Neutrino Physics

陆锦标 Kam-Biu Luk

Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

Lecture 5, 8 June, 2007

Outline

- Artificial sources
 - neutrino beams
 - nuclear reactor
- Natural sources
 - Active galactic nucleus
 - Supernova
 - Atmosphere
 - Sun
- Detecting particles
 - detecting charged particles
 - Cherenkov radiation
 - detecting photons
 - detecting low-energy neutrons
- Photomultiplier tubes

A 1 GW_{el} nuclear reactor can generate 6 x 10²⁰ \overline{v}_e s per sec.

Chain Reaction

Producing Antineutrinos With Reactors

For ²³⁵U fission, for instance,

 $^{235}_{92}$ U + n \rightarrow X₁ + X₂ + 2 n

where X_1 and X_2 are stable nuclei e.g.

$$^{94}_{40}$$
Zr $^{140}_{58}$ Ce

which have a total of 98 protons and 136 neutrons, whereas 235 U has 143 neutrons. That is, on average, 6 neutrons must beta decay, giving 6 v_e .

Energy Spectrum of Reactor Antineutrinos

• \overline{v}_e associated with ²³⁵U, ²³⁹Pu and ²⁴¹Pu

Energy (MeV)

Evolution Of The Universe

Neutrinos are created in the evolution of the Universe

Sources of Neutrinos

Flux on earth of neutrinos from various sources, in function of energy

A Way To Generate High-energy Particles

Particle Generation in AGN Jets

Supernova: Another Way To Produce Cosmic Ray And Neutrinos

SN in galaxy CGCG 223-029

Host galaxy: 16:02:16.63 +42:55:00.9 J2000.0 Supernova: 16:02:17.04 +42:54:55.3 J2000.0 (4.5" E, 5.6" S of nucleus)

Dimensions of finding chart: ~3.5'x3.5' Orientation: N up and E to the left

Discoverers: Rolf A. Jansen, Kazuyuki Tamura (ASU) & Norman A. Grogin (JHU)

VATT = Vatican Advanced Technology Telescope, Mt.Graham (AZ) SDSS-DR3 = Sloan Digital Sky Survey - Data Release 3

Supernova Explosion: Production of Neutrinos

• When gravitational force is too strong, inside the iron core:

$$e^- + p \rightarrow n + v_e$$

 \cdot Neutrons can't be compressed anymore, the collapsing core rebounces and tears apart - supernova explosion and release ν_e

Cosmic Ray

0.03 neutrinos/cm²/s produced in the atmosphere by cosmic ray

The Solar Interior

Solar Neutrinos

The key overall reaction is:

$$4p \rightarrow {}^{4}He + 2e^{+} + 2v_{e} + 25 \text{ MeV}$$

The flux of neutrino at Earth is:

$$\Phi_{v} = \frac{2L_{Sun}}{25MeV} \frac{1}{4\pi d^{2}} = 7 \times 10^{10} cm^{-2} s^{-1}$$

d = 1.5×10^8 km, distance of Earth from Sun L_{sun} = 3.85×10^{26} W, solar luminosity

Detecting Particles

Detecting Charged Particles

For a charged particle going through matter:

Some energy of the incident charged particle is used to release the atomic electron from its orbit, i.e. ionization. The amount of energy Loss is given by the Bethe-Bloch formula:

$$\frac{dE}{dx} = -\kappa z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e \gamma^2 \beta^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta}{2} \right]$$

where z is the charge of the incident particle in units of the electron charge, Z and A are the atomic and mass numbers of the medium respectively, $\beta = v/c$ $\gamma\beta = p/m$, with p = momentum of the incident particle δ is the density factor of the medium

Ionization Loss Of Charged Particles

where ρ is the density of the medium.

Cherenkov Radiation

 Photons are emitted when a charged particle moves faster than the speed of light in a medium:

The Cherenkov equation:

$$\cos\theta = \frac{1}{n\beta}$$

n is the index of refraction of the medium

For water n = 1.33, and β = 1, θ_{max} = 41°

The number of photons emitted is:

$$\frac{dN}{dx} = 2\pi\alpha \left[1 - \frac{1}{n^2\beta^2}\right] \int \frac{d\lambda}{\lambda^2}$$

with α = 1/137, fine-structure constant.

More photons are emitted in short wavelength region

Detecting Photons

1. Photoelectric effect (for detecting a few eV photons):

2. Compton scattering (for detecting x-ray photons):

If $\lambda' > \lambda,$ the photon loses energy to the electron

3. Pair production (for detecting MeV photons):

Cross Section Of Photon Interactions

Detecting Thermal-energy Neutron

Thermal-energy neutrons have kinetic energy:

 $E_{kin} \sim kT \sim 1/40 \text{ eV}$ (for room temperature)

• A low-energy neutron loses its energy in the medium by colliding elastically with a proton

- thermalization

Detecting Optical Photons (Visible Light)

Photomultiplier tube

M 5.00ns Ch1 \

25

-22mV 22 Apr 2007

14:57:54

Summary

- Neutrinos are abundant
- Detect particles by letting them to interact in matter, converting their energy ultimately to something detectable, typically, via electromagnetic interactions
- Photomultiplier tube can detect even a single photon