++ Graphics 1”

The “PAw++ Main Browser”

includesa menu bar, a Transcript Pad, a current working directory indicator
and an Input Pad.

window displays the graphics output from HIGz/X11. Objects, e.g. his-
tograms, displayed in the Graphics Window can be manipulated by point-
ing at them, pressing the right mouse button and selecting an operation from
the popup menu. Pointing at the edge of the Graphics Window (between
displayed object and window border) brings up a general popup menu. Up
to 4 additional Graphics Window can be opened by selecting “Open New
Window” from this menu.

displays all browsable classes and connected hbook files. Up to 4 additional
browsers can be opened via the “View” menu of the “Paw++ Executive
Window” or via the “Clone” button on the browsers. For more information
on the browsers see the “Help” menus.

Figures 9.2 on page 134 and 9.3 on page 135 give a detailed overview of the various windows of PAW++.

134 Chapter 9. PAW++: A guided tour

= z = = Paw++ Graphics 1 T
|ﬁ Pawi+ Executive Window 2 [I ‘ F‘
File Edit View Options Help
1 90 D 514
Transcript Pad il N - S s
= % B Mean 2226E-01
RMS 1463E-01

¥ersion 1.19/81 of HIGZ started

=» Start of system login

=» End of system login. User login commands now startin
Pawt+> /MACRO/EXEC fuser/coust/pawtt/demn.kumac
Pawt+> Cdir //LUNT

o —

0.05

= s

H Angular density
Input Pad //LUNT H|
Baw++> | ']
£
=] =
& Bro
File View t Help

o 150 200 250

Path: //LUN1

PHIVS, ¥ -VE UNWEIGHTED

PHI¥S, ¥ -VE UNWEIGHTED

Directory : 17 1d=Histogram: 14 2d—Histogram: 24 Ntuple:1

P oHI Trow w0 STRET ol Histogram Style Panel =
Files File Options
Macro
Zebra J Current Style: Default
Hbook
Chains Plot Info Style
PAWC | Statistics... Object Attributes...l General Attrihutes...l
Lun1 .

_| Fits...

Viewing Angles... | Geometry... | Znnes...l
_I File Name...
_| Date Axis Scaling... | Axis Settings... | Font... |
/ Plot Options: Default ek | Cartesian ={ |
File: pawdemo.hbook Reset
Clone | Ewit I
10: TEST1 Delete 4 Plot | Reset I Close
—_—

— The upper left corner isthe PAW++ Executive Window, with its I nput Pad at the bottom and the Transcript Pad at the

top.

— The PAW++ Browser, where the various entities (pictures, 1-D and 2-D histograms and Ntuples) are all defi ned with
their own symbol, is shown bottom left. A “pop-up” menu has been activated for the chosen 1-D histogram. Severa
actionslike Plot, Smooth, Fit €tc... can be performed via this menu.

— The GraphicsWindow is seen top right. A 1-D view of the data points and two 2-D views (a Surface-plot and a colored
contour plot) are shown. On the 1-D view, two 1-D histograms are superimposed. The results of a“smoothing” type of
fi t to the data points is a so drawn. Information about the data and the fi t can be found in the inserted window.

— TheHistogram Style Panel at the lower right allows graphics attributes of the histogram to be controlled.

Figure 9.2: PAW++ windows explained (1)

135

= Newple Viewer [Pavw++ Graphics

F/LUN2/5000: INVARIANT MASS 524R B1C = IW
THRUST S W x [md : -
THRPHI L !

= ntuple IO 5000
THRCOS oy [- Sient nonberiitns
MD0 2 i Sans

- EWENT

oz |PP1q_Nz - ERER 45 €55

MD THRUST 0. 33667

THEPHT 017538
THRGOS 0.E0747E-05

XDS -
wDO First Row [-4

s : 1.5051

i -6 Ntuple 5000 1.65871
Number of Rows [:024 T =l 027621

' Open Ntuple ¥i 0. 24656

PKAON gl L 0 Tonat

PPIONT Histogram ID |:1080000 ' e Project...

] 02 Print
PHIK —
PHIP1 Cut Editor... _| Ignore Cuts o " B
:::::2 Deline Hetoman.., _| Overlay :: 50 é_
DOP1 60 s E
DOP2 Plot | Scan | Project | N =
Z0K a0 £
o n -
/ Lo, Hobit,, 10 - E
20 E
10 LU
» 0 002 004 006 008 01 4 0 002 004 006 008 01
Pawt+ Main Browser Angular density Angular density
Eile View ﬂeip |
Path: [/LUN2 =l Cut Editor []
Directory: 1 1d=Histogram: 106 2d-Hist] File
Eomman J4. 80 81 a2 .
. Cut Expression:
Files Tl
Macro i |
Zebra | _| |c05T3= > |1anaa“_ .AND. _.I
Hbook o
Chains ‘:I oo q
i : m o2 J | e | LAND. _.|
LUN1 o - J
LUN2 [*-:: [‘:: I m 2 J Im_]: S |‘IBUEIBEI
LUNZ B |
5000 5003 500 Y
7]
File: fuserfcnuetfpaw++fdl]hh2.hhnnk 1 Apply Apply & Plot LI
51%: Angular density S|

— The upper left corner showsthe Ntuple Viewer. Theleft window shows the name of the various variables, characterizing
the selected Ntuple. Other windows and press-buttons specify which combinations of the various variables and which
events have to be treated (plotted, scanned, .. .).

— The lower left contains the PAW++ Browser, with this time an Ntuple selected. A double on a Ntuple icon open auto-
matically the Ntuple Viewer on the active Ntuple.

— The Graphics Window is seen top right and shows a 3-D view of the combination of three variables, whose cuts are
specifi ed with the Cut Editor (see below).

— Direct graphics interactions with Ntuple data are possible. Just by clicking on a point in the Graphics Window, the
event description is displayed in the PAW++ L ocate window.
— The Cut Editor panel, shown at the lower right, allows various combinations of cuts to be specifi ed and applied.

Figure 9.3: PAW++ windows explained (1)

136

9.1 The Executive Window

Chapter 9. PAW++: A guided tour

00 O 0O 0

File

Edit View Options

Help

Transcript Pad

H

i A
Version 2.01/02 8 March 1993 #*
K H
S S AR R R S R S K B A R R AR S S RO R SR SR S A R R SR RO A R R S
Version 1.17/01 of HIGZ started
=> Start of system login
_ =2 End of system login. User login commands now starting
A £
= P
el
Input Pad AfLunt/nicl H|
Bauwt++> | &
“‘ ‘
A
Il /- e
g g U g

This window allows to type commands on the keyboard like in the normal PAW system. In fact this window is the
kxterm program provide with the KuIP package.

This terminal emulator combines the best features from the (how defunct) Apollo DM pads (like: Input Pad
and Transcript Pad, automatic file backup of Transcript Pad, string search in pads, etc.) and the Korn shell
emacs-style command line editing and command line recall mechanism.

Commands are typed in the Input Pad O behind the application prompt. Via the toggle buttons 1 O the Input Pad
and/or Transcript Pad can be placed in hold mode. In hold mode one can paste or type a number of commands
into the Input Pad and edit them without sending the commands to the application. Releasing the hold button will
causes kxterm to submit all lines, upto the line containing the cursor, to the application. To submit the lines below
the cursor, just move the cursor down. In this way one can still edit the lines just before they are being submitted
to the application.

[] In the Input Pad one can type, retrieve and edit command line with the help of a Korn shell emacs-style
command line editing mode. See in appendix the complete list of the editing keys.

[] The Transcript Pad O shows the executed commands and command output. When in hold mode O the
transcript pad does not scroll to make the new text visible. Mouse operations like “Copy Paste” are allowed
in the transcript pad. It is also possible to search a character string (see the menu bar description).

[] Every time the current directory is changed, the Current working directory indicator is updated. The

current working directory can be changed by clicking on a item in the PATH window of the Main Browser

or by clicking on a icon directory in the Main Browser itself.

Hold buttons.

Allows manipulation of the Transcript Pad.

Allows character string seach, copy/paste in the Transcript Pad.
Allows to invoke other panel.

Some general settings are available in this menu.

Online help.

|

9.1. The Executive Window

9.1.1 The Executive Window menu bar

137

In this section, is describe the full functionality of the pull down menu available in the Menu Bar of the Executive

Window.

File Edit View Options

Help

File

éhuut...

Save Transcript

Save Transcript As...

About Kxterm...
About <Application>...

Save Transcript

Save Transcript As...
Print...

Kill

Exit

= Paw++ Question

Do you really want to exit Paw++ ?

s

W

O
Edit
i §*_E_:_ Shif-Eled
Loy itribins
?'ﬁ‘.{_é*é_iiéié itk hag
Search... Ctri+s

Displays version information about Kxterm.

Displays version information about the applica-
tion Kxterm is servicing.

Write the contents of the transcript pad to the cur-
rent file. If there is no current file a file selection
box will appear.

Write the contents of the transcript pad to a user-
specified file.

Print the contents of the transcript pad (not yet
implemented).

Send a SIGINT signal to the application to cause
it to core dump. This is useful when the appli-
cation is hanging or blocked. Use only in emer-
gency situations.

Exit Kxterm and the application. When this op-
tion is selected or when EXIT is typed in the In-
put Pad, the following panel is displayed:

[] The exit is performed.
Nﬂ [] The exit procedure is canceled.

Cut Remove the selected text. The selected text is written to the
Cut and Paste buffer. Using the “Paste” function, it can be
written to any X11program. In the transcript pad “Cut” de-
faults to the “Copy” function.

Copy Copy the selected text. The selected text is written to the Cut
and Paste buffer. Using the “Paste” function, it can be written
to any X11program.

Paste Insert text from the Cut and Paste buffer at the cursor location
into the Input Pad.

Search... Search for a text string in the transcript pad.

138 Chapter 9. PAW++: A guided tour
View

Show Input Show Input Show in a window all commands entered via the In-
— put Pad.

Command Panel F1 Command Panel

Eruwser F2 Browser

Style Panel F3 Style Panel

Options

Clear Transcript Pad Clear Transcript Pad Clear all text off of the top of the transcript pad.

—— Echo Command Echo executed commands in transcript pad.
" Echo Command

Timing Report command execution time (real and CPU
Timing time).
) Iconi Iconify Kxterm and all windows of the applica-
lconify fy tion. fy PP
Help

On Kxterm The help you are currently reading.
On Edit Keys Help on the emacs-style edit key sequences.

9.2 TheMain Browser

The KUIP/Motif Browser interface is a general tool to display and manipulate a tree structure of objects which are
defined either by KuIP itself (commands, files, macros, etc.) or by the application.

The “Clone” button at the bottom creates a new independent browser window. The “Exit” button destroys the
browser window. The Main Browser cannot be destroyed (only iconized).

The middle part of the browser is divided into two windows:

1. The left hand “class window” shows the list of all currently connected classes of objects. Some classes,
e.g. the command tree and the file system, are predefined. Other classes allow to attach new files using the
commands in the “File” menu. Clicking with the left mouse button on one of the items in the class window
displays its content in the other window. Pressing the right mouse button inside the class window shows a
popup menu of possible operations, e.g. creating a new object in the current directory.

2. The right hand “object window” shows the content of the currently selected class directory. The “View”
menu allows the change the way objects are displayed, i.e. to choose the icon size and the amount of
information shown for each object. Objects are selected by clicking on them with the left mouse button.
Pressing the right mouse button pops up a menu of possible operations depending on the object type.

An item in a popup menu is selected by pointing at the corresponding line and releasing the right mouse button.
Double clicking with the left mouse button is equivalent to selecting the first menu item.

Each menu item executes a command sequence where the name of the selected object is filled into the appropriate
place. By default the command is executed immediately whenever possible. The commands executed can be
seen by selecting “Echo Commands” in the “Options” menu of the Executive Window. In case some mandatory
parameters are missing a panel is displayed where the remaining arguments have to be filled in. The command is
executed then by pressing the “OK” or “Execute” button in that panel. (If it is not the last one in the sequence of
commands bound to the menu item the application is blocked until the “OK” or “Cancel” button is pressed.)

The immediate command execution can be inhibited by holding down the CTRL-key BEFORE pressing the right

mouse button. Some popup menus also contain different menu item for immediate and delayed execution, e.g.
“Execute” and “Execute...” for class “Commands”

9.2. The Main Browser

The path of the currently selected directory is always displayed below the menu bar. The directory can be changed
by pointing at the tail of the wanted subpath and clicking the left mouse button. Clicking a second time on the
same path segment performs the directory change and updates the object window. To go downwards in the directory

hierarchy double click on the subdirectory displayed in the object window.

o 0O 0 O 0
Il v growser L

File VYiew Options 'Eﬂmmands ﬂelp
| i |
[==y Path: //LUN1
Directory: 16 1d—Histogram: 14 2d—Histogram: 24 Ntuple: 1 =]
Commands 5
Files
ETAPFVL KAON MM MME
Macro J
> Zebra
U Hbook
Chains PHI PION RO STAFF
PAWC
< O
/
[] == File: pawdetno.hbook
q i
[== 1: PHIVS. ¥ +VE UNWEIGHTED E'xﬂ f“ﬂ
. | =
0 0
[] Current PATH (“PATH window”). [] File menu.
[] Class window. [] View menu.
[[] Name of file currently selected in the class window. [] Options menu.
[] Name of the object currently selected in the object window. [] Commands menu.
[] Number and type of object currenlty in the the object window. [] Help menu.
[] Object window. [] Clone button.
[] Exit button.

9.2.1 Theobjectsin the “object window”

This section describes all the PAW++ object available in the Main Browser.

HBOOK files

command HISTOGRAM/FILE.

Double click with the left mouse button on this icon, open the corresponfing HBOOK file with the

140 Chapter 9. PAW++: A guided tour

Select a HBOOK files icon with the left mouse button and press the right mouse button to obtain the following
menu:

Hbook File pasdeno.hbook Open Open the highlighted HBOOK file in read-only
Open mode.
Open Update Mode Open Update Mode Open the highlighted HBOOK file in update mode.

Note that the HBOOK file name is displayed in the menu title.

1D histograms

Double click with the left mouse button on this icon, produce the plot of the corresponding his-
togram with the command HISTOGRAM/PLOT. The histogram becomes the current histogram for
the Histogram Style Panel.

Select a 1D histograms icon with the left mouse button and press the right mouse button to obtain the following
menu:

1d-Histogram 10

Plot Plot Plot the corresponding histogram (default action). The histogram
— : becomes the current histogram for the Histogram Style Panel.
Fit... Fit... Perform the command Histo/Fit on the corresponding his-

: togram. The command panel is automatically displayed
Elt Banss Fit Gauss Perfom a gaussian fit on the corresponding histogram.
E:i.t Exp Fit Exp Perform an exponential fit on the corresponding histogram.
Fit Const Fit Const Perform a PO fit on the corresponding histogram.

B Fit Linear Perform a P1 fit on the corresponding histogram.

Elt S Smooth Smooth the corresponding histogram.

Smooth Smooth... Perform the command Smooth on the corresponding histogram.
o The command panel is automatically invoked.

Smooth. .. — .

— Copy Copy corresponding histogram onto an other histogram. The com-
Copy mand panel is automatically invoked.

o Reset Reset the corresponding histogram.

EEEEt Delete Delete the corresponding histogram.

Delete

Note that the histogram identifier is displayed in the menu title.

2D histograms

Double click with the left mouse button on this icon, produce the plot of the corresponding his-
togram with the command HISTOGRAM/PLOT. The histogram becomes the current histogram for
the Histogram Style Panel.

Select a 2D histograms icon with the left mouse button and press the right mouse button to obtain the following
menu:

9.2. The Main Browser

2d-Hastogram 20
Plot

Project X
Project Y
Slice X
Slice Y
Band X
Band Y

Eﬁuuth
Epuuth...

Copy
Epsgt
leete

Plot
Project X
Project Y
Slice X
Slice Y
Band X
Band Y

Smooth
Smooth...

Copy

Reset
Delete

141

Plot the corresponding histogram (default action). The histogram
becomes the current histogram for the Histogram Style Panel.

Generate the X projection, perform the projection and plot the result
(commands ProX, Hi/Proj, and Hi/Plot).

Generate the Y projection, perform the projection and plot the result
(commands ProY, Hi/Proj, and Hi/Plot).

Generate the X slices, perform the projection and plot the first slice
(commands S1iX, Hi/Proj, and Hi/Plot).

Generate the Y slices, perform the projection and plot the first slice
(commands S1iY, Hi/Proj, and Hi/Plot).

Generate the X bands, perform the projection and plot the first band
(commands BanX, Hi/Proj, and Hi/Plot).

Generate the Y bands, perform the projection and plot the first band
(commands BanY, Hi/Proj, and Hi/Plot).

Smooth the corresponding histogram.

Perform the command Smooth on the corresponding histogram.
The command panel is automatically invoked.

Copy corresponding histogram onto an other histogram. The com-
mand panel is automatically invoked.

Reset the corresponding histogram.
Delete the corresponding histogram.

Note that the histogram identifier is displayed in the menu title.

Ntuples

|

EEEE

=
=
=
o

EEEKK

ing Ntuple.

Roresiocoiosi |

Double click with the left mouse button on this icon, open the Ntuple Viewer on the correspond-

Select a Ntuples icon with the left mouse button and press the right mouse button to obtain the following menu:

Ntuple 30

Open Ntuple Viewer

Project. ..

Print

Open Ntuple Viewer Open Ntuple Viewer on the highlighted Ntuple.
Project... Project the highlighted Ntuple. The Command

Print

panel Ntuple/Proj is automatically invoked.

Print the highlighted Ntuple (Command
Ntuple/Print).

Note that the Ntuple identifier is displayed in the menu title.

PAW commands

Double click with the left mouse button on this icon, execute the corresponding PAW command.

Select a PAW commands icon with the left mouse button and press the right mouse button to obtain the following

menu:

142 Chapter 9. PAW++: A guided tour

Cormand PLOT

Execute Execute the command with the default parameters. If a mandatory
Exec:ute parameter is missing, the command panel is automatically invoked.
Execute. .. Execute... Display the command panel.
- 1 Help Display the help on the command.
EE P Usage Display the command usge in the Transcript Pad of the Executive
[Manual Equivalent to HELP.
Manual q_ N
s Set Command This command becomes the one executed when a directive typed on
Set Conmmand the keyboard is not an existing PAW command.
= 1 Deactivate The command is deactivated.
Deactivate

Note that the command name is displayed in the menu title.

Deactivated PAW commands

Double click with the left mouse button on this icon, execute the help on corresponding PAW
command.

Select a Deactivated PAW commands icon with the left mouse button and press the right mouse button to obtain
the following menu:

Deactivated Command LAST
Help

Help Display the help on the command.

= Activate The command is activated.
ﬂ;tlvate

Note that the deactivated command name is displayed in the menu title.

Up

Double click with the left mouse button on this icon, allow to go one level up in the directory tree.
This icon is alway the first one of the content window.

Select a Up icon with the left mouse button and press the right mouse button to obtain the following menu:
Up Directory ..
List

List Allow to go one level up in the directory tree.

Directory

Double click with the left mouse button on this icon, change the current working directory.

Select a Directory icon with the left mouse button and press the right mouse button to obtain the following menu:
Directory cmotif
List

List Change the current working directory.

9.2. The Main Browser 143

PostScript files

Double click with the left mouse button on this icon, invoke the ghostview on the corresponding
file.

Select a PostScript files icon with the left mouse button and press the right mouse button to obtain the following
menu:

iu;zs::npt I i T g View Invoke GhostView on the file.
Edi-t Edit Edit the file.

;riilt Print Print the file.

Delete Delete Delete the file.

Read-Write files

Double click with the left mouse button on this icon, invoke the editor on the corresponding file.

Select a Read-Write files icon with the left mouse button and press the right mouse button to obtain the following
menu:

Read/Vrite File Paw
ZE;:Iit Edit Edit the file.
[View Read the file.
Delete Delete the file.

View

]lelet.e

Note that the file name is displayed in the menu title.

Read-only files

Double click with the left mouse button on this icon, invoke the editor in view mode on the
corresponding file.

Select a Read-only files icon with the left mouse button and press the right mouse button to obtain the following
menu:

Read-only File .profile
View

Delete

View Read the file.
Delete Delete the file.

Note that the file name is displayed in the menu title.

No-access files

Double click with the left mouse button on this icon, invoke the shell command chmod on the
corresponding file.

144 Chapter 9. PAW++: A guided tour

Select a No-access files icon with the left mouse button and press the right mouse button to obtain the following
menu:

No-access File .rhosts
Chwod

Chmod Try to change the permissions of the file.

Note that the file name is displayed in the menu title.

Executable files

Double click with the left mouse button on this icon, invoke the command SHELL on the corre-
sponding file.

Select a Executable files icon with the left mouse button and press the right mouse button to obtain the following
menu:

Executable File SYSBCEDP
= Execute Invoke the command SHELL on the file.
Execute)]
Execute...Open the command panel SHELL with the file name.
Execute. ..
e Edit Edit the file.
Edit
= View Read the file.
View]
o Delete Delete the file.
Delete

Note that the file name is displayed in the menu title.

PAW Macros

" Double click with the left mouse button on this icon, execute the corresponding macro.

Select a PAW Macros icon with the left mouse button and press the right mouse button to obtain the following
menu:

Kuip Macro alldef

Exec Exec Execute the macro.

[Exec... Open the command panel EXEC with the macro name. It is useful
E:I:El:: s to give parameters to the macro.

Edit Edit Edit the macro.

= View Read the macro.

E:"E'w Delete Delete the macro.

Delete

Note that the macro name is displayed in the menu title.

Pictures

Double click with the left mouse button on this icon, plot the corresponding picture.

Select a Pictures icon with the left mouse button and press the right mouse button to obtain the following menu:

9.2. The Main Browser 145

s e PICTO0 Plot Plot the highlighted picture.

Plot Do PostScript Produce the PostScript file PNAME.ps, where PNAME is the
i name of the highlighted picture.

Do PostScript

Create Create a new picture. The command panel Picture/Create
Create is automatically invoked.
[FE . Rename Rename the highlighted picture. ~ The command panel
Renarme Picture/Rename is automatically invoked.
EE].Et.E Delete Rename the highlighted picture.

Chains

Double click with the left mouse button on this icon, allow to go one level deeper in the chain
tree.

Select a Chains icon with the left mouse button and press the right mouse button to obtain the following menu:

Chain chl
sk List List the available chains.
& Show Tree Show the tree from the highlighted chain.
Show Tree

Delete Chain Delete the highlighted chain.

Delete Chain

Last chain level

Last chain element.

Select a Last chain level icon with the left mouse button and press the right mouse button to obtain the following
menu:
Chain Entry //lwnl
List
Delete Chain Entry

List List the available chains.
Delete Chain Entry Delete the highlighted chain element.

ZEBRA Stores

ga Double click with the left mouse button on this icon, allow to go inside the corresponding ZEBRA
store.

Select a ZEBRA Stores icon with the left mouse button and press the right mouse button to obtain the following
menu:

Stores M Storell. PAYWG
List
Show store DESTOR

List Display divisions of the store
Show store DZSTOR Show parameters of the store (CALL DZSTOR)

146

ZEBRA Divisions

Chapter 9. PAW++: A guided tour

|"'I"II |"'I"II Double click with the left mouse button on this icon, allow to go inside the corresponding ZEBRA
division.

Select a zEBRA Divisions icon with the left mouse button and press the right mouse button to obtain the following

menu:
Divisions Divl2, (DIVZ

List

Display division
Snap division
Yerify division
Gollect garbage

Set filter for banks

ZEBRA Banks

ZEBRA bank.

[— L

List Display banks of the division as icons.

Display division Show layout of banks in divisions graphically.

Snap division Show a snapshot of division parameters. (CALL
DZSNAP).

Verify division Verify division (CALL DZVERI).

Collect garbage CALL MZGARB in selected division.

Set filter for banks Allow to display only banks whase hollerith. iden-
tifiers match a wild card selection.

% Double click with the left mouse button on this icon, draw the bank tree from the corresponding
|

Select a ZEBRA Banks icon with the left mouse button and press the right mouse button to obtain the following

menu:

Banks HIST.1 1

Display bank tree
Show cont documentd
DZ Show contents
Show system words
Survey bank tree
Put into ve_t:f_ur
Edit documention
Hodify data words
Drop bank (tree)

RZ Files

BRA/RZ file.

Display bank tree
Show cont documented
DZ Show contents
Show system words

Survey bank tree
Put into vector

Show documentation
Edit documentation

Modify data words
Drop bank (tree)

Display graphically the structure below the se-
lected bank (see picture banktree.eps).

Display the data of the bank with their descrip-
tion if a documentation data base is provided
(see CERN Q101).

CALL DZSHOW fore selected bank.
List contents of the links and system words.
CALL DZSURYV for selected bank.

Put data contents of the bank into a KUIP vec-
tor.

Display the documentation for the bank (if pro-
vided).

Edit a bank descriptor, if no available yet pro-
vide a template.

Self explaining.
Self explaining.

Double click with the left mouse button on this icon, allow to go inside the corresponding zE-

Select a RZ Files icon with the left mouse button and press the right mouse button to obtain the following menu:

9.2. The Main Browser 147

Bzfile E LUN1 Close RZfile Self explaining.
- List Display keys.
Laist List directory CALL RZLDIR.

Close Rzfile

Show key definition self explaining.

Set filter on keys Allow to display only entries whose key words
match a wild card selection.
E}]W status Show status CALL RZSTAT.

RZ Directories

Double click with the left mouse button on this icon, allow to go inside the corresponding zE-
BRA/RZ directory.

Select a RZ Directories icon with the left mouse button and press the right mouse button to obtain the following
menu:
Rz-directory BS

— List List the highlighted RZ directory.

ETSt : List directory (RZLDIR) Perform RZLDIR on the highlighted RZ directory.

List directory {RELDIR) L] o

Shiow ke 0 Einikion Show key definition Display the key definition.

Set filter an keys Set filter on keys Defines a filter on the keys.

RZ Keys
Double click with the left mouse button on this icon, allow to read into memory the corresponding
ZEBRA/RZ key.

Select a RZ Keys icon with the left mouse button and press the right mouse button to obtain the following menu:

Keys 10 0 1
Read key into memory Read key into memory Allow to inspect the data of a key.

Show key definition Show key definition Self explaining.
Show key words
Eét filter on keys

Show key words Self explaining.
Set filter on keys See above.

9.2.2 TheMain Browser Menu Bar

In this section, is describe the full functionality of the pull down menu available in the Menu Bar of the Main
Browser.

File View Options Commands Help
File
Open Hbook File Open Hbook file Display the Open Arguments panel (see after).

Close Hbook Eile Close Hbook file Display the Close Arguments panel (see after).

148 Chapter 9. PAW++: A guided tour

O O [l O
it: I 15 i
- Open in Aead Only Mode it _ =, Record _
3 Length: 512 J
~ Open in Update Mode 4 1024 i
8
~ Create New File IEB
Filter \ 4
,'"user',"lcauet ,'"pal.'u++,"‘*. hbualg_
Directories Files
,"'userft:nuetfpaw++f. B brun.hbook Al
Juserfoouetfpave++/.. cern.hbook
fuser feouetfpave++f 3dfield dibb2.hbook
fuser feouetfpave++ femotif demo. hboolk
fuserfcuuetf-paw++ffmutif grades.hbook |
fuaerf:’:uuetfpaw+-l-’_fpict hrztest.hbook
fuser fecouetfpavet++fuimx A _| |iostat.hbook
i A]
= = = J—]
Open File
fuserfcnuetfpawﬂ;ﬁ_
A
OK | Filter | Cancel Help |
A A A A
=
] 0 0]] 0]
[] Toggle buttons to choose the openning mode.
[] Filter apply on the file list 0.
[] Possible logical units. Only the free units are displayed. The next free unit is highlighted. Any other unit is
invalid.
[] Possible record length. A record length of 0 means that the system will compute the correct one automati-
cally.
[] The file is open and this panel is closed.
[] File name of the opened file.
[] Apply the filter defined in O.
[] List of the subdirectories available. Double click on a directory name change the current directory.
[] Cancel the current opened panel and clode it.
[] List of the file in the current directory matching the filter.
[] Help

Note that a double click with the left mouse button on a HBOOK file icon in the object window of the Main Browser

open also the HBOOK file. This panel is usefull to specify a filter different form the default filter . hbook used in
the object window.

9.2. The Main Browser

[

[

[

_l—_lil

Connected Files

LUNT: pawdemao.hbook *

LUN2: fuserfcouetfpaw++fiostat.hbook
LUN3: fuserfcuuetfpaw++fdemu.hbnuk
LUN4: f.ljserfchuetfpaw++fgrades.hhnuk

[
[

149

List of the currently connected hbook
files.

A simple click with the left mouse but-
ton a file name in the connected files
list, highlight the filename and put it in
the Close file field 0.

Name of the file to be closed. This
field can be filled directly by tipyng on

LUNS: fuserfcoustfpaw++/dibb2. hbook

\ 4 the keyboard, or by a simple click with

LUNS: fuser[couet/paw++/joa.hbook L the left mouse button in the Connected
Files list 0.

[] When afile is selected, clicking on this

Close File v button or typing <CR> allows to per-

form the action (close the file) and close
the panel.

[] Close the selcted file and leave the
panel opened.

LUW3: fuserfooust fpawt+oa. hbnnl{

0I<_| Closﬂ Canﬂ Help [] Cancel the current operation and close
A A A A the panel.
- [] Give some help.

O O O O
View

This pull down menu allows to define the “viewing” for the objects in the “object window” of the Main Browser.

“ lcons I

Small lcons Icons The objects are represented with big icons (default).
Small Icons The objects are represented with small icons.

Mo lcons No Icons Only the object identifier and type are displayed.

Titles Titles Small icons, objects identifiers and titles are displayed.
Select All All the objects are selected.

Select All Filter... Apply a filter on object names.

Filter ...

Paw++ Main Browser

Eile Eiew |

Path; _ lcons

Small lcons

Mo lcons —
T

Comi fitles
Files . . . g
Macr Selectall | e SRBLE — = Icons: icons and the object identifiers
Zebr. Filter.. — are displayed.
Hbool |E§
Chains 2 -
PAWC

File: pawdemo.hbook

150 Chapter 9. PAW++: A guided tour

Paw++ Main Browser

File View | Help

Path; _ lcons

“ Small lcons

y:17 1d—Histogram: 14 2d—Histogram: 24 Ntuple:1

HNo lcons:

i
Com fitles L

Macr Selectall i Small Icons: small icons and the object

identifiers are displayed.

DEEHTZ

Zebr. Filter...

File: pawdemo.hbook

Paw++ Main Browser

File View | Help

Path; _ lcons

Small lcons

y:17 1d—Histogram: 14 2d—Histogram: 24 Ntuple:1

“* Nolcons:

P iy
Comi it eles p— —
Files ———)) . .
Macr Selectall = EEH ADELLL J No Icons : object identifiers and titles
Zebr Filter.. Y 30 (Whuple) 1 (2d) are displayed.
Hbool 2d) -1 i2d) —11 i2d)
Chains 12 {2d) -z (2d) -12 (2d)
PAWC 3 (2d) 13 (2d4) -3 (2d)
LUN1 =13 (2d) 4 (24) 14 (2d)
f

File: pawdemo.hbook

Paw++ Main Browser

File View | Help
Path: __lcons
Small lcons . .
y:17 1d—Histogram: 14 2d—Histogram: 24 Ntuple:1
Mo lcons v
Comi . fitles pu - divectory
Fileg ——— . . 3 . .
Macr Selectall | 10 - Esri bt 'I_'lFIes : sma}ll icons apd the object iden-
Zebr IR tifiers and titles are displayed.
; 1] (2d) — TEST OF HEHDMZ
(Ntaple) - TEST OF N-TUPLES
(2d) - PHI V. ¥ +VE VHWEIGHTED
£
File: pawdemo.hbook
.Clunel §Ex§€.| i

9.2. The Main Browser 151

Options

Haize Window P
Fo - Raise Window Raise a given window.
Command Panel...

Command Argument Panel...Get help on a given command.
Command Panel Help...

Commands

This menu allows to access the tree of the PAW commands. Only the top levels are describe in this section. Note
the tree of the PAW commands can also be accessed via the item “Commands” in the “PATH Window” of the
Main Browser.

Kuip F |

Kuip Command Processor commands.
Macro -
Macro Macro Processor commands.
Yector
i Vector Vector Processor commands.

Histogeans - Histogram Manipulation of histograms, Ntuples.

Function - Function Operations with Functions. Creation and plotting.
Mtuple - Ntuple Ntuple creation and related operations.
Graphics - Graphics Interface to the graphics packages HPLOT and HIGZ.

Picture Creation and manipulation of HIGZ pictures.
Fortran Interface to MINUIT, COMIS, SIGMA and FORTRAN Input/Output.
Network To access files on remote computers.

Picture o
Fortran =
Metwork -

Dzdoc Access Dzdoc
Dzdoc o

Help

9.2.3 Information Windows

Top

Path: //LUN1

Directory : 16 1d—Histogram: 14 2d—Histogram: 24 Ntuple:1

On the top of the Main Browser is displayed the current directory PATH and the content of the current directory
i.e. the number of objects of each type.

Bottom

File: pawdemo.hbook .
30: TEST OF N=TUPLES M ﬁl

On the bottom of the Main Browser is displayed the name of the current file (HBOOK files for example) in which
the objects are stored. If the objects are not stored in a file (like the commands), the file name is just blank. Below
the file name, the full name of the currently selected object is displayed.

152

9.2.4 Content Window

In this section are describe the different menu available in the “Content Window”.

Commands

Paw+ Main Browser

File View Help
Path: fKUIP
Menu: 2 Command: 12)
— List
Cornmands J SRS 3
Files Commands
Macro : Set Default
List
Zebra =
Hbook -Set Default
Chains Help Help
= EDIT LAST HESSARE
PAWC
LUN1 7
File: —
KUIP Clone I £ xz%.l
Files
Faw++ fain Browser
File View Help
Path: /[
l&: 2 Read/Whrite File: 1 Read—only File : 2 Mo—accessFile: 2 Directory: 16 .
it List
Commands -
.
Macro Files users Chdir to ...
Zebra List Edit
Hbook Edit J
Chains — HEIP
pawc Help
LUN1 I i
File: List of all files
Clone I 2 xi?.l
.: [... go up)
Paw+ fain Browser
File View Help
Path: fuser/couet /paw++
Kuip Macro: 29 Directory: 5
Commands - List
Files @ @ -I
Macro| pict wimx alias alldef Edit
Zebra
Chains | Edit
PAWE HEIP anne annecy back buy
L M M M M i
File: List of KUIP macros
Clone I £ x%%.l
.: [-.. go up)

Chapter 9. PAW++: A guided tour

List the content of the current
menu.

Set the root for searching com-
mands to /.

Display some help.

List the content of the current
working directory (OS).

Change directory.
Edit a file.
Display some help.

List all the macros in the current
working directory.

Edit a macro.
Display some help.

9.2. The Main Browser

Paw+ Main Browser

Path: /M StoreQd. _PSWC_/Divd2.0DIY2

Bank
T =
C d i
i T T
Macro List
‘Open bank doc Rzfile
= - o]
Hbook Add doc directory E 0 otk
S Put doc into Rzfile
PAWC =
Help
File: = -
Div02.QDIV2: Division Clone | £ ml

Paw+ Main Browser

File View Help

Path: fuser/couet /paw++

Directory : 5 Hbook File: 13

Commands X
Files Hboo’H|

Macro hbook demo_hbook grades. hbook hrztest hhook

Febra LiSt J
HEIF

Chains —

PAWG jestat_ hbook joa hbook minuwit.hbook wmeutiZn.hbook

2, LI LI LI 1

File: —
Div02.QDIV2: Division ﬂ’ “_*‘

Chains

Paw+ Main Browser

File View Help

Path: /ME1

Commands

Files

Macro
Zebra
Hbook :
Chains Esu
PAWC Eelete.AllChains
LUN1

Chains

Help

File: —
MBOS Clonel Fwi

I I_ [T —

List

Open bank doc Rzfile

Add doc directory
Put doc into Rzfile
Display bank tree
Help

153

List the ZEBRA file
connected.

Open bank doc Rz-
file.

Add doc directory.
Put doc into Rzfile.
Display bank tree.

Display some help.

List List all the HBOOK files in the current
working directory.

Help Display some help.

List
Delete All Chains

Help

List the chains currently
in memory.

Delete all the chains
from memory.

Display some help.

Chain free

MBOS

MB1

MBO5
e

newaptuple. hbook
newaptuple. hbook
newaptuple.hbook
newaptuple. hbook
newaptuple. hbook
newaptuple.hbook
newaptuple. hbook
newaptuple. hbook
newaptuple. hbook

newaptuple.hbook

Close |

PAWC

= Paw++ Main Browser

File Yiew

Help

Path: //P#C

1d—Histogram: 8 2d—Histogram:1 Ntuple:1 Picture:1

Commands Histograms and Pictures in Memory PAWC

Files List

Macro
Zebia Create 1d
Hbook
Chains

LUN1

Create Profile
Create Yar—Bin
Create 2d

Create N—tuple

Clear

L-

77001

=

File: COMRMC Help
30: TEST OF &~

Clone ix_ae'

Hbook Files (/LUNN)

Paw++ Main Browser

File View

Path: //LUN1

Directory: 17 1d~Histogram: 14 2d—Histogram:24 Ntuple: 1

Commands Histograms in RZ File LUN1
Files e

List
Macro B T —
Zebra Copy to [/PAWC SRELE
Hbook Add to //PAWC

Chains yuprite from [/PAWC...
PAWC T

LUN1 Create N—tuple

Clear

STAFF T

LOBENTZ

Close
File: pawden—

9999: wicl Help

Clone ix_z:l

Chapter 9. PAW++: A guided tour

This panel allows to navigate in the chain tree. Just clicking
on a chain name change the level from which the chain will be

traversed.

List

Create 1d
Create Profile
Create Var-Bin
Create 2d
Create N-tuple

List all the HBOOK objects in memory.
Create a 1d histogram.

Create a Profile histogram.

Create a variable bin size histogram.
Create a 2d histogram.

Create a row wise Ntuple histogram.

Clear Delete histograms from memory.
Help Provide some help.

List List all the HBOOK objects in this file.
Copy to //PAWC Copy the highlighted HBOOK object
in memory.

Add to //PAWC Add the highlighted HBOOK object in

memory.
Write from //PAWC... Save the highlighted HBOOK object

Create N-tuple
Clear
Close
Help

on disk.

Create a row wise Ntuple histogram.
Delete histograms from disk.

Close the selected hbook file
Provide some help.

9.3. Graphics

9.3 Graphics

Paw++ Graphics 1

10 Fit Gauss

0.03 Fitbp
Fit Const

1] 0.01 002

Fit Linear

120
100

i -.__-Euwe
Bar Chart
Marker

Stars

1D al4
Entries 1336
Mean ZZ26E-01

d463E-01

T Error Bars
20

7 150
_4 100
PHIVS. ¥ -VE UNWEIG

Error Rectangles

Error: Filled Area

i v e i
Error Bars (IinES). 150 200 230

V3. ¥ -VE UNWEIGHTED

Error: Smoothed Area
Lego
Filled Lego

Default:

9.3.1 The Graphics Window

155

paw++ allows direct graphics manip-
ulation of the objects like Histograms
or Ntuples. To perform actions on ob-
ject from the Graphics Window, it is
enough to move the mouse cursor on the
Graphics Window and to click with the
right mouse button on the object. A pull
down menu will be displayed according
to the object picked. In this section are
described the different menus available
in the Graphics Window.

When no object is picked in the Graphics Window for instance when the background of the window is picked the

following menu is displayed.
Graphics Window 1

Elut

Style Panel ...

Double Buffer On
Double Buffer Off

Do PostSeript ...

Eu Encapsulated Fusi:St:ript
DolaTex...

Print

Open New Window
Close Window

ﬂc:tivate Window

Eea‘ctivate Window

Plot

Style Panel...

Double Buffer On

Double Buffer Off

Do PostScript...

Do Encapsulated PostScript...

Do LaTex...

Print

Open New Window
Close Window
Activate Window
Deactivate Window

PLot the current picture.
Invoke the Histogram Style Panel.
Set the double buffer on.
Set the double buffer off.
Generate the Postscipt file paw. ps.

Generate the Encapsulated Postscipt file
paw.eps.

Generate the LaTex file paw. tex.
Print the current picture.

Open a new window.

Close the current window.
Activate the current window.
Deactivate the current window.

156

9.3.2 Ntuple

Chapter 9. PAW++: A guided tour

An Ntuple picked in Graphics Window with the right mouse button displays the following menu:

Mtuple 30

Open Ntuple Viewer

Project...

Print

9.3.3 1D-Histogram

Open Ntuple Viewer Open the Ntuple browser.
Project... Project the picked ntuple.
Print Print the picked ntuple

When a 1D-Histogram is picked in Graphics Window with the right mouse button, the following menu is dis-

played:
Td—Histogram 10

Fit...

Fit Gauss
Fit Exp
Fit Const

Eit Linear

§muuth

§muuth...

Line

Curve

Bar Chart
Marker

Stars

Error Bars

Error Bars (lines)
Error Hectangles
Error: Filled Area
Error: Smoothed Area
Lego

Filled Lego
Default

Fit Command...Invoke the fit command.
Fitting panel...Invoke the fit panel.

Fit Gauss Perform a gaussian fit.

Fit Exp Perform a exponential fit.
Fit Const Fit with a constant.

Fit Linear Perform a linear fit.

Smooth Smooth.

Smooth... Invoke the smooth command.
Line Draw the histogram with a line.
Curve Draw the histogram with a curve.
Bar Chart Draw the histogram as a bar chart.
Marker Draw the histogram with markers.
Stars Draw the histogram with stars.

Error Bars Draw the histogram with error bars.

Error Bars (lines) Draw the histogram with error bars ended with tick marks.
Error Rectangles Draw the histogram with error rectangles.

Error: Filled Area Draw the histogram as a filled area.

Error: Smoothed Area Draw the histogram a a smoothed and filled area.
Lego Draw the histogram as a lego plot.

Filled Lego Draw the histogram as a filled lego plot.

Default Default histogram drawing.

9.3. Graphics

9.34 2D-Histogram

157

When a 2D-Histogram is picked in Graphics Window with the right mouse button, the following menu is dis-

played:
2d-Histogram 20 Project X
Project X Project Y
Project Y Slice X
Slice X Slice Y
Slice Y Band X
|82 Band Y
pands Smooth
AL Smooth...
Smooth ... Boxes
e Color
Caolor

Hidden Lines Surface
ﬂidden Lines Surface

Enlnr Level Surface (1)
Enlnr Level Surface (2]

Color Level Surface (1)
Color Level Surface (2)

Surface and Contour
Eurfat’:e and Contour

Gouraud Shaded Surface . .

= . Hidden Lines Lego
Hidden Lines Lego

i Filled L

Filled Lego ed Lego

GilotLovel Leii Color Level Lego

Contour Plot
Filled Contour Plot

Contour Plot

EiHéd Contour Plot

Gouraud Shaded Surface

Fill the X projection and display it.
Fill the Y projection and display it.
Define slices on X and display slice 1.
Define slices on Y and display slice 1.
Define bands on X ans display band 1.
Define bands on Y and display band 1.
Smooth the picked histogram.

Display the smooth panel on the picked histogram.
Boxes plot.

Color plot

Hidden lines surface plot.

Color level surface plot (1).

Color level surface plot (2).

Surface and contour plot.

Gouraud shaded surface plot.

Hidden lines lego plot.

Filled lego plot.

Color level lego plot.

Contour plot (line).

Filled contour plot.

Arrow plot.

Text plot.

Default (scatter plot or text plot).

When a X-Axis is picked in Graphics Window with the right mouse button, the following menu is displayed:

Aviaw Plot Arrow Plot
it Text
Default Default
9.35 X Axis
X Axis 515 o
S=w Logarithmic
Logarithmic .
o Linear

Linear

Sort in alphabetical order
Sort in reverse alphabetical order
Sort by increasing channel contents

Sort by decreasing channel contents

HMumber of divisions...
Tick marks length...
Ealues Distance...

Ehara-::ter’ Font...

ﬂxis Color...

Sort in alphabetical order

Sort in reverse alphabetical order
Sort by increasing channel contents
Sort by decreasing channel contents
Number of divisions...

Tick marks length...
Values Distance...
Character Font...
Axis Color...

Log scale on.
Linear scale on.
Reorder the bins.
Reorder the bins.
Reorder the bins.
Reorder the bins.

Define number of X divi-
sions.

Tick marks size.
Labels distance.
Labels font.
Axis color.

158 Chapter 9. PAW++: A guided tour

9.3.6 Y Axis
When a Y-Axis is picked in Graphics Window with the right mouse button, the following menu is displayed:
¥ Axis 515 o
Logarithmic Log scale on.
Logarithmic . .
T Linear Linear scale on.
Linear . . .
= Sort in alphabetical order Reorder the bins.

ceaed v iphabedcal oder Sort in reverse alphabetical order ~ Reorder the bins.

SOriEIEtar e MiphabsHeal ofdel Sort by increasing channel contents Reorder the bins.

Sort by increasing channel contents Sort by decreasing channel contents Reorder the bins.
Sort by decreasing channel contents Number of divisions... Define number of Y divi-
HNumber of divisions... slons.
Tick marks length... Tick marks length... Tick marks size.
Values Distance... Values Distance... Labels distance.
. Character Font... Labels font.
Character Font...
= . Axis Color... Axis color.
E)(IS Color...

9.3.7 Locateon Histograms

To retrieve interactively on the Graphics Window an histogram identifier a bin number, a (X,Y) position etc... ,
place the mouse cursor on the graphics area and click with the left mouse button on the interesting region. The
information about the picked histogram will appear in the window called PAW++ Locate.

Paw++ Locate _I
ws L = A
E NT 10 .
il X 205716 [] 1D Histogram
e g S -*11-95556 (with LOG
F lstogram IO
E : scale).
E channel
e Content 217 [] 2D Histogram.
- b’&" 20 [] PAW++ Locate
1 e |]
e T 0. 26807 window.
H ¥ 039587 [] To release the
Histogram ID 20 ;
1 5 charaet 11 Output window.
0.3 ¥ channel 15
e Content 0, 41153 [] Info the the 1D
- R 7] Histogram.
e i
[E3 F = [] Info the the 2D
04 Histogram.
L%
0.2 _ 0K |
LA i G e i A —A
o Bl eedbuay o [iy ien Tty
o 02 L1} 0.4 \ nz? £
TEST IIF HEHDK2

9.3. Graphics 159

9.3.8 Locateon Ntuples

Just by clicking with the left mouse button on a Ntuple drawing, one can get the event description in the PAW++
Locate window. If the mouse cursor is moved on the Ntuple drawing with the left mouse button pressed, the event
description will change in real time in PAW++ Locate.

or e | in
nio? e | - 2850RE-01
eooo - i i 0, 27746
HNtuple ID 1
S000 Ewent Number 28246
RUN 2501
] EVT E0eTa.
ECM 91,95
F000 LLCODE 256
TRIG 0. 15814E+07
e “o | pHILTR 15889,
- ORI 2
1000 I‘]EE.E!I. E
ICFLAG 16
THIN 999 9
TEEST 999, 9
aoat DOMIN 0, 01438
e)| 2OMIN -2.4849
' EARREL 0.
ap W0 | HHIGH \
(=5 st
___:"}_
¥
f=d \‘ li=
s
| T \
N [O]

[] Ntuple drawing.

[] PAW++ Locate window.

[] To release the Output window.
[] event description.

9.3.9 Integrate Histograms

To integrate interactively an histogram, place the mouse cursor on the bin from which the integration will start, and
drag the cursor with the left mouse button pressed to the last bin. The result will appears in real time in a separated
window called PAW++ Locate [J.

Faw++ Graphics T

F

Paw++ Locate

9.4 TheHistogram Style Panel

an :— Iy
e
sl Histogram ID 514 4
F Erom hin 14 €
Tao hin 10 ¢
Mo Integration gso. 0 ¢
Int /ALLCHA 6439
- Math. Int. 8590
I e o
it
£ £
s |- ;
& | 5] li=
el —
ok_|
w | — A
A "
n [
1w :—
o PRTRrEE Y L =] 1n—n||"1—n|J-|n-|nr
0 001 coeMoos 008 005 006 oo o0e 003 | od
Anywlar density
O O O

Chapter 9. PAW++: A guided tour

I

(|

OJ

O0oOo O Od

Integrated area.
Output window. It is
possible to copy (via
the mouse) the text in-
side this window.

To release the Output
window.

Histogram identifier.
First bin for the inte-
gration.

Last bin for the inte-
gration.

Value of the integral.
Normalized integral.
“Mathematical” inte-
gral. Each bin contri-
bution is multiply by
the bin witdh.

The Histogram Style Panel allows to manipulate and present histograms. It works on one histogram only: the
“Current histogram”. To set the current histogram it is enough to plot it for the Main Browser, via a double click

on the icon.

U []

el

Histogram Stle Panel

O

File Options |
Current Style: Default fiLum /20 (2d)
— Plotlnfo —— — Style
| Statistics... Object Attrihutes...l General Attrihutes...l
_I Fits...
Viewing Angles... | Geometry... | Zones...l
_I File Name...
_[Date Axis Secaling... | Axis Settings... | Font... |
A A
Plot Options: Filled Lego =0 | Cartesian = |
A A
Plot I Reset | Close |
O O U g U O U

[

|

(I |

Plot the current his-
togram.

Add informations on
the plots.

Define the graphical
option used to plot the
current histogram.
Reset the default at-
tributes.

Define the coordinate
system used to draw
lego and surface plots.
Define attibutes used
to draw the current
histogram.

Close the Histogram
Style Panel.

File menu.

Options menu.
Current style name.
Current histogram
name and type.

9.4. The Histogram Style Panel

161

9.4.1 TheHistogram Style Panel Menu Bar

In this section, is describe the full functionality of the pull down menu available in the Menu Bar of the Histogram

Styl

File

Open Style... I

e Panel.

File Options

Save Style

Save Style As...

Close

Options

F ﬂutumatic Refresh

Overlay

9.4

.2 Plot Info

Open Style

Save Style

Allows to choose and execute a “Style Macro”. This
“Style Macro” becomes the “current style”. This field
O in the Histogram Style Panel is updated with the
“current style” name. The “Style Macro” have by de-
fault the extension . sty.

Save the “current style”. When a style is saved, all the
current attribute values are saved in the “Style Macro”.

Save Style As... Save the “current style” with a new name.

Close

Automatic Refresh By default the “Automatic Refresh” is on: each time

Overlay

the “current picture” is changed, the graphics win-
dow is updated. When this mode is off, the user has
to click on one of the Apply button available.

Each time a new histogram, vector, or ntuple draw-
ing is produced, a clear window is performed. To
superimpose all the drawing on the same image,
it is enough to put this option on. This option
is the equivalent of the option S in the command
HISTO/PLOT.

This set of toggle buttons allow to add some usefull information on the curren plot. If the Automatic refresh mode

is on, the plot is automatically refresh.

Plot Info

[V Statistics...
¥ Fits...
7 File Hame...

7 Date

Statistics...

Fits...

File Name...

Date...

Allow to draw (or not) the statistics on the plot (PAW com-
mand OPTION STAT). When the toggle button is set on, a
panel is displayed in order to specify with parameters will
be visible.

Allow to draw (or not) the fit parameters on the plot (PAW
command OPTION FIT). When the toggle button is set on,
a panel is displayed in order to specify with parameters will
be visible.

Allow to draw (or not) the file name on the plot (PAW com-
mand OPTION FILE).When the toggle button is set on, a
panel is displayed in order to specify the file name position.

Allow to draw (or not) the date on the plot (PAW command
OPTION DATE).When the toggle button is set on, a panel is
displayed in order to specify the date position

162

Statistics ...

Chapter 9. PAW++: A guided tour

This panel in the equivalent of the PAW command SET STAT. It allows to specify which statistics informations are

displayed on the plot.
F l Statistics

[T Histogram ID

T Entries

[T Mean value

7 RM.S.

_| Underflows

_| Overflows

_I All channels

Close

=

Fits ...

Histogram ID
Entries

Mean value
R.M.S.
Underflows
Overflows

All channels

The histogram identifier is displayed.

The number of entries is displayed.

The mean value is displayed.

The R.M.S. is displayed.

The underflows are displayed.

The overflows are displayed.

The content of the total number of channel is displayed.

This panel in the equivalent of the PAW command SET FIT. It allows to specify which fit parameters are displayed

on the plot.
l Fits
7 Chi Square
_1 Errors

|7 Parameters
Close |

File Name ...

[

Chi Square The chi square is displayed.

Errors

The errors are displayed.

Parameters The fit parameters are displayed.

This panel in the equivalent of the PAW command SET FILE. It allows to specify the file name position on the

plot.

F File Position

“* Top Left
~~ Top Right
~ Bottom Left

+ Bottom Right

Close |

Top Left

Top Right
Bottom Left
Bottom Right

The file name is drawn on the top left of the plot (default).
The file name is drawn on the top right of the plot

The file name is drawn on the bottom left of the plot

The file name is drawn on the bottom left of the plot

9.4. The Histogram Style Panel 163

Date ...

This panel in the equivalent of the PAW command SET DATE. It allows to specify the date position on the plot.

F| Date Position _

~~ Top Left
Top Left The date is drawn on the top left of the plot

Top Right The name is drawn on the top right of the plot (default).
Bottom Left The date is drawn on the bottom left of the plot

~ Bottom Right Bottom Right The date is drawn on the bottom left of the plot

Close |

94.3 Style

“* Top Right

~~ Bottom Left

— Style

Object Attributes... | General Attributes... |

The various buttons invoke the cor-
responding panel, e.g., Object At-
tributes... invokes the “Object At-
tributes” panel.

Viewing Angles... | Geometry... | Zunes...l

Axis Scaling... | Axis Settings... | Font... |

9.4.4 General Attributes

The “General Attributes” panel allow to define attributes like marker type, marker size, line type or color definition
for the low level graphics primitives like the lines, the markers the boxes etc...

[[g o

Marker+ ‘ '
- - |]

Marker Size
Define Color... |
é“a;;gsig Reset Close
o | | s |
B
U U [

[] This menu choice allows you to define the current marker type used.

-+ XOXeEAP OOl & K & ¥|

[] This scale allows you to change the marker scale factor.
[] This menu choice allows you to define the current line style used.

164

This push button opens the “Define Color” panel (see below).

Chapter 9. PAW++: A guided tour

By default the “automatic refresh” is on and as soon as an attribute is changed, the current picture is updated

with the new attribute value. But when the “automatic refresh” is off, this button becomes active a should
pressed in order to update the current picture with the new attribute value.

[
[

Define Color

Close this panel.

This push button allow to reset the default value of all the attributes manageable in this panel.

This panel is invoked when the button number O is pressed in the “General Attributes” panel. This panel allows to
define a color in RGB or HLS modes.

Current Color Index :

Color Number (NCOL) :

~| |B

|7 Hue / Saturation [Intensity ﬁ

|T| Define Color ‘I

[

[l
|

-
Eed f Green { Blue I
B <[]
= .h |:|
> el
Define Color | Reset Color I
A A
appte | Reset | Close |
L1 1)
| | |
H H 0 l H

[] Percentage of Blue in the
color define by the Current
Color index 0.

Percentage of Blue in the
color define by the Current
Color index .

Percentage of Blue in the
color define by the Current
Color index 0.

Ligth.

Saturation

Hue.

Hue scale.

Maximum number of col-
ors.

Colors index to be changed.

O

Apply the changes.
Define the color.
Reset the color.
Reset.

Close the panel

N
N
N
N
[
[
[
N
N
N
[

9.4. The Histogram Style Panel

945 Object

Attributes

165

The “Object Attributes” panel allows to define the graphics attributes of the HPLOT objects managed by PAWsuch
as: Histograms, Axis etc.. . On the left part of this panel the type of object can be define via a list of toggle buttons.
For example here “Histogram” is selected: all the attributes definable in the panel will be apply on the histograms
(histogram color, histogram line width etc...).

Apply the changes if the “automatic refresh”
is not on.

Change the title of the selected object.

Reset all the attributes.

Close this panel

Change the line width of the selected object.
Reset the attributes of the selected object.
Invoke the “Object Colors” panel.

Invoke the “Object Hatch Style” panel.

The zones affected by the buttons O to [, are shown

[
0]
a
= 0
:
U [
O
in the

figure below.

|: Ohject Altribiiies Seltings
— Object . — #Action
O »\/ Box
Hatch Style... I<|
0 P Histogram
O P ¥ Axis
Color... |<|
O P X Axis
Function
U < Reset Object ¢
O P~ Picture
< Histogram Line Width 4 '4
togram T
A
gl | Reset | Close |
A
A
U U U U
90
80
O »

1 imoed o

O =V) Y

0.04 0.05

0.06 0.07

Angular density

0.08 0.09 0.1

o 30
20
10
0 i I P
0 001 oM 003
70 E
0 =
60 [
50 E
O

4
sl b b b

Ll
0.02

0.04 0.05 0.06

Angular density

e -
R

166

Object Hatch Style
0O O

Box Hatch £ M

O O

([

H
Object Colors

]

Chapter 9. PAW++: A guided tour

Define the distance between tow
hatches.
Define the angle of the first set of
hatches.
Define the angle of the second set of
hatches.

Apply

Define the hatches type by number.
Reset the default.

Close this panel.

Surface color.

Contour color.

Statistic box shadow color.
Zone box shadow color.

Apply

Reset the color index.
Close the panel.
Define the color index.

N O

9.4. The Histogram Style Panel 167

9.4.6 Geometry

Geometry Seltings
ng o 2
z| HHBOOK GLOBAL TITL HWI:I
0 | EARWM e IHMAK;II /II
60 0 [’
10 [1 BeROA o E
: : O X
FWIN _E HMG
0
a0
L)
40
0
1} U.Z‘I I IU. ; 06 0.8 ..1 o IJ_ZI 0z 04 06 08 1 -
1 HISTOGRAM TITLE E g HISTOGRAM TITLE E
-}
o | [2
g Entries 5000 [ApI:IIy' .
3 s o ERRY . J[I Mean 982 [] Define the attribute value by number.
S b oo T IIJ[RS . 2205 [] Reset the default value.
a = -
gus s ! 1 II o [] Name of the current attribute changed.
gk i t [] Close the panel.
=T . .
ait Eo } IIJr [] Vary continuously the attribute selected.
— A JrI Taty] [] Select the attribute to be modified.
o 1 ric -I-I'
gras 3 +++++ +++++‘I'++‘I'+-I-I-
Urnu_l.uﬂ. . Iulzl L Iulsl L .U|4. = Iulsl L .Dlsl
Wila] - ' ' II“ " Hieev/c :
= S EIHISTOGRAM TITLE) o

YMGU I 2.00 Reset YMGU

O

Apply | I Reset | Close |

A A A
[D
l [

O O
9.4.7 Viewing Angles

Apply.

Reset the both angles to 30 de-
grees.

Close the panel.

Rotating cube use to define the
angles.

Allow to specify the theta value.
Allow to specify the phi value.

oo O O dod

Aoy | Reset | Close |
L—a A A
I I I

[[[

168 Chapter 9. PAW++: A guided tour

9.4.8 AxisScaling

[U U U U
— ¥ Axin — X fAxis
| First Bin " LastBin 1 *
[
First Bin
100 4
_ - =1
- j 100 j Last Bin
Number of Bins: 100 !| Lock
Mumber of Bins: 100 | Lock
A
1
Iinimum I I
Rebin Factor A
Maximum
A
'J.%gs'gﬁ_grl Heﬂ Cluﬂ
L& Y\ 4|
U 0o o 0O U U U
[] Change the Y first bin value. [] Apply.
[] Change the Y second bin value. [] Setthe minimum Z value.
[] Change the X first bin value. [] Setthe maximum Z value.
[] Change the X first bin value. [] Lock the range between the first ans the last Y bins.
[] Lockthe range between the first ans the last [] Reset the default values.
X hins. [] Rebin the 1D histograms.
[] Close the panel.
949 Zones
This panel is a direct interface to the Zone command.
O O

5 i) _
P g Rotaerone
o |
[[T [] Reset to one zone.
||_|_|_| [] Close the panel.
Aeset | Cloﬂ

9.4. The Histogram Style Panel

9.4.10 AXxis Settings

169

This panel allows to define the labelling, number of divisions and axis properties (like LOG scale), of the X, Y and
Z axis. This is a direct interface to the commands SET NDVX, NDVY etc ...

i

K Axis ¥ Axis ~ Z hAxis
[et | i Labels.. \q—[] [] Activate or desactivate the tick marks opti-
0 —:>_| Ticks — |' mization.
() ==——3p_| Logarithmic Sl o ',<—D [] Activate or desactivate the Log scale.
[] Activate or desactivate the additionnal tick
0 e marks on the top and right of the plot.
» (1] Imization - - . -
¥ [] Activate or desactivate the grid drawing.
Number of Primary Divisions |v1] \
0 >0 (I Apply.
I =T T‘l/ [] Reset the defaults.
_ - [] Close the panel
Mumber ol Sncomlan: Diisen s E Y [] Define the tertiary divisions.
5 ﬂ'/D [[] Define the secondary divisions.
I -t : Hl [] Define the primary divisions.
Number of Tertiary Divisions Iv‘l D Dlsplay the “Labels” panel'
‘HI\D [] Display the “Orientation” panel.
1 . . .
—— ([] Select on which axis the whole panel will act.
;’%gzpﬁil Hesil Close
g a g
t
l Mumeric
Alphanumeric Labels:
|| JAN FEY MAR APH ‘
| | Ad 2EB C0f
| ,
~ AxisLabels

The panel defines the type of label used.

[] Close the panel.

[] Activate one of the alphanumeric list.
[] Define an alphanumerique list.

[] The labelling is numeric.

170 Chapter 9. PAW++: A guided tour

Label Orientation

Defines the labels orientation.

[] Reset the default orientation.

[] Close the panel.

[] Define the X axis labels orientation.
[] Define the Y axis labels orientation.

|

94.11 Font

__

Foni|Seltings

Font selector

L1 Apply.

[] Reset the default font.

[] Close the panel.

[] Select the font for the various type of text.

O
O
O

9.4. The Histogram Style Panel 171

£ Axis Labels

Font : Helvetica Bold s |

The font settings panel allows to define the font and

Precision: Hardware (0) — | the precision of a given type of text.

0K | Reset | Close |

Tirves Roman
Times ftalic
—
— Fonts — Times Bold Ralic

Helvetica Obligie
Helvetica Bold ﬂ
Helvetica Boid Obfigue The font may be choosen amoung the standard
X11/PostScript fonts.

Font :

Courier

Precisi - rier abligue

Courier Bold
Courier Bold ¢hiigue

.prpﬁbi
0— Close
——— HIGZ Sofware Q

Spply '
g

9.4.12 Coordinate Systems

Various coordinate systems can be choosen for surface and lego plots.

Cartesian)))))
Cartesian All lego and surfaces will be in cartesian coordinates.
Polar Polar Al lego and surfaces will be in polar coordinates.
Gﬂinﬂriﬁal Cylindrical All lego and surfaces will be in cylindrical coordinates.
Spherical Spherical All lego and surfaces will be in spherical coordinates.
Pseudo Rapidity All lego and surfaces will be in pseudo rapidity coordinates.
Pseudo Rapidity

172

9.4.13 Plot Options

Chapter 9. PAW++: A guided tour

The possible plotting option for 1D histograms available in the Histogram Style Panel are the following:

Detault

Line

Smooth Curve

Bar Chart

Polymarker

Star

Error Bars

Error Bars (lines)

Error Rectangles
Error: Filled Area

Error: Smoothed Area
Hidden Lines Surface
Color Level Surface (1)
Color Level Surface (2)
Hidden Lines Lego
Filled Lego

Color Level Lego

Default

Line

Smooth Curve
Bar Chart

Star

Error Bars

Error Bars (lines)

Error Rectangles
Error: Filled Area
Error: Smoothed Area
Hidden Lines Surface
Color Level Surface (1)
Color Level Surface (2)
Hidden Lines Lego
Filled Lego

Color Level Lego

Normal histogram drawing.

Draw the histogram with line.

Draw the histogram as a smooth curve.
Draw the histogram as a bar chart.
Draw the histogram with stars.

Draw the histogram with error bars.

Draw the histogram with error bars ended with tick
marks.

Draw the histogram with error rectangles.

Draw the histogram as a filled area.

Draw the histogram a a smoothed and filled area.
Draw the histogram as a surface.

Draw the histogram as a surface.

Draw the histogram as a surface.

Draw the histogram as a lego.

Draw the histogram as a lego.

Draw the histogram as a lego.

The possible plotting option for 2D histograms available in the Histogram Style Panel are the following:

Default

Boxes

Color

Hidden Lines Surface
Color Level Surface (1)
Color Level Surface (2)
Surface and Contour
Gouraud Shaded Surface
Hidden Lines Lego
Filled Lego

Color Level Lego
Contour Plot

Filled Contour Plot

Text

Default

Boxes

Color

Hidden Lines Surfaces
Color Level Surface (1)
Color Level Surface (2)
Surface and Contour
Gouraud Shaded Surface
Hidden Lines Lego
Filled Lego

Color Level Lego
Contour Plot

Filled Contour PLot
Text

Scatter plot.
Boxes plot.

Color plot.
Surface plot.
Surface plot.
Surface plot.
Surface plot.
Surface plot.
Lego plot.

Lego plot.

Lego plot.

Line contour plot.
Filled contour plot.
Text plot.

9.5. Ntuple Viewer 173

9.5 Ntuple Viewer

U god o
E-l Miuple Viewer .|. -l
FLUN2/10: (JERN Pupulatiu 3354R 11C
CATEGORY || | \._ X I*“GE?.
FLAG B
AGE Wy IEP.TEGEIR\I
SERVICE :
£
CHILDREM - [
GRADE . : v
STEP First Row [1 v
HRWEEK Mumber of Rows F3354
COST v
DIVISION Histogram ID [1 DEAEeR
NATION
Cut Editor... | _| lgnore Cuts<¢ O
fJ Extended Info _| Overlay 0
| 2D Options wkz Profile - anes!< O
T Plot | A \uup | Project |
Scan... | 2351 (T |
Close | / / \ \ ‘ Help... |

U U U U U U U U U
[] Field showing the current directory and the name of the Ntuple.

[[] Thenames of the variables defi ned for the Ntuple. If you double click on one of the variable names a histogram showing
the values of the variable will be plotted.

[] The X, Y and Z fi elds alow you to defi ne which variables will be used by thePiot and Scan buttons. These fi elds
can befi lled in two ways: fi rstly by typing the name or an expression of a variable; secondly by double-clicking in one
of the X, Y or Z fi elds. Inthelatter case the fi eld pointed at isfi lled with the variable highligted in the list of variables.

[] Defi nesthefirst row used in the Ntuple when thePiot or Project buttons are pressed.

[] Defi nesthe number of rows used (starting from First Row) when the (Piot or (Project buttons are pressed.

[] Defi nesthe histogram identifi er used when thePlot or [Project buttons are pressed.

[] Fieldsshowing the number of rows and columnsin the Ntuple.

[] A toggle button allowing you to enable/disable the cuts defi ned with the Cut Editor.

[] A toggle button, which, when pressed will produce the next plot on top of an already existing one, i.e. without clearing
the graphics window.

[] If pressed, 2D plots are drawn with boxes.

|

Close the Ntuple Viewer.

Invoke the Cut Editor.

When it is pressed, the Ntuple variables types and ranges are also listed.
Produce aplot using al the indications specifi ed on the Ntuple Viewer panel.
Invoke the Ntuple Scanner.

Perform the NTUPLE/LOOP command.

If pressed, the 2D plots produce profi le histograms.

Project the selected variables in the histogram specify in 0.

Help on the Ntuple Viewer.

I

I

Il

I

I

Il

I

I

174

9.6 TheCut Editor

S

0

Chapter 9. PAW++: A guided tour

@

([

plied.

9.6.1 The Cut Editor Menu Bar

Cut Expression: $1.AND..NOT.$3.0R.$2
1 J IAGE_IE_ < | |3E_Ef_ LAND. _s
m 3 |T |FLA<§_ = _.||8_Ef_ OR. i
m o2 J |CHILDREB§_ > I |1
Apply Apply & Plot Close \ |
T —\
0 O O 0

Invoke the File menu.

Invoke the Edit menu.

Invoke the Options menu.
Current cut expression ap-

[] Apply the cut.

[] Apply the cut and replot the graph.

[] Close the cut editor.

[] Cut definition panel. The current cut is highlighted with a red line.
A cut can be activated or deactivated with the toggle button on the
left. It can be negated with the push button on the right of the cut
number. A “!” appears on this button when the cut is negated. Cuts
are defined with the help of the two editable fields and menu choices.

In this section, is describe the full functionality of the pull down menu available in the Menu Bar of the Cut Editor.

File
File
Open... | Open Open a cut file.
Save Cuts Save Cuts Save the current cuts on disk.

Save Cuts ﬂsi'...

Close

Edit

Add Cut Before
Add Cut After
Add { Before
Add { After
Add) Before
Add) After

Eelete Item

Dilete All ltems

Save Cuts As ...
Close

Add Cut Before
Add Cut After
Add (Before
Add (After
Add) Before
Add) After
Delete item
Delete All items

Save the current cuts on disk in a spsicific file.
Close the panel.

Add a cut line before the current cut line.
Add a cut line after the current cut line.
Add a (line before the current cut line.
Add a (line after the current cut line.
Add a) line before the current cut line.
Add a) line after the current cut line.
Delete the current cut line.

Delete all the cut lines.

9.7. KUIP/Motif Panel Interface 175

Options

el Dynamic Mode ... The current cut can be change dynamically.
Dynamic Mode... . L.

= : Indentation ... Indente the cut definitions.

I_hdentaticm... i i

Activate Al Cuts Activate all cuts Activate all cuts

De—activate All Cuts Deactivate All cuts Deactivate all cuts.

9.6.2 Ntuple Scanner

g O

Eﬁl-_ | uples —‘—_ [‘ ﬁﬂ

f/LUNT/STAFE{10] CERN Population 100R 4C
First Row |1 Number of Rows |1 e He—Scan | Pravious | Next |
CATEGORY FLAG AGE SERVICE
1 || 202 BB | s | 28 &
2 |53u IZ‘F‘ |s3 |33
3 |315 |Z‘F‘ |55 |31
4 |3s1 |Z‘F‘ |51 |35
A
5 |302 |Z‘F‘ |52 |24
6 |303 |Z‘F‘ |su |33
7 |
b EX|t Hel
L ET T_—'_
O

9.7 KuUlP/Motif Pand Interface

The PANEL Interface allows to define command sequences which are executed when the corresponding button is
pressed (like STYLE GP in PAW/X11). The command sequence

PANEL 0
PANEL 4.06 ’some string’
PANEL O D ’This is my first panel’ 500x300+500+600

creates a panel with 4 rows and 6 columns of buttons. The text *some string’ should be long enough to fit the
longest command Sequence which should be put onto one of the buttons. The command “PANEL 0 D” defines the
title and the window size and coordinates in the form WxH+X+Y.

The panels can be edited interactively:

e Clicking with the right mouse button on an empty panel button the user will be asked to give a definition to
this button.
e Clicking with the left mouse button on a panel button removes its definition.

The PANEL commands needed to recreate a panel can be saved into a macro file by pressing the “Save Panel”
button. Panels can be reloaded either by executing the command PANEL 0 D’ or by pressing the “Command
Panel” button in the View menu of the Executive Window and entering the corresponding file name.

Appendix A: X Window resour ces

A.1 X resourcesfor PAW++

This is a list of the X resources available to PAW++. Resources control the appearance and behavior of an applica-
tion.

Users can specify their own values for these resources in the standard X11/Motif way (via their own .Xdefaults file
or the system wide /usr/lib/X11/app-defaults/Paw++ file).

Any default values specified by Paw++ are given behind the resource name.
Paw++*background:
Specify the background color for all windows.
Paw++*foreground:
Specify the foreground color for all windows.
Paw++xkxtermGeometry: 550x550+5+10
Geometry of Kxterm, the KuiP terminal emulator (PAW++ Executive Window).
Paw++xkuipGraphics_shell.geometry: 550x550+585+10
Geometry of the Graphics Window(s) (if any).
Paw++xkuipBrowser_shell.geometry: 495x511+161+481
Geometry of the Browser(s).
Paw++*histoStyle_shell.geometry: 599x360+668+631
Geometry of the Style Panel.
Paw++*ntupleBrowser_shell.geometry:
Geometry of the Ntuple Viewer.

Paw++*xXmText*fontList: *-prestige-medium-r-normal-*-120-*
Paw++*XmTextField*fontList: *-prestige-medium-r-normal-*-120-*

Font used by all text areas.

Paw++xkxtermFont: *-prestige-medium-r-normal-*-120-*
Font used by Kxterm (Paw++ Executive Window)

Paw++xdirlist*fontList: *-courier-bold-r-normal*-120-%*
Font used for the icon labels in the browser.

Paw++*matrix.fontList: *-courier-medium-r-normal*-120-*
Font used for the Ntuple/Scan matrix (accessible via the Ntuple Viewer).

Paw++xhelpFont: *-courier-bold-r-normal*-120-*

Font used for help windows.

176

A.1. X resources for PAW++ 177

Paw++xfontList: *-swiss*742-bold-r-normal-*-120-%
Font for the menus, messages and boxes.
Paw++xkeyboardFocusPolicy: pointer

If “explicit” focus is determined by a mouse or keyboard command. If “pointer” (default), focus is determined by
the mouse pointer position.

Paw++*xdoubleClickInterval: 400

The time span (in milliseconds) within which two button clicks must occur to be considered a double click rather
than two single clicks.

Paw++xdirlist*background:

Specify the background color for the iconbox part of the browser.
Paw++*dirlist*<object>*iconForeground:

Specify the foreground color for the icons of type jobject;,.
Paw++*dirlist*<object>*iconBackground:

Specify the background color for the icons of type jobject;.
Paw++xdirlist*<object>*iconLabelForeground: black
Specify the foreground color for the labels of the icons of type jobject;.
Paw++*dirlist*<object>*iconLabelBackground: white

Specify the background color for the labels of the icons of type jobject;. Currently the following different jobject;’s
are defined:

dir -- directory

1d -- 1d histograms

2d -- 2d histograms

ntuple -- Ntuples

pict -- Higz pictures

chain -- Ntuple chains

entry -- Ntuple chain entries
hbook -- Hbook files

The default iconForeground and iconBackground colors for these objects are:

Paw++*dirlist*dir*iconForeground: blue
Paw++*dirlist*ld*iconForeground: DarkGoldenrod3
Paw++*dirlist*2d*iconForeground: DeepPink3
Paw++*dirlist*ntuple*iconForeground: SteelBlue3d
Paw++xdirlist*pict*iconForeground: greend
Paw++*dirlist*chain*iconForeground: blue
Paw++*dirlist*entry*iconForeground: OrangeRed

When using a black and white X Server use the following resource settings to make the icons visible:

Paw++xdirlist*<object>*iconForeground: black
Paw++*dirlist*<object>*iconBackground: white
Paw++xdirlist*<object>*iconLabelBackground: black

Paw++xdirlist*<object>*iconLabelForeground: white

178 Appendix A. X Window resources

A.2 Xresourcesfor for KulP/Motif

This is a list of the X resources available to any KuiP/Motif based application (e.g. PAW++). Resources control
the appearance and behavior of an application.

Users can specify their own values for these resources in the standard X11/Motif way (via the .Xdefaults file or a
file in the /usr/lib/X11/app-defaults directory). One just has to prefix the desired resource by the class name of the
application.

To customize PAW++, for instance, all the resources have to be prefixed with Paw++ or they should be stored in the
file /usr/lib/X11/app-defaults/Paw++.

Any default values specified by Kulp are given behind the resource name.
*background:

Specify the background color for all windows.
*foreground:

Specify the foreground color for all windows.
*kxtermGeometry: 550x550+5+10

Geometry of Kxterm, the KuiP terminal emulator (Executive Window).
*kuipGraphics_shell.geometry: 550x550+585+10

Geometry of the graphics window(s) (if any).
*kuipBrowser_shell.geometry: 580x450

Geometry of the browser(s).

*XmText*fontList: *-helvetica-bold-r-normal*-120-%
*XmTextField*fontList: *-helvetica-bold-r-normal*-120-*

Font used by all text areas.

*kxtermFont:
Font used by Kxterm (Paw++ Executive Window)

*dirlist*fontList:
Font used for the icon labels in the browser.

*helpFont: *-courier-bold-r-normal*-120-x*
Font used for help windows.

*fontList: *-helvetica-bold-r-normal*-120-*
Font for the menus, messages and boxes.

*keyboardFocusPolicy: explicit

If “explicit” (default), focus is determined by a mouse or keyboard command. If “pointer” focus is determined by
the mouse pointer position.

*doubleClickInterval: 250

A.2. Xresources for for KulP/Motif 179

The time span (in milliseconds) within which two button clicks must occur to be considered a double click rather
than two single clicks.

*dirlist*background:

Specify the background color for the iconbox part of the browser.
dirlist<object>*iconForeground: black

Specify the foreground color for the icons of type jobject;,.
dirlist<object>*iconBackground: white

Specify the background color for the icons of type jobject;.
dirlist<object>*iconLabelForeground: black

Specify the foreground color for the labels of the icons of type jobject;.
dirlist<object>*iconLabelBackground: white

Specify the background color for the labels of the icons of type jobject;.
*zoomEffect: True

Turn zoom effect on or off when going up and down directories in the browser.
*zoomSpeed: 10

Specify speed of zoom effect in the browser.
Currently the following different jobject;’s are defined:

Cmd —- Command

InvCmd —- Deactivated command
Menu -— Menu tree

MacFile -- Macro File

RwFile —- Read-write file
RoFile -- Readonly file
NoFile —-- No access file
ExFile —- Executable file
DirFile —-- Directory

DirUpFile -- Up directory (..)

When using a black and white X Server use the following resource settings to make the icons visible:

dirlist<object>*iconForeground: black
dirlist<object>*iconBackground: white
dirlist<object>*iconLabelBackground: black

dirlist<object>*iconLabelForeground: white

Appendix B: Editing keysin the I nput Pad

"C-b" means holding down the Control key and pressing the b key.
"M-" stands for the Meta key and "A-" for the Alt key.

C-b: backward character

A-Db: backward word

M-b: backward word

Shift A-b: backward word, extend selection
Shift M-b: backward word, extend selection

A-[: backward paragraph

M-[: backward paragraph

Shift A-[: backward paragraph, extend selection
Shift M-[: backward paragraph, extend selection
A-<: beginning of file

M-<: beginning of file

C-a: beginning of line

Shift C-a: beginning of line, extend selection
C-osflnsert: copy to clipboard

Shift osfDelete: cut to clipboard
Shift osfInsert: paste from clipboard

Alt->: end of file

M->: end of file

C-e: end of line

Shift C-e: end of line, extend selection

C-f: forward character

A-7: forward paragraph

M-]: forward paragraph

Shift A-]: forward paragraph, extend selection
Shift M-]: forward paragraph, extend selection
C-A-f: forward word

C-M-f: forward word

C-d: kill next character

A-BS: kill previous word

M-BS: kill previous word

C-w: kill region

C-y: yank back last thing killed

C-k: kill to end of line

C-u: kill line

A-DEL: kill to start of line

M-DEL: kill to start of line

C-o: newline and backup

C-j: newline and indent

C-n: get next command, in hold mode: next line
C-osfLeft: page left

C-osfRight: page right

C-p: get previous command, in hold mode: previous line
C-g: process cancel

C-1: redraw display

C-osfDown: next page

C-o0sfUp: previous page

C-SPC: set mark here

C-c: send kill signal to application

C-h: toggle hold button of pad containing input focus
F8: re-execute last executed command

Shift F8: put last executed command in input pad
Shift-TAB: change input focus

180

Appendix C: The Motif user interfacetools

C.1 Scale

.
T— ‘

A scale can be moved with the scale button, or with the two arrows (top and bottom). It is usualy linked
to some quantity which may vary continuously.

A
C.2 Buttons
Various kind of buttons are available in Motif: Toggle, Push and Selectionbuttons.

C.2.1 ToggleButtons

+ lop Left

4" Top Right The toggle buttons are usually used for Yes/No choices. In a serie of toggle button,

Bottom Left only one can be push.
W

- Bottom Right

C.2.2 Push Buttons

Object Attrihutes...l

Push buttons are usualy used to perform a specific action. Very often they open an

Yiewing Angles... | other panel

Axis Scaling... |

C.2.3 Selection Buttons
I Histogram ID
I Entries

_| Kean value

Selection buttons are used to select an option or a special mode. They are not linked
7 R.M.5. together like the toggle buttons and they can be on independently from the state of the
others.
_| Underflows

[T Overflows
_1 all channels

C.3 Paned Window

—_— J—II Paned window separate a window in several part. Each part is resizable but the global
' size stay the same: when a part grow an other one reduce.

181

182 Appendix C. The Motif user interface tools

C.4 Window manager buttons

This tools a present on all the Motif windows.

A double click on this button closes the window. a simple click display a pull down
menu. The content of the this menu depends on the window manager used.

These two buttons allows respectively to iconise and to enlarge a window to the max-
imum size possible on the screen.

Bibliography
[1] CERN. COMIS — Compilation and Interpretation System, nProgram Library L210, January 1994.
[2] CN/ASD Group. HBOOK Users Guide (Version 4.21), nProgram Library Y250. CERN, January 1994.
[3] CN/ASD Group. HIGZ/HPLOT Users Guide, nProgram Library Q120 and Y251. CERN, 1993.
[4] CN/ASD Group. KUIP - Kit for a User Interface Package, nProgram library 1202. CERN, January 1994.
[5] CN/ASD Group. MINUIT — Users Guide, nProgram Library D506. CERN, 1993.
[6] CN/ASD Group and J. Zoll/ECP. ZEBRA Users Guide, nProgram Library Q100. CERN, 1993.
[7] R. Brun and H. Renshall. HPLOT users guide, nProgram Library Y251. CERN, 1990.
[8] R. Bock et al. HIGZ Users Guide, nProgram Library Q120. CERN, 1991.

[9] F. James. Interpretation of the errors on parameters as given by MINUIT, nSupplement to “CERN Program
Library Long writeup D506”. CERN, 1978.

[10] F. James. Determining the statistical Significance of experimental Results. Technical Report DD/81/02 and
CERN Report 81-03, CERN, 1981.

[11] W. T. Eadie, D. Drijard, F. James, M. Roos, and B. Sadoulet. Statistical Methods in Experimental Physics.
North-Holland, 1971.

[12] Sun Microsystems. Network File System Version 2. Sun Microsystems, 1987.

183

I ndex

*

IGSET parameter, 108
*k*P

OPTION parameter, 108
*%P

OPTION parameter, 108
*COL

SET parameter, 114
*P

OPTION parameter, 108
[x1, 42,47
[0],42
(11,40, 42, 47
[#],42
[e], 39, 42
, 63
$SIGMA, 67
2SIZ

SET parameter, 110

AO

OPTION parameter, 108
Al

OPTION parameter, 108
A2

OPTION parameter, 108
A3

OPTION parameter, 108
Ad

OPTION parameter, 108
A5

OPTION parameter, 108
A6

OPTION parameter, 108
abbreviation, 6, 12
active picture, 102
addressing of vectors, 64
Alias, 24
alias, 6
ALTAS/CREATE, 24-26
alphanumeric

labels, 110
ANY, 69

ANY (SIGMA), 68

Apollo, 10
APPLICATION, 37, 38, 64
application SIGMA, 67
arc

border, 108
ARRAY, 64
array, 64

filling, 67

in SIGMA, 67

ARRAY (SIGMA), 67

ASIZ

184

SET parameter, 109
AST
OPTION parameter, 108
AST
OPTION parameter, 108
asterisk size (for functions), 110
ATITLE, 119
attribute, 105
AURZ
IGSET parameter, 107
SET parameter, 105
automatic
storage of pictures, 105
automatic naming of pictures, 108
AWLN
IGSET parameter, 107
AXIs, 110
axis
divisions, 110
labels
font and precision, 110
size, 110
labels offset, 108
labels size, 108
tick marks size, 108
values
font and precision, 110
size, 110

backspace, 121, 122
band, 8
BAR

OPTION parameter, 108
bar

chart, 109

histogram

offset, 110
width, 110

BAR

OPTION parameter, 108
BARO

IGSET parameter, 107

SET parameter, 109
BARW

IGSET parameter, 107

SET parameter, 109
bash shell, 3
basic operator in SIGMA, 68
BASL

IGSET parameter, 107
batch, 1, 10
BCOL

SET parameter, 109, 112, 114
book histogram, 8
boolean value in SIGMA, 68

INDEX

BORD

IGSET parameter, 107
box

around picture, 109

border, 108

fill area

colour, 110

BOX

OPTION parameter, 108
BREAKL, 38, 48
Browsable, 50, 53
Browsable window, 50, 61
Browser, 50
Browser initialization, 53
BTYP

SET parameter, 109, 112,114
BWID

SET parameter, 109

CASE, 46
CASE, 38
CDF Command Definition File, 6
CDIR, 78, 102
CERN Program Library
NEW, 10
OLD, 10
PRO, 10
CERNLIB, 133
CFON
SET parameter, 109
CHA
OPTION parameter, 108
CHA
OPTION parameter, 108
change directory, 78
character
escape, 121
key size, 110
shift, 110
CHHE
IGSET parameter, 107
SET parameter, 119
chisquare, 7
client, 131
cmdl, 22
cmd?2, 22
cmd3, 22
colour, 105, 112, 114
COMIS, 7, 30, 32, 64, 65, 86
command
abbreviation, 6, 12
definition file (CDF), 6
parameter
mandatory, 12
optional, 12
search path, 10

structure, 11
visibility, 17

Command Argument Panel, 50, 52, 56

comment
and statistic size, 110
font and precision, 110
common /PAWC/, 78
components
of PAW, 6
control operator in SIGMA, 68
correlation, 7
create
vector, 64
cross-wires, 109
CSHI
IGSET parameter, 107, 122
SET parameter, 109
CSIz
SET parameter, 109
current
directory, 78
picture, 102
cut, 4, 8, 81, 86
graphical, 86
Cut Editor, 135, 173, 174

DASH
SET parameter, 109
dash mode for lines, 110
data structure, 77
DATE
OPTION parameter, 114
SET parameter, 109, 114
date, 114
and hour on pictures, 109, 114
position, 110
default setting, 6
DEL, 69
DEL (SIGMA), 70
delta function, 70

DI3000, 7
dialogue
style, 6
dialogue style, 6
DIFF, 70
DIFF, 69
DIFF (SIGMA), 70
directory
change, 78
current, 78
ZEBRA, 5
display, 10
distance
X axis
to labels, 110

to to axis values, 110

185

186

y axis
to labels, 110
to to axis values, 110
divisions, 112
DMOD
SET parameter, 109
DO, 38
Domain, 10
DST, 8, 77,79
Data Summary Tape, 8
DVXI
OPTION parameter, 108
DVXR
OPTION parameter, 108
DVYI
OPTION parameter, 108
DVYR
OPTION parameter, 108

EAH
OPTION parameter, 108
EDIT, 26, 62, 87
editor, 128
EDM, 98, 99
ELSE, 38
emacs, 3
Encapsulated PostScript, 100
ENDCASE, 46
ENDKUMAC, 37, 38
error
bars, 109
errors on fitted parameters, 91
ERRX
SET parameter, 109
event, 8
exchange input/output, 7
exclamation mark character
place-holder, 12
EXEC, 18, 37-42, 103
Executive Window, 50, 53, 54, 56, 58, 60, 61, 133,
134,137,138, 142, 175, 176, 178
EXITWM, 30, 38, 39, 49

FACI

IGSET parameter, 107
FAIS

IGSET parameter, 107

SET parameter, 115
FAST

IGSET parameter, 107

SET parameter, 115
FCOL

SET parameter, 109, 112, 114
FILE

OPTION parameter, 114

SET parameter, 109, 114
file name

INDEX

on pictures, 109, 114

position, 110
fill
area, 112
interior style, 115
style index, 115
histogram, 8
vector, 64
fill area

colour index, 108
interior style, 108
style index, 108
first page number, 110
FIT
OPTION parameter, 108, 114
SET parameter, 115
fit, 7, 8, 88
parameters on pictures, 109, 114
values to be plotted, 110
vector, 66
FIT
OPTION parameter, 108
SET parameter, 109
font, 105
PostScript, 122
text, 121
fonts, 117
FOR, 38
FPGN
SET parameter, 109
FTYP
SET parameter, 109, 112, 114
function, 8, see sstem function27
fill area
colour, 110
type, 110
in SIGMA, 68
line width, 110
FWID
SET parameter, 109

GDDM (IBM), 7
GFON
SET parameter, 109
GKS, 7
GL (Silicon Graphics), 7
global
section, 79, 130
title
font and precision, 110
size, 110
GLOBAL/CREATE, 44
GLOBAL/IMPORT, 44
GMR3D (Apollo), 7
GOTO, 38
GPR (Apollo), 7

INDEX

GRAPH, 65, 118
graphical
cut, 86
output, 65
graphics
editor, 128
Graphics Window, 133-135, 155-158
Greek letters, 121, 122
GRID
OPTION parameter, 108
SET parameter, 109
grid, 109
line type, 110
GSIZ
SET parameter, 109

HARD
OPTION parameter, 108
hardware characters, 109
hatch style, 115, 116
HBOOK, 6, 77, 108, 139, 140, 148, 151, 153, 154
Title, 109
HCDIR, 78
HCOL
SET parameter, 109, 112, 114
HDERIV, 90
HELP, 10, 12
HELP, 17
HELP KUIP/FUNCTIONS, 27
HESSE, 91
HFCNH, 90
HFCNV, 90
HFITH, 90
HFITV, 90
HIDOPT, 108
HIFIT, 96
HIGZ, 6, 15, 32, 77, 78, 100, 101, 105, 108, 133
G mode, 100
graphics editor, 128
Z mode, 100, 102
HIST, 66
HIST/PLOT, 102
HISTO/FIL, 25
HISTO/PLOT, 22,118
HISTOFILE, 81
histogram, 4, 8, 77
1D, 4
2D, 4
booking, 8
fill area
colour, 110
type, 110
filling, 8
line width, 110
maximum for scale, 110
presentation, 112

187

title size, 110
Histogram Style Panel, 133, 134, 140, 141, 155, 160,
161, 172
HISTOGRAM/PLOT, 100
history file, 6
HLIMIT, 77
HLOGAR, 108
HMAX
SET parameter, 109
HORI
OPTION parameter, 108
host, 10
HOST_EDITOR, 62, 63
HOST_SHELL, 28, 62
HPLOPT, 109
HPLOT, 6, 32, 77, 100, 105, 165
HPLOT/E, 26
HRFILE, 78
HRIN, 78
HROUT, 78
HTABLE, 108
HTIT
OPTION parameter, 108
HTYP
SET parameter, 109, 112, 114
HWID
SET parameter, 109

IF, 38
IGSET (), 105
IGSET
%, 108
AURZ, 107
AWLN, 107
BARO, 107
BARW, 107
BASL, 107
BORD, 107
CHHE, 107
CSHI, 107, 122
FACI, 107
FAIS, 107
FASI, 107
LAOF, 107
LASI, 107
LTYP, 107
LWID, 107
MSCF, 107
MTYP, 107
PASS, 107, 122
PICT, 107
PLCI, 107
PMCI, 107
SHOW, 108
TANG, 107
TMSI, 107

188

TXAL, 107
TXCI, 108
TXFP, 108
IGSET, 105, 108, 115, 118, 122
IGSET , 106
initialisation, 11
Input Pad, 53, 54, 60, 133, 134, 136-138, 180
input/output, 7
integer or real divisions on axis, 109
interactive, 1
IQUEST, 28
IQUEST(1),28, 48
ITX, 118-121
IZPICT, 102

KEY, 109

KSIZ
SET parameter, 109

KUIP, 6, 77, 78, 136, 138, 175, 176, 178
vector, 65

label, 110

text justification, 112
label:, 38
LABELS, 110
LAOF

IGSET parameter, 107
LASIT

IGSET parameter, 107
LAST, 23
IATEX

PostScript, 100
LDIR, 81
length of

basic dashed segment, 110

X axis, 110

Y axis, 110
LFON

SET parameter, 109
library functions in SIGMA, 76
limits on fitted parameters, 91
line

type, 115, 117

width, 112
linear scale, 109
lines, 105
LINX

OPTION parameter, 108
LINY

OPTION parameter, 108
LINZ

OPTION parameter, 108
logarithmic scale, 109
logical operator in SIGMA, 68
LOGX

OPTION parameter, 108
LOGY

INDEX

OPTION parameter, 108
LOGZ
OPTION parameter, 108
lower case letters, 121, 122
LS, 71
LS, 69
LS (SIGMA), 70
LTYP
IGSET parameter, 107
LTYPE
SET parameter, 115
//LUN1, 78
LVMAX, 69
LVMAX (SIGMA), 71
LVMIN, 69
LVMIN (SIGMA), 71
LWID
IGSET parameter, 107

MACRO, 37, 38, 40, 41
macro, 5, 6, 8
parameter, 6
macro statements, 37, 38
flow control, 45
macro variable, 21
argument count, see [#]
argument list, see [*]
file name, see [0]
indirection, 44
numbered, see [1]
return code, see [@]
special, 42
undefined, 40, 41
MACRO/DEFAULT, 18
Macros, 5
Main Browser, 50, 51, 54, 133, 136, 138, 139, 147-
149, 151, 160
mandatory parameter, 12
marker
type, 115, 117
MASK, 85
mask, 4, 8, 81, 83
MAX, 69
MAX (SIGMA), 72
MAXV, 69
MAXV (SIGMA), 72
menu, 11
MESSAGE, 20, 30
METAFILE, 101
metafile, 5, 9, 15, 100
MIGRAD, 90, 91
MIN, 69
minimisation, 7, 88
MIN (SIGMA), 72
MINUIT, 7, 88
MINV, 69

INDEX

MINV (SIGMA), 72
mode
HIGZ
G mode, 100
Z mode, 100, 102
MODIFY, 128
Motif, 6, 50, 132, 138, 175, 176, 178, 181
MSCF
IGSET parameter, 107
MTYP
IGSET parameter, 107
SET parameter, 115

NAST

OPTION parameter, 108
native input/output, 7
NBAR

OPTION parameter, 108
NBOX

OPTION parameter, 108
NCHA

OPTION parameter, 108
NCO, 69

NCO (SIGMA), 72

NDAT

OPTION parameter, 108
NDVX

SET parameter, 109, 110, 112
NDVY

SET parameter, 109
NDVZ

SET parameter, 109
NEAH

OPTION parameter, 108
NEXTL, 38, 48
NFIL

OPTION parameter, 109
NFIT

OPTION parameter, 108
NGRI

OPTION parameter, 108
NOPG

OPTION parameter, 108
NPTO

OPTION parameter, 108
NSQR

OPTION parameter, 108
NSTA

OPTION parameter, 108
NTAB

OPTION parameter, 108
NTCUT, 84, 86
NTCUTS, 85
NTIC

OPTION parameter, 108
NTMASK, 84

NTPLOT, 84
Ntuple, 4, 8, 77, 81
cut, 81
mask, 81
weight, 81
Ntuple Viewer, 133, 135, 141, 173, 176
NTUPLEPLOT, 81
number of
divisions for
X axis, 110
Y axis, 110
passes for software characters, 110
NZFL
OPTION parameter, 108

Object window, 50, 60, 61
OFF ERROR, 38, 49
ON ERROR, 38, 49
ON ERROR CONTINUE, 38
ON ERROR EXITM, 38
ON ERROR GOTO, 38, 49
ON ERROR STOPM, 38
operating system, 5
operation on vectors, 65
operator in SIGMA, 67
0P (SIGMA), 68
OPTION (), 106

OPTION

**x*P, 108

*xP 108

*P, 108

A0, 108

A1,108

A2,108

A3,108

A4,108

A5, 108

A6, 108

AST , 108

AST, 108

BAR , 108

BAR, 108

BOX , 108

CHA , 108

CHA, 108

DATE, 114

DVXI, 108

DVXR, 108

DVYI, 108

DVYR, 108

EAH, 108

FILE, 114

FIT , 108

FIT, 108,114

GRID, 108

HARD, 108

189

190 INDEX

HORI, 108 parameter, 6
HTIT, 108 errors (fit), 91
LINX, 108 PASS
LINY, 108 IGSET parameter, 107, 122
LINZ, 108 SET parameter, 109
LOGX, 108 path, 10
LOGY, 108 PAW, 16, 51, 90
L0GZ, 108 access, 10
NAST, 108 entities, 15
NBAR, 108 initialisation, 11
NBOX, 108 object, 15
NCHA, 108 server, 131
NDAT, 108 structure, 6
NEAH, 108 PAW (Physics Analysis Workstation), 132, 133, 136,
NFIL, 109 141, 142, 144, 151, 161-163, 165, 175
NFIT, 108 PAW++, 132-135, 139, 155, 176, 178
NGRI, 108 PAW++ Locate, 135, 158, 159
NOPG, 108 /PAWC/ common, 77, 78
NPTO, 108 //PAWC directory, 78
NSQR, 108 PAWINT, 77
NSTA4, 108 PAWLOGON, 10, 11
NTAB, 108 PCOL
NTIC, 108 SET parameter, 109, 112, 114
NZFL, 108 PICT
PTO , 108 IGSET parameter, 107
PTO, 108 PICT/LIST, 102
SOFT, 108 picture, 5, 9, 101, 109
SQR, 108 fill area
STA , 108 colour, 110
STAT, 114 type, 110
STA, 108 line width, 110
TAB , 108 PICTURE/CREATE, 102
TIC , 108 PICTURE/FILE, 105
TIC, 108 PICTURE/PRINT, 103
UTIT, 108 PIE, 66, 110
VERT, 108 place-holder
ZFL , 108 exclamation mark character, 12
ZFL1, 108 PLCI
ZFL, 108 IGSET parameter, 107
OPTION, 100, 103, 105, 107, 114, 115 PLOT
optional parameter, 12 commands, 15
ORDER, 69 PLOTHIS, 79
ORDER (SIGMA), 73 PMCI
0S9, 131 IGSET parameter, 107
module, 79 polyline
colour index, 108
page type, 108
format, 109 width, 108
number, 109 polymarker
number size, 110 colour index, 108
PAWMAIN, 77 scale factor, 108
PANEL, 55 type, 108
panel PostScript, 9, 15, 100, 145
menu, 11 colour printers, 100
PANEL interface, 54, 55, 57 fonts, 122

paper orientation, 109 Courier, 122

INDEX

Courier-Bold, 122
Courier-BoldOblique, 122
Courier-Oblique, 122
Helvetica, 122
Helvetica-Bold, 122
Helvetica-BoldOblique, 122
Helvetica-Oblique, 122
Symbol, 122
Times-Bold, 122
Times-Boldltalic, 122
Times-Italic, 122
Times-Roman, 122
ZapfDingbats, 122
special A4, 100
precision
text, 121
prefix SIGMA, 67
presenter, 130, 131
PRINT
commands, 15
PROD, 69
PROF (SIGMA), 73
projection, 8
PSIZ
SET parameter, 109
PTO
OPTION parameter, 108
PTO
OPTION parameter, 108
PTO (Please Turn Over), 109
PTYP
SET parameter, 109, 112, 114
pull-down menu, 11
PWID
SET parameter, 109

QUAD, 69
QUAD (SIGMA), 74
QUEST, see IQUEST

READ, 38, 39
real time, 79
RECALL, 24
RECORDING, 23
remote
file, 129
login, 129, 131
shell, 129, 131
REPEAT, 38
replay, 7
RETURN, 37-39
RLOGIN, 129, 131
RSHELL, 129, 131
RZ, 146, 147
RZ file, 7
RZLDIR, 147

SCAN, 81
scatter plot

and table character size, 110

table, 77

selection

function, 81, 86

server, 131
SET (), 107

SET

*xCOL, 114

25817, 110

AS1Z, 109

AURZ, 105

BAROD, 109

BARW, 109
BCOL, 109, 112, 114
BTYP, 109, 112, 114
BWID, 109

CFON, 109

CHHE, 119

CSHI, 109

€SIz, 109

DASH, 109

DATE, 109, 114
DMOD, 109

ERRX, 109

FAIS, 115

FASI, 115
FCOL, 109, 112, 114
FILE, 109, 114
FIT , 109

FIT, 115

FPGN, 109
FTYP, 109, 112, 114
FWID, 109

GFON, 109

GRID, 109

GSIZ, 109
HCOL, 109, 112, 114
HMAX, 109
HTYP, 109, 112, 114
HWID, 109

KSIZ, 109

LFON, 109

LTYPE, 115

MTYP, 115
NDVX, 109, 110, 112
NDVY, 109

NDVZ, 109

PASS, 109
PCOL, 109, 112, 114
PSIZ, 109
PTYP, 109, 112, 114
PWID, 109

SMGR, 109

SMGU, 109

191

192

SSIz, 109
STAT, 109, 114
TANG, 119
TFON, 110
TSIZ, 110
TXAL, 120
TXCI, 121
TXFP, 121
VFON, 110
VSIZ, 110
XCoL, 110
XLAB, 110
XMGL, 110
XMGR, 110
XS1z,110
XTIC, 110
XVAL, 110
XWID, 110
XWIN, 110
YCOL, 110
YGTTI, 110
YHTT, 110
YLAB, 110
YMGL, 110
YMGU, 110
YNPG, 110
YSIZ, 110
YTIC, 110
YVAL, 110
YWID, 110
YWIN, 110

SET, 100, 105, 110, 112, 114, 115, 118, 119

SET , 105, 106
SET/APPLICATION, 37, 38
SET/COMMAND, 18
SET/DOLLAR, 27
SET/VISIBILITY, 17
SHELL, 62, 103
shell
bash, 3
tesh, 3
SHIFT, 38, 42
SHOW
IGSET parameter, 108
SIGMA, 7, 30, 32, 64, 65, 67-76
$SIGMA, 67
access, 67
APPLication SIGMA, 67
array, 67
filling, 67
structure, 67
basic operator, 68
boolean value, 68
control operator, 68
function, 68
library functions, 76

logical operator, 68

prefix SIGMA, 67

vector, 67
SIZE, 100
slice, 8
SMGR

SET parameter, 109
SMGU

SET parameter, 109
SOFT

OPTION parameter, 108
software

characters, 109
special symbols, 14, 121, 122
SQR

OPTION parameter, 108
SSIZ

SET parameter, 109
STA

OPTION parameter, 108
STA

OPTION parameter, 108
STAT

OPTION parameter, 114

SET parameter, 109, 114
statistic

analysis, 7

parameters on pictures, 109, 114

values to be plotted, 110
STOPM, 38, 39, 49
STRING, 21
structure of PAW, 6
style of dialogue, 6
subscript, 121, 122
SUMV, 69

SUMV (SIGMA), 74
superscript, 121, 122
SWITCH

Z,102
symbols, 14
system function, 21, 27

$ANAM, 27

$ANUM, 27

$ARGS, 28

$AVAL, 27

$CPTIME, 28, 28

$DATE, 28

$DEFINED, 28, 43

$ENV, 28

$EVAL, 30, 30, 33, 35

$EXEC, 30

$FEXIST, 28

$FORMAT, 31

$INDEX, 28

$INLINE, 31, 31,41

$IQUEST, 28, 49

INDEX

INDEX

$KEYNUM, 27
$KEYVAL, 27
$LAST, 27

$LEN, 28
$LOWER, 28
$MACHINE, 28, 28, 29
$NUMVEC, 28, 32
$0s, 28, 28, 29
$PID, 28

$QUOTE, 29, 30
$RSIGMA, 30, 30, 31
$RTIME, 28, 28
$SHELL, 28, 28
$SIGMA, 30, 30, 31, 33
$STYLE, 27
$SUBSTRING, 28
$TIME, 28
$UNQUOTE, 30, 37
$UPPER, 28

$VDINM, 28, 28
$VEXIST, 28
$VLEN, 28
$WORDS, 29
$WORD, 29
arguments, 27

name separators, 27

TAB
OPTION parameter, 108
TANG
IGSET parameter, 107
SET parameter, 119
TCP/IP, 131
tesh shell, 3

termination character, 121, 122

TEXT, 107, 118-122
text

(and title) font and precision, 110

alignment, 108
horizontal, 120
vertical, 120
angle, 108
character height, 108
colour index, 108
data, 15
font, 108, 121
precision, 108, 121
width, 108
text alignment, 120
TFON

SET parameter, 110
TIC

OPTION parameter, 108
TIC

OPTION parameter, 108
tick marks, 112

title font and precision, 110
TMSI
IGSET parameter, 107

Transcript Pad, 53, 54, 60, 133, 134, 136, 142

TSIZ

SET parameter, 110
TXAL

IGSET parameter, 107

SET parameter, 120
TXCI

IGSET parameter, 108

SET parameter, 121
TXFP

IGSET parameter, 108

SET parameter, 121

Unix, 3
unix, 10
UNTIL, 38
upper case letters, 121, 122
USAGE, 18
USAGE command, 14
user

title, 109
UTIT

OPTION parameter, 108
UWFUNC, 21, 86

VAX, 10
VAX/VMS, 130
VECTOR, 64
vector, 4, 9, 64
address, 64
arithmetic, 65, 67
create, 64
fill, 64
in SIGMA, 67
operations, 67
VECTOR/CREATE, 32
VECTOR/LIST, 32
VECTOR/READ, 32
VECTOR/WRITE, 32
VEFIT, 96
version, 10
VERT
OPTION parameter, 108
VFON
SET parameter, 110
VISIBILITY, 17
VMAX, 69
VMAX (SIGMA), 75
VMIN, 69
VMIN (SIGMA), 75
VMS, 10, 130
VSIZ
SET parameter, 110
VSUNM, 69

194

VSUM (SIGMA), 75

weight, 81
WHILE, 38
workstation, 10

type, 11
workstation type, 100

X axis

colour, 110

tick marks length, 110
X margin

left, 110

right, 110
X space between windows, 110
X windows, 7, 10
X11, 10, 133, 137, 175, 176, 178
XCOL

SET parameter, 110
XLAB

SET parameter, 110
XMGL

SET parameter, 110
XMGR

SET parameter, 110
XSIz

SET parameter, 110
XTIC

SET parameter, 110
XVAL

SET parameter, 110
XWID

SET parameter, 110
XWIN

SET parameter, 110

Y axis

colour, 110

tick marks length, 110
Y margin

low, 110

up, 110
Y position of

global title, 110

histogram title, 110

page number, 110
Y space between windows, 110
YCOL

SET parameter, 110
YGTI

SET parameter, 110
YHTI

SET parameter, 110
YLAB

SET parameter, 110
YMGL

SET parameter, 110

INDEX

YMGU

SET parameter, 110
YNPG

SET parameter, 110
YSIZ

SET parameter, 110
YTIC

SET parameter, 110
YVAL

SET parameter, 110
YWID

SET parameter, 110
YWIN

SET parameter, 110

ZEBRA, 7,77, 145-147, 153
FRALFA, 15
FZ file, 15
RZ file, 15
TOALFA, 15
ZFL
OPTION parameter, 108
ZFL
OPTION parameter, 108
ZFL (option), 102
ZFL1
OPTION parameter, 108
ZFL1 (option), 103
ZONE, 100, 112

