Neutrino Physics

陆锦标 Kam-Biu Luk

Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

Lecture 7, 12 June, 2007

Outline

- Solar neutrino
- Studying solar neutrino
 - Experiment using chlorine
 - Experiments using gallium
 - Experiment using water

Here Comes The Sun

- Gravitational interaction Pulling hydrogen atoms together
- Strong interaction Trigger fusion at the center
- Weak interaction
 Play a key role in
 generating energy in
 the Sun
- Electromagnetic interaction
 Produce light and heat

The Solar Interior

Solar Neutrinos

The key overall reaction is:

 $4p + 2e^- \rightarrow {}^{4}He + 2v_e + 6$ photons, with Q = 26 MeV

The intensity of neutrino at Earth is:

$$\Phi_{v} = \frac{2L_{Sun}}{26MeV} \frac{1}{4\pi d^{2}} = 7 \times 10^{10} cm^{-2} s^{-1}$$

d = 1.5 × 10⁸ km, distance of Earth from Sun

 $L_{sun} = 3.85 \times 10^{26}$ W, solar luminosity

How To Go After The Solar Neutrinos?

• First choose the reaction:

$$\begin{split} \mathbf{v}_{e} + \mathbf{e}^{-} &\rightarrow \mathbf{v}_{e} + \mathbf{e}^{-} \\ \sigma(\mathbf{v}_{e}e \rightarrow \mathbf{v}_{e}e) \approx 9.5 \times 10^{-45} \left(\frac{E_{v}}{1MeV}\right) cm^{2} \\ \mathbf{v}_{e} + \mathbf{n} \rightarrow \mathbf{e}^{-} + \mathbf{p} \\ \sigma(\mathbf{v}_{e}n \rightarrow e^{-} + p) = 9.3 \times 10^{-44} \left(\frac{E_{v}}{1MeV}\right)^{2} \left(1 + \frac{Q}{E_{v}}\right) \sqrt{1 + 2\frac{Q}{E_{v}} + \frac{Q^{2} - m_{e}^{2}}{E_{v}^{2}}} cm^{2} \end{split}$$

Thus, it is better to use v_e -n collision.

 But it is hard to get tons of free neutrons. Need to use neutrons in nuclei:

 $v_e + {}^{37}Cl \rightarrow e^- + {}^{37}Ar, \quad E_v > 0.814 \text{ MeV}$

Natural chlorine has 24.23% stable ³⁷Cl.

37
Ar + e⁻ (K-shell) $\rightarrow ^{37}$ Cl + v_e , $\tau_{1/2}$ = 34 days

Then count the number of 37 Ar decays by observing the 3-5 Auger e⁻s emitted with a total energy of 2.823 keV by ${}^{37}Cl$.

Figure 2.3. Schematic drawing of the argon recovery system. The pump-eductor system forces helium gas through the tetrachloroethylene liquid and provides the helium gas flow through the argon collection system.

Something Funny Is Going On In The Sun

1 SNU = 1 interaction/10³⁶ target atoms/sec

Based on 108 extracted ³⁷Ar atoms, obtained a result: 2.56±0.16(stat)±0.16(sys) SNU

Repeat The Experiment

• Use a different reaction that is sensitive to the solar neutrinos from the pp reaction:

$$v_e + {}^{71}Ga \rightarrow e^- + {}^{71}Ge \qquad E_v > 0.233 \text{ MeV}$$

 ${}^{71}Ge + e^- \rightarrow {}^{71}Ga + v_e \qquad \tau_{1/2} = 11.43 \text{ days}$

 Three experiments adopted this approach: Gallex and GNO in Italy and SAGE in Russia.

then count

Gran Sasso underground facility

Some Solar Neutrinos Are Still Missing

Studying Solar Neutrino With Water

- Utilize water Cerenkov detector: Kamiokande, and Super-Kamiokande in Japan
- Employ $v + e^- \rightarrow v + e^-$

What Are Measured?

Image of Sun with \boldsymbol{v}

14

• Some $v_e s$ from the Sun are not accounted for !!

Sudbury Neutrino Observatory

9456 20cm-diameter PMTs

1700 t of water in inner shield

5300 t of water in outer shield 12-m diameter acrylic sphere

Why Use Heavy Water?

$$v_e + d \rightarrow p + p + e^{-1}$$

- \cdot Measure the energy spectrum of ν_e
- Direction of e not strongly correlated with that of ν_e

$$v_x + d \rightarrow p + n + v_x$$

 \bullet Measure the total flux of ν from ^8B

•
$$\sigma(v_e) = \sigma(v_\mu) = \sigma(v_\tau)$$

$$v_x + e^- \rightarrow v_x + e^-$$

- Measure the total flux of ⁸B v: $\Phi = \Phi(v_e) + 0.16\Phi(v_\mu) + 0.16\Phi(v_\tau)$
- Strongly directional, e^ tends to follow ν

What The Measure Can Tell us?

• Count the number of events for each type of reaction:

 N_{cc}, N_{NC}, N_{ES}

• Then determine the following ratios:

$$\frac{N_{CC}}{N_{NC}} = \left(\frac{\sigma_{CC}}{\sigma_{NC}}\right) \frac{\Phi(v_e)}{\Phi(v_e) + \left[\Phi(v_\mu) + \Phi(v_\tau)\right]}$$
$$\frac{N_{CC}}{N_{ES}} = \left(\frac{\sigma_{CC}}{\sigma_{NC}}\right) \frac{\Phi(v_e)}{\Phi(v_e) + 0.156\left[\Phi(v_\mu) + \Phi(v_\tau)\right]}$$

Hence, one can find out whether there are other kinds of neutrino arriving on Earth from the Sun.

Conclusions

- Some ν_e neutrinos are transformed into ν_μ and ν_τ on their way out from the center of the Sun to Earth.
- It appears that our understanding of the Sun is good.