Neutrino Physics

陆锦标 Kam-Biu Luk

Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

4-15 June, 2007

Outline

- Brief overview of particle physics
- Properties of neutrino
- Production of neutrino
- Detection of neutrino
- Massive neutrinos

References

- *Spaceship Neutrino*, by C. Sutton, Cambridge University Press, 1992. A popular science book on the history of neutrino.
- Nuclear and Particle Physics: An Introduction, by B.R. Martin, Wiley, 2006.

A textbook for undergraduate students.

- Elementary Particles and Their Interactions: Concepts and Phenomena, by H.K. Quang and X.Y. Pham, Springer, 2005.
 A textbook on particle physics for advanced undergraduate and graduate students.
- *Current Aspects of Neutrino Physics*, ed. D. Caldwell, Springer, 2001.

A reference overviewing the field of neutrino physics for researchers.

• *Physics of Massive Neutrinos, 2nd.ed.,* by F. Boehm and P. Vogel, Cambridge University Press, 2003.

A reference on neutrino physics for researchers.

A Quick Tour of Particle Physics

What Are The Basic Building Blocks?

• Ancient ideas:

Greek (Aristotle)

Current Basic Building Blocks of Matter

- A particle and its antiparticle have the same mass
- All quarks and leptons are spin-1/2 particles

Some Units And Convention

- Unit of energy used in nuclear and particle physics:
 electron volt (eV)
 - 1 eV = energy gained by a particle of charge |e| after accelerated through a potential difference of 1 V = $(1.6 \times 10^{-19} C) \times 1 V$ = $1.6 \times 10^{-19} J$ $I = 1.6 \times 10^{-19} J$
- We often take energy units as mass units:

 $E = mc^{2} ; c = 1$ $\Rightarrow 1 eV/c^{2} \equiv 1 eV = 1.8 \times 10^{-36} kg$

• Relation between energy and distance:

Planck constant, h = 6.63×10^{-34} J-s Reduced Planck constant, $\hbar = \frac{h}{2\pi} = 1.05 \times 10^{-34}$ J-s

 $\hbar c = \hbar = 197 \times 10^{-15} \text{MeV} \cdot \text{m} = 197 \text{ MeV} \cdot \text{fm}$

 $1TeV = 10^{12}eV$

Quarks And Leptons

F	ERMI	ONS	matter con spin = 1/2	matter constituents spin = 1/2, 3/2, 5/2,				
Leptons spin = 1/2			Quarks spin = 1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
Ve electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3			
e electron	0.000511	-1	d down	0.006	-1/3			
${m u}_{\!\mu}^{ m muon}$ neutrino	<0.0002	0	C charm	1.3	2/3			
$oldsymbol{\mu}$ muon	0.106	-1	S strange	0.1	-1/3			
$oldsymbol{ u}_{oldsymbol{ au}}^{ ext{tau}}$ neutrino	<0.02	0	t top	175	2/3			
$oldsymbol{ au}$ tau	1.7771	-1	b bottom	4.3	-1/3			

Spin

- A kind of angular momentum
- Fermions: 1/2, 3/2, ...
 Bosons: 0, 1, ...

Spin $\frac{1}{2}$

Quarks Carry Colour

Hadrons are colourless!

 $^{\rm 212}{\rm Po} \rightarrow ^{\rm 208}{\rm Pb}$ + $\alpha (8.95~{\rm MeV})$ Weak

Interactions of Particles

Summary of Force Carriers

PROPERTIES OF THE INTERACTIONS								
Interaction Property		Gravitational	Weak Electromagnetic		Strong			
		Gravitational	(Electr	oweak)	Fundamental	Residual		
Acts on:		Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note		
Particles experiencing:		All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons		
Particles mediating:		Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons		
Strength relative to electromag 10	⁻¹⁸ m	10 ⁻⁴¹	0.8	1	25	Not applicable		
for two u quarks at:	10 ⁻¹⁷ m	10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks		
for two protons in nucleus		10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20		

Standard Model

Lepton Numbers

- Base on observations, in the Standard Model, :

e.g. tau lepton decay:

	$ au^-$	\rightarrow	μ^{-}	+	$\overline{oldsymbol{ u}}_{\mu}$	+	${\cal V}_{ au}$
tau lepton number L_{τ} :	+1		0		0		+1
muon lepton number L_{μ} :	0		+1		-1		0

Baryon number

- Observation: proton is stable ! proton lifetime, $\tau_p > 10^{31}$ years
- Why $p \rightarrow e^+ + \pi^0$??

Introduce a quantum number in the Standard Model:

quarks antiquarks Baryon number, B: +1/3 -1/3

such that

All baryons have B = 1 All mesons have B = 0 In any process $\Delta B = 0$ $p \rightarrow e^+ + \pi^0$ B: 1 0 $\Delta B \neq 0$

Weak interactions

• Leptons:

$$\begin{array}{c}
\mathbf{0}\\
-1
\end{array} \quad \mathbf{W}^{-} \left(\begin{array}{c}
\mathbf{v}_{e} & \mathbf{v}_{\mu} & \mathbf{v}_{\tau} \\
e^{-} & \mu^{-} & \tau^{-}
\end{array} \right) \mathbf{W}^{+}$$

W bosons transform leptons INSIDE the same generation

• Quarks:

Some Weak Decays

Semileptonic decay:

Weak Interactions: CC and NC processes

- Charged Current (CC):
 - "Charged-Current" reaction: exchange of W boson
 - Proposed by Fermi (1934)
 - Responsible for neutron β decay
 - Incoming neutrino needs enough energy to produce the outgoing lepton
- Neutral Current (NC):
 - "Neutral Current" reaction: exchange of Z boson
 - Proposed by Weinberg-Salam
 - Discovered with neutrinos
 - Can occur for all flavours

Some Weak Reactions Involving Neutrinos

Summary

- The Standard Model accounts all the elementary particles known today.
- Interactions of quarks and leptons are identical
- However, studies of the neutrinos indicate the Standard Model is incomplete