Neutrino Physics

陆锦标 Kam-Biu Luk

Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

Lecture 9, 14 June, 2007

Outline

- Study of atmospheric neutrino
 - Super-K
 - Soudan 2
- Confirming atmospheric neutrino oscillation
 - K2K
 - MINOS

Production Of Cosmic-ray Neutrinos

Estimating Atmospheric Neutrino Flux

- Use measured cosmic-ray intensity at upper atmosphere and cross section of p-nucleon interaction to calculate the numbers of π and K produced.
- Transport the mesons through the atmosphere, taking the effect of the geomagnetic field into account and allow them to decay.

Cross Check Calculation With Cosmic-ray Muons

Calculation is good to better than 10% for momentum less than ~100 GeV

Neutrino Interactions

More on the charge-current processes:

Study Atmospheric Neutrino With Water Cherenkov

• Kamiokande, and Super-Kamiokande in Japan

Classification Of Detected Neutrino Events

Fully Contained (FC)

Examples Of Charged-current Events

Surprising Behavior Of ν_{μ}

Interpretation Of Atmospheric v Results

- The unexpected results are evidence of neutrino oscillation.
- There is no compelling evidence of $v_{\mu} \rightarrow v_{e}$ oscillation.
- The disappearance of v_{μ} is due to $v_{\mu} \rightarrow v_{\tau}$ oscillation.
- Adopt 2-flavour model to analyze the data:

More Results From Super-K

Results On Oscillation Parameters

Using number of events only:

Results of Atmospheric Neutrino Oscillation

At 90% CL: 2.0 x 10⁻³ eV² < Δm^2 < 2.8 x 10⁻³ eV² sin²2 θ > 0.93

Soudan 2 In U.S.A.

Confirmation From Soudan 2

- 5.9 kton-yr exposure
- Studied partially-contained and upward stopping muon events.
- Measured L/E with the high resolution sample

Verifying The Atmospheric Neutrino Results With Artificial Muon-neutrino Beams

K2K: Long-baseline Neutrino Oscillation Experiment

Near Detector of K2K

- To determine the neutrino flux and its energy distribution
- Study low-energy charged-current neutrino reactions

Determining The Neutrino Spectrum

The energy of ν_{μ} is related to the muon momentum in quasi-eleastic scattering:

Indeed v_{μ} Oscillates !!

First Disappearance Result From MINOS

Summary

- Study of atmospheric neutrinos led to the discovery of significant disappearance of ν_{μ} but not ν_{e} , providing strong evidence for another type of neutrino oscillation.
- This observation has been confirmed by other underground, and accelerator-based experiments.
- Again, the new set of mixing parameters θ and Δm^2 using the 2-flavour formalism is measured.