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Introduction

◮ Top quark is the heaviest particle discovered till now (mass
close to the scale of electroweak symmetry breaking).

◮ The production and decay of top quark through flavor
changing neutral current (FCNC) couplings are very
sensitive to new physics contributions.

◮ The new physics effects can be studied in a
model-independent way by an effective FCNC Lagrangian

Leff = −gs

∑

q=u,c

κg
tq

ΛNP

t̄σµνT a(f g
tq + ihg

tqγ5)qG
a
µν + h.c. + (Z, γ)

κ: anomalous couplings; ΛNP: new physics scale.



Direct top quark production

t

g

u(c)

p(p̄)

p(p̄)

The most sensitive process to t-q-g anomalous couplings
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◮ In order to isolate the new physics contributions, it is
important to reduce the uncertainties coming from the
standard model.

◮ Especially, the Born cross sections for processes at hadron
colliders suffer from large dependences on the
renormalization scale µr and factorization scale µf .

◮ In general, a next-to-leading order (NLO) QCD correction
is capable to reduce the scale dependence significantly.

◮ Last year, Liu, Li, Jin and I carried out the NLO
calculations (Phys. Rev. D 72, 074018). The results were
surprising: the scale dependence was NOT improved for
direct top quark production at LHC, and even became
WORSE in the region µr = µf < mt.

◮ It is thus worthwhile to consider the higher order
corrections, especially the soft gluon effects through
threshold resummation.



Threshold Resummation

Gluon emission at every order in the perturbative expansion:

+ + + · · ·

◮ As the partonic center-of-mass energey
√
s approaches the

top quark mass mt (the production threshold), the emitted
gluons are constrained to be soft.



Threshold Resummation

Gluon emission at every order in the perturbative expansion:

+ + + · · ·

◮ As the partonic center-of-mass energey
√
s approaches the

top quark mass mt (the production threshold), the emitted
gluons are constrained to be soft.

◮ Two hard scales appear in this problem: Q ∼ √
s ∼ mt and

Q′ ∼ Q(1 − z) with Q≫ Q′. Large double logarithms
ln2(1− z) appear with each soft gluon attached (z = m2

t /s).

◮ The convergence of the perturbative series will be spoiled if
αs ln2(1 − z) . 1 =⇒ need to resum the logs to all orders.



How to Resum: Conventional Approach

◮ The difficuty here is that with the two distinct scales
present, the straightforward application of the
renormalization group equations (RGE) can not eliminate
the two logarithms ln(Q2/µ2) and ln(Q′2/µ2)
simultaneously.



How to Resum: Conventional Approach

◮ The difficuty here is that with the two distinct scales
present, the straightforward application of the
renormalization group equations (RGE) can not eliminate
the two logarithms ln(Q2/µ2) and ln(Q′2/µ2)
simultaneously.

◮ Axial gauge invariance is utilized to separate the two scales
by the evolution equations with respect to the axial
parameter (Collins, Soper, Sterman, et. al).



Resummation is closely related to factorization. In the threshold
region, the cross section can be factorized in the axial gauge as

σ = H

(

p1 · ξ
µ

,
p2 · ξ
µ

)

⊗ J1

(

p1 · ξ
µ

,
p2
1

µ2

)

⊗ J2

(

p2 · ξ
µ

,
p2
2

µ2

)

∼ H

(

Q

µ
, ξ

)

⊗ J1

(

Q

µ
,
Q′

µ
, ξ

)

⊗ J2

(

Q

µ
,
Q′

µ
, ξ

)

,

where ξ is the axial gauge parameter.
Here p1 · ξ ∼ p+

1 ξ
− ∼ Qξ− and p2 · ξ ∼ p−2 ξ

+ ∼ Qξ+, while
p2
1 ∼ p2

2 ∼ Q′2 ∼ Q2(1 − z)2.

Now H only depends on the higher scale Q, and the logs are
present in the jet functions J1 and J2.



To further factorize the phase space, use the Mellin
transformation

f(z) → f̃(N) =

∫ 1

0
f(z)zN−1dz.

The threshold region z . 1 corresponds to N ≫ 1 in moment
space, i.e., 1 − z ↔ 1/N .



To further factorize the phase space, use the Mellin
transformation

f(z) → f̃(N) =

∫ 1

0
f(z)zN−1dz.

The threshold region z . 1 corresponds to N ≫ 1 in moment
space, i.e., 1 − z ↔ 1/N .

In moment space the cross section becomes

σ̃(N) = H

(

p+
1

µ
,
p−2
µ

)

× J1

(

p+
1

µ
,
Q

Nµ

)

× J2

(

p−2
µ
,
Q

Nµ

)

+ O
(

1

N

)

.

Note that

◮ The convolutions have become mulplications.

◮ N appears only in the combination Q/Nµ.



Now the independece of σ̃ on ξ immediately gives

∂

∂ ln p−2
ln J̃2

(

p−2
µ
,
Q

Nµ
,αs(µ)

)

= K

(

Q

Nµ
,αs(µ)

)

+G

(

p−2
µ
, αs(µ)

)

,

and similar for J̃1. Here I have made the dependences of these
functions on αs(µ) explicit.
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Now the independece of σ̃ on ξ immediately gives

∂

∂ ln p−2
ln J̃2

(

p−2
µ
,
Q

Nµ
,αs(µ)

)

= K

(

Q

Nµ
,αs(µ)

)

+G

(

p−2
µ
, αs(µ)

)

,

and similar for J̃1. Here I have made the dependences of these
functions on αs(µ) explicit.

Note that now the contributions from the higher scale Q and
the lower scale Q/N have been separated! The remaining things
are to make use of these equations together with the RGE of K
and G

µ
d

dµ
K = −γK(αs) = −µ d

dµ
G

to derive the resummation formula for J̃ .



Making Use of Effective Theories

As seen above, the key to resummation is the separation of
scales. And we know that effective theories are good at this!

Basic ideas of effective theories:

◮ Concentrate on one scale at a time, from high to low;

◮ Construct effective fields and effective operators at this
scale, all contributions from higher scales are encoded in
the Wilson coefficients by a procedure called matching;

◮ Sum logarithms between different scales by running, i.e.,
solving the renormalization group equations (RGE).



Which Effective Theories?

◮ The nearly static top quark: described by the heavy quark
effective theory (HQET)

pµ ∼ mtv
µ + kµ, v2 = 1, k ∼ Λ ≪ mt

ψ(x) =
∑

v

e−imtv·xhv(x)



Which Effective Theories?

◮ The nearly static top quark: described by the heavy quark
effective theory (HQET)

pµ ∼ mtv
µ + kµ, v2 = 1, k ∼ Λ ≪ mt

ψ(x) =
∑

v

e−imtv·xhv(x)

◮ The initial collinear gluon and quark: described by the
soft-collinear effective theory (SCET) (Bauer, Beneke,
Fleming, Neubert, Pirjol, Rothstein, Stewart, et. al)

pµ ∼ 1

2
Qnµ + pµ

⊥ + kµ ≡ p̃µ + kµ, n2 = 0

φn(x) =
∑

p̃

e−ip̃·xφn,p(x), k ∼ Λ ≪ p⊥ ≪ Q



Fields in SCET

Using light cone coordinate (n2 = n̄2 = 0, n · n̄ = 2)

pµ = (p+, p−, p⊥) = (n · p, n̄ · p, p⊥)

SCETI: λ ∼
√

Λ/Q

◮ collinear: p ∼ Q(λ2, 1, λ), p2 ∼ Q2λ2

◮ usoft: p ∼ Q(λ2, λ2, λ2), p2 ∼ Q2λ4

SCETII: η ∼ Λ/Q

◮ collinear: p ∼ Q(η2, 1, η), p2 ∼ Q2η2

◮ soft: p ∼ Q(η, η, η), p2 ∼ Q2η2



Lagrangian of SCETI

At leading order in λ

Lus = ψ̄us i6Dus ψus

Lcq = ξ̄n

{

in ·Dc + i6D⊥
c

1

in̄ ·Dc
i6D⊥

c + gn ·Aus

} 6 n̄
2
ξn

Lcg =
1

2g2
Tr {[iDµ + gAµ

n, iDν + gAν
n]}2

+ gauge fixing + ghost

iDµ =
nµ

2
P̄ + Pµ

⊥ +
n̄µ

2

(

in · ∂ + gn · Aus

)

Note that the usoft & collinear sectors interact only through the
circled terms.



Soft-Collinear Decoupling

Introducing a usoft Wilson line

Yn(x) = P exp

(

ig

∫

dsn ·Aus(ns+ x)

)

and making the field redefinition

ξn → Y †
n ξn, An → Y †

nAnYn,

the usoft-collinear interactions are eliminated:

Lcq → ξ̄n

{

in ·Dc + i6D⊥
c

1

in̄ ·Dc
i6D⊥

c

} 6 n̄
2
ξn

and similar for Lcg.
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The ideas are simple: just matching and running (Bauer, Idilbi,
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The ideas are simple: just matching and running (Bauer, Idilbi,
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The first matching: QCD → SCETI at µ ∼ Q

+
t

g

u(c)

+ · · · −→
tv

gn

ξn̄

×Cgq

Tgq = t̄vΓ
µBnµW

†
n̄ξn̄

Γµ =
1

2
(f + ihγ5)nνσ

µν

Bµ
n = n̄νGνµ

n , Gµν
n = W †

n [iDµ
n + gAµ

n, iDν
n + gAν

n]Wn



The matching condition at µ ∼ Q gives the Wilson coefficient

Cgq(Q
2, µ) = 1 +

αs

12π

[

−12 ln
µ2

Q2
− 13

2
ln2 µ

2

Q2
− 23 +

55π2

12

]

,

as well as the anomalous dimension of the effective operator Tgq

γ1(µ) =
αs

6π

[

13 ln
µ2

Q2
+ (6β0 + 10)

]

.



The matching condition at µ ∼ Q gives the Wilson coefficient

Cgq(Q
2, µ) = 1 +

αs

12π

[

−12 ln
µ2

Q2
− 13

2
ln2 µ

2

Q2
− 23 +

55π2

12

]

,

as well as the anomalous dimension of the effective operator Tgq

γ1(µ) =
αs

6π

[

13 ln
µ2

Q2
+ (6β0 + 10)

]

.

With this anomalous dimension, we can run the operator down
to the intermediate scale ∼ Qλ and match onto SCETII after
performing the field redefinition. Here λ ∼

√
1 − z is the

expansion parameter of SCETI.



Now we can calculate the NLO cross section in SCETII at the
scale µ ∼ Qη where no large logs are present (η ∼ 1 − z is the
expansion parameter of SCETII), and then match the result
onto the product of two parton distribution functions (PDFs),
which means

σII(z) = σ0M(z, µ) ⊗ [fg(z, µ) ⊗ fq(z, µ)]

≡ M(z, µ) ⊗F(z, µ),



Now we can calculate the NLO cross section in SCETII at the
scale µ ∼ Qη where no large logs are present (η ∼ 1 − z is the
expansion parameter of SCETII), and then match the result
onto the product of two parton distribution functions (PDFs),
which means

σII(z) = σ0M(z, µ) ⊗ [fg(z, µ) ⊗ fq(z, µ)]

≡ M(z, µ) ⊗F(z, µ),

The convolution here can again be factorized by Mellin
transformation:

σ̃II(N) = M̃(N,µ) × F̃(N,µ).



The moment of the matching coefficient M is

M̃(N,µ) =
αs

6π

[

8 +
13π2

12
+ 26 ln2 N̄µ

Q
+ 8 ln

N̄µ

Q

]

,

where N̄ ≡ NeγE . To avoid the Euler constant γE appearing in
the coefficient, we can choose the matching scale µ = Q/N̄
rather than Q/N .



The moment of the matching coefficient M is

M̃(N,µ) =
αs

6π

[

8 +
13π2

12
+ 26 ln2 N̄µ

Q
+ 8 ln

N̄µ

Q

]

,

where N̄ ≡ NeγE . To avoid the Euler constant γE appearing in
the coefficient, we can choose the matching scale µ = Q/N̄
rather than Q/N .

The running of the moments of F is governed by it anomalous
dimension

γ2(µ) =
αs

3π
[−26 ln N̄ + 6β0 + 6].



The Resummed Cross Section

Combining the above results, we can write down the resummed
cross section in moment space

σ̃SCET(N) = σ0(µ)
∣

∣Cgq(Q
2, µ)

∣

∣

2 [

1 + M̃(N,µ)
]

F̃(N,µ)

= σ0(µr)
∣

∣Cgq(Q
2, µr)

∣

∣

2
eI1

×
[

1 + M̃(N,Q/N̄ )
]

eI2F̃(N,µf ).
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Combining the above results, we can write down the resummed
cross section in moment space

σ̃SCET(N) = σ0(µ)
∣

∣Cgq(Q
2, µ)

∣

∣

2 [

1 + M̃(N,µ)
]

F̃(N,µ)

= σ0(µr)
∣

∣Cgq(Q
2, µr)

∣

∣

2
eI1

×
[

1 + M̃(N,Q/N̄ )
]

eI2F̃(N,µf ).

Now the large logs lnN have been resummed into the
exponents:

I1 =

∫ µr

Q/N̄

dµ

µ
2γ1(µ), I2 =

∫ Q/N̄

µf

dµ

µ
γ2(µ).

Here µr and µf correspond to the renomalization and
factorization scales in the full theory, respectively.



Resummation at NLL accuracy

The two anomalous dimensions can in general be written as

γ1(µ) = A1(αs) ln
µ2

Q2
+A0(αs),

γ2(µ) = B1(αs) ln N̄ +B0(αs),

and 4A1(αs) = −B1(αs).



Resummation at NLL accuracy

The two anomalous dimensions can in general be written as

γ1(µ) = A1(αs) ln
µ2

Q2
+A0(αs),

γ2(µ) = B1(αs) ln N̄ +B0(αs),

and 4A1(αs) = −B1(αs).

From the NLO matching, we can only extract these coefficients
to the first order in αs:

A
(1)
1 = −1

4
B

(1)
1 =

13

6
,

A
(1)
0 = β0 +

5

3
, B

(1)
0 = 2β0 + 2.



However, to reach the accuracy of next-to-leading logs (NLL) in
the exponents, we need the coefficients A1 and B1 to the second
order in αs.
Fortunately, these two coefficients are process-independent and
can be extracted from the two-loop DGLAP splitting kernels:

A
(2)
1 = −1

4
B

(2)
1 =

A
(1)
1

2

[

CA

(

67

18
− π2

6

)

− 5

9
nf

]

.
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Fortunately, these two coefficients are process-independent and
can be extracted from the two-loop DGLAP splitting kernels:

A
(2)
1 = −1

4
B

(2)
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A
(1)
1

2

[
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(
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18
− π2

6
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9
nf
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Now we can perform the inverse Mellin transformation for the
NLL cross section:

σNLL(τ) =
1

2πi

∫

C
dNτ−NσNLL(N).



The Final Expression

The NLL cross section collects only the logarithms in the NLO
cross section, and the total resummed cross section should also
include the remaining terms in the NLO result, i.e,

σResum = σNLL + σNLO − σNLL

∣

∣

∣

∣

αs=0

− αs

(

∂σNLL

∂αs

)

αs=0

.

This is our final expression for numerical evaluation.



Numerical Results

LHC
(

κ/Λ

0.01TeV−1

)2
pb Tevatron

(

κ/Λ

0.01TeV−1

)2
fb

subprocess PDF
LO NLO Resum LO NLO Resum

CTEQ 12.9 17.0 23.7 268 425 547gu→ t

MRST 12.2 16.3 19.5 262 426 520

CTEQ 1.71 2.53 3.71 13.1 28.1 38.2gc → t

MRST 1.68 2.38 2.92 17.0 30.3 38.6

Here µr = µf = mt.

◮ The resummation effects further increase the NLO cross
sections.

◮ The discrepancies between the different PDF sets are still
large. These have to be improved by the fitting groups.



Scale Dependence at the Tevatron

Resum

NLO

LO
gu→ t

µ/mt

R

510.2

1.8

1.6

1.4

1.2

1

0.8

0.6

Resum

NLO

LO
gc→ t

µ/mt

R

510.2

1.6

1.4

1.2

1

0.8

0.6

Here µr = µf = µ and R(µ) ≡ σ(µ)/σ(mt). CTEQ6 PDF sets
are used.
The resummation effects further decrease the scale dependence
of the NLO cross sections remarkably.



Scale Dependence at the LHC

Resum

NLO

LO
gu→ t

µ/mt

R

510.2

1.4

1.2

1

0.8

Resum

NLO

LO
gc→ t

µ/mt

R

510.2

1.4

1.2

1

0.8

The NLO corrections do not improve the scale dependence of
the LO cross sections, while the effects of threshold
resummation are significant.
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Summary

◮ We have calculated the NLL threshold resummation effects
in the direct top quark productions induced by
model-indpendent FCNC couplings at hadron colliders in
the framework of SCET and HQET.

◮ The resummation effects increase the total cross sections
and significantly reduce the dependence of the cross
sections on the renomalization and factorization scales.

◮ Our results are useful for the current and future
experiments at the Tevatron and the LHC for searching
new physics, and are essential for extracting the anomalous
couplings if signals of the direct top quark production are
discovered in the future.



Thank you!


