Dynamical Electroweak Symmetry Breaking

Elizabeth H. Simmons Michigan State University

Frontiers of High-Energy Physics 2006: Beyond the Standard Model August 7-11, 2006

- 1. Review: Standard Higgs Model
- 2. Chiral Symmetry Breaking: Technicolor
- 3. The Chiral Lagrangian
- 4. Resonances and Unitarity
- 5. Chiral Symmetry Breaking Dynamics
- 6. Interim Conclusions

1. Review: The Standard Model Higgs Boson

The Higgs Sector

A Fundamental Scalar Doublet:

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \quad ,$$

with potential:

$$V(\phi) = \lambda \left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)^2$$

is employed both to break the electroweak symmetry and to generate masses for the fermions in the Standard Model. Define $\tilde{\phi} = i\sigma_2 \phi^*$ and

$$\Phi = \left(\tilde{\phi} \ \phi \right) \quad \Rightarrow \quad \Phi^{\dagger} \Phi = \Phi \Phi^{\dagger} = \left(\phi^{\dagger} \phi \right) \mathcal{I} \ .$$

Under $SU(2)_L \times U(1)_Y, \ \Phi \to L \Phi R^{\dagger},$
$$L = \exp\left(\frac{i w^a(x) \sigma^a}{2} \right) \ , \ R = \exp\left(\frac{i b(x) \sigma^3}{2} \right)$$

The Higgs-sector Lagrangian becomes

$$\frac{1}{2} \operatorname{Tr} \left(D^{\mu} \Phi D_{\mu} \Phi^{\dagger} \right) + \frac{\lambda}{4} \left(\operatorname{Tr} \left(\Phi \Phi^{\dagger} \right) - v^{2} \right)^{2} ,$$
$$D_{\mu} \Phi = \partial_{\mu} \Phi + \mathrm{i}g \mathbf{W}_{\mu} \Phi - \mathrm{i} \Phi g' \mathbf{B}_{\mu} .$$

The potential manifests the symmetry
$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$$

A "Polar decomposition" of Φ

$$\Phi(x) = \frac{1}{\sqrt{2}} \left(H(x) + v \right) \Sigma(x) ,$$

$$\Sigma(x) = \exp(i\pi^a(x)\sigma^a/v)$$
.

By gauge choice, $\langle \Sigma \rangle = \mathcal{I}$.

٠

<u>Broken Symmetries</u> \Rightarrow Nambu-Goldstone Bosons Gauge $SU(2)_W \times U(1)_Y \Rightarrow$ Higgs Mechanism

$$\pi^{\pm}, \pi^{0} \rightarrow W_{L}^{\pm}, Z_{L}$$

$$M_W = \frac{gv}{2} \rightarrow v \approx 250 \text{GeV}$$

٠

Due to residual $SU(2)_V$ "custodial symmetry" for $g' \rightarrow 0$, the $SU(2)_L$ gauge bosons are degenerate.

This, plus $m_{\gamma} = 0$, tells us

$$M^{2} = \frac{v^{2}}{2} \begin{pmatrix} g^{2} & & & \\ & g^{2} & & \\ & & g^{2} & -gg' \\ & & -gg' & {g'}^{2} \end{pmatrix} ,$$

and hence

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

5

Violations of Custodial Symmetry

Electromagnetism: $\mathcal{O}(\alpha)$ corrections to $\Delta \rho$ from

Yukawa Couplings:

Nota Bene: Custodial symmetry is accidental. It applies to $SU(2)_L \times U(1)_Y$ invariant terms of dimension 4 or less $(g' \rightarrow 0)$. Can be violated by terms of higher dimension, *e.g.*

$$(\phi^{\dagger}D^{\mu}\phi)(\phi^{\dagger}D_{\mu}\phi) = \frac{1}{4} \left(\operatorname{Tr} \sigma_{3} \Phi^{\dagger}D^{\mu} \Phi \right) \left(\operatorname{Tr} \sigma_{3} \Phi^{\dagger}D_{\mu} \Phi \right)$$

Problems with the Higgs Model

• No fundamental scalars observed in nature

- No explanation of dynamics responsible for Electroweak Symmetry Breaking
- Hierarchy and Naturalness Problem

$$= m_H^2 \propto \Lambda^2 \ .$$

• Triviality Problem ...

7

The Triviality of the Standard Higgs Model

Define theory with a fixed UV-cutoff:

$$\mathcal{L}_{\Lambda} = D^{\mu} \phi^{\dagger} D_{\mu} \phi + m^{2}(\Lambda) \phi^{\dagger} \phi + \frac{\lambda(\Lambda)}{4} (\phi^{\dagger} \phi)^{2} + \frac{\kappa(\Lambda)}{36\Lambda^{2}} (\phi^{\dagger} \phi)^{3} + \dots$$

Integrate out states with $\Lambda' < k < \Lambda$:

$$\begin{array}{rcl} \mathcal{L}_{\Lambda} & \Rightarrow & \mathcal{L}_{\Lambda'} \\ m^2(\Lambda) & \to & m^2(\Lambda') \\ \lambda(\Lambda) & \to & \lambda(\Lambda') \\ \kappa(\Lambda) & \to & \kappa(\Lambda') \end{array}$$

Consider evolution of couplings in the IR-limit....

Consequences of perturbative analysis:

- $\kappa \to 0$ "Renormalizability", if $m_H \ll \Lambda$.
- $m^2 \rightarrow \infty$ Naturalness/Hierarchy Problem:

$$rac{\Delta m^2(\Lambda)}{m^2(\Lambda)} \propto rac{v^2}{\Lambda^2}$$

• $\lambda \rightarrow 0$ Triviality ...

Moreover, <u>nonperturbative analysis</u> yields same^{*} behavior:

 $\ln(|\ln(|\tau|)|)$

*J. Kuti, et. al., PRL 61 (1988) 678

Implications of Triviality

 The Standard Higgs model is, at best, a low-energy effective theory valid below a scale Λ, characteristic of the underlying physics.

• Dashen & Neuberger:

Given $m_H^2 = 2v^2\lambda(m_H)$, there is an *upper* bound on Λ .

An *estimate* of this bound can be obtained by integrating the one-loop β -function, which yields

$$\Lambda pprox m_H \exp\left(rac{4\pi^2 v^2}{3m_H^2}
ight) \; ,$$

• Constraints on the underlying physics will result in a lower bound on Λ and will give rise to an upper bound on m_H .

2. Chiral Symmetry Breaking Technicolor

 $SU(N_{TC})$ gauge theory,

$$\Psi_L = \left(\begin{array}{c} U\\D\end{array}\right)_L \quad U_R, D_R$$

with massless fermions

$$\mathcal{L} = \bar{U}_L i \not\!\!\!D U_L + \bar{U}_R i \not\!\!\!D U_R + \bar{D}_L i \not\!\!\!D D_L + \bar{D}_R i \not\!\!\!D D_R .$$

Like QCD in m_u , $m_d \rightarrow 0$ limit:

- Chiral $SU(2)_L \times SU(2)_R$ symmetry
- Dynamically broken symmetry $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

$$\bigcup_{U,D} \bigcup_{U,\overline{D}} \overline{U},\overline{D} \to \langle \overline{U}_L U_R \rangle = \langle \overline{D}_L D_R \rangle \neq 0.$$

Now gauge $SU(2)_L$ (to be $SU(2)_W$) and the T_3 piece of $SU(2)_R$ (to be $U(1)_Y$).

The condensate of EW-charged technifermions $\langle \bar{U}_L U_R \rangle = \langle \bar{D}_L D_R \rangle \neq 0$ now breaks the EW symmetry.

Broken Chiral Symmetries \Rightarrow Nambu-Goldstone Bosons once again... and this triggers the Higgs Mechanism

$$\pi_T^{\pm}, \, \pi_T^0 \to W_L^{\pm}, \, Z_L$$
 $M_W = \frac{gF_{TC}}{2} \to F_{TC} \approx 250 \, \text{GeV}$

Properties of the technicolor dynamics follow if one scales up QCD by

$$rac{F_{TC}}{f_{\pi}}pprox$$
 2500 .

Generalizations

Any strongly interacting gauge theory with $SU(2)_W \times U(1)_Y \subseteq G \to H \supseteq SU(2)_V \supset U(1)_{em}$

where "custodial" $SU(2)_V$ symmetry insures

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

can be used to construct a "technicolor" model.

Common Chiral Symmetry Breaking Patterns

- Complex Representations: $N_F \times (R + R^*)$ $G = SU(N_F)_L \times SU(N_F)_R \times U(1)_V$ $H = SU(N_F)_V \times U(1)_V$
- Real Representations: $N_F \times R$ $G = SU(N_F)$ $H = SO(N_F)$
- Pseudoreal Representations: $2N_F \times \tilde{R}$ $G = SU(2N_F)$ $H = Sp(2N_F)$

Note, however that Extended Symmetry-Breaking Sectors lead to

Larger Symmetries (G/H)Pseudo Nambu-Goldstone Bosons (PNGBs)

3. The Chiral Lagrangian

Chiral Theory for
$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$$
:
 $\Sigma = \exp(iw^a \sigma^a / F_{TC}) \rightarrow L \Sigma R^{\dagger}$

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma + ig\mathbf{W}_{\mu}\Sigma - i\Sigma g'\mathbf{B}_{\mu}$$

Allowing for custodial SU(2) violation:

$$\frac{F_{TC}^2}{4} \operatorname{Tr}\left[D^{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right] + \frac{F_{TC}^2}{2} \left(\frac{1}{\rho} - 1\right) \left[\operatorname{Tr} T_3 \Sigma^{\dagger} D^{\mu} \Sigma\right]^2$$

plus corrections of $\mathcal{O}(p^4/\Lambda_\chi^2)$, and:

$$-\frac{1}{2} \operatorname{Tr} \left[\mathbf{W}^{\mu\nu} \mathbf{W}_{\mu\nu} \right] - \frac{1}{2} \operatorname{Tr} \left[\mathbf{B}^{\mu\nu} \mathbf{B}_{\mu\nu} \right] \,.$$

 $\Sigma = 1$ in Unitary Gauge:

$$\frac{g^2 F_{TC}^2}{4} W_{-}^{\mu} W_{+\mu} + \frac{g^2 F_{TC}^2}{8\rho \cos^2 \theta} Z^{\mu} Z_{\mu}$$

 $\Rightarrow M_{W,Z}
eq {\rm 0,}~
ho pprox {\rm 1}$

15

Low-Energy Phenomenology

For energies lower than $M_{\rho_{TC}}$, at $O(p^4)$, following Gasser and Leutwyler, we also have corrections to

The *l*'s are normalized to be O(1).

3-pt functions \Rightarrow Gauge-Boson Self-Couplings

From the work of Hagiwara[†], et. al.:

$$\frac{\imath}{e\cot\theta} \quad \mathcal{L}_{WWZ} = g_1 (W^{\dagger}_{\mu\nu}W^{\mu}Z^{\nu} - W^{\dagger}_{\mu}Z_{\nu}W^{\mu\nu}) + \kappa_Z W^{\dagger}_{\mu}W_{\nu}Z^{\mu}\nu + \frac{\lambda_Z}{M_W^2}W^{\dagger}_{\lambda\mu}W^{\mu}_{\nu}Z^{\nu\lambda}$$

$$\frac{i}{e} \quad \mathcal{L}_{\mathcal{WW}\gamma} = (W^{\dagger}_{\mu\nu}W^{\mu}A^{\nu} - W^{\dagger}_{\mu}A_{\nu}W^{\mu\nu}) \\ + \kappa_{\gamma}W^{\dagger}_{\mu}W_{\nu}F^{\mu}\nu + \frac{\lambda_{\gamma}}{M_{W}^{2}}W^{\dagger}_{\lambda\mu}W^{\mu}_{\nu}F^{\nu\lambda}$$

In terms of \mathcal{L}_{p^4} we expect

$$\begin{cases} g_1 - 1 \\ \kappa_Z - 1 \\ \kappa_\gamma - 1 \end{cases} \approx \frac{\alpha_* l_i}{4\pi \sin^2 \theta} = \mathcal{O}(10^{-2} - 10^{-3})$$

Similarly, $\lambda_{Z,\gamma}$ arise in \mathcal{L}_{p^6} so that $\lambda_{Z,\gamma} = \mathcal{O}(10^{-4} - 10^{-5})$.

[†] Hagiwara, et. al., NPB 282 (1987) 253

 † LEPEWWG, hep-ex/0312023

Experimental Prospects at the LHC^{\dagger} :

and NLC^{\dagger}:

[†] Aihara *et. al.*, hep-ph/9503425

2-pt functions \Rightarrow Oblique Parameters[†]

$$S \equiv 16\pi \left[\Pi'_{33}(0) - \Pi'_{3Q}(0) \right]$$

= $-\frac{l_{10}}{\pi} \approx 4\pi \left(\frac{F_{\rho_{TC}}^2}{M_{\rho_{TC}}^2} - \frac{F_{A_{TC}}^2}{M_{A_{TC}}^2} \right) N_D$

 $\alpha T \equiv \frac{g^2}{\cos^2 \theta_W M_Z^2} \left[\Pi_{11}(0) - \Pi_{33}(0) \right] = \rho - 1$

Scaling from QCD $\Rightarrow S \approx 0.28 N_D (N_{TC}/3)$

[†] Particle Data Group 2006

4. Resonances and Unitarity Gauge-Boson Scattering

At <u>High-Energies</u>, use <u>Equivalence Theorem</u> $\mathcal{A}(W_L W_L) = \mathcal{A}(ww) + \mathcal{O}(\frac{M_W}{E}).$

Results in Universal "Low-Energy Theorems":

$$\mathcal{A}[W_L^+ W_L^- \to W_L^+ W_L^-] = \frac{iu}{v^2 \rho}$$
$$\mathcal{A}[W_L^+ W_L^- \to Z_L Z_L] = \frac{is}{v^2} \left(4 - \frac{3}{\rho}\right)$$
$$\mathcal{A}[Z_L Z_L \to Z_L Z_L] = 0$$

What dynamics cuts off growth in amplitude?

- New particles ?
- Born approximation fails ⇒ electroweak interactions become strong ?
- Both ?

QCD Data[†] and low-energy theorem prediction for the spin-1/isospin-1 pion scattering amplitude:

To get predictions for QCD-like technicolor, scale by $v/f_{\pi} \approx 2600$. That is,

$$M_{
ho_{TC}} \approx 2 \,\mathrm{TeV} \,\sqrt{\frac{3}{N_{TC}}}$$

[†]Donoghue, *et. al.*, PRD 38 (1988) 2195.

Gauge-Boson Scattering at the LHC*

*J. Bagger et. al., hep-ph/9306256, 9504426

Gauge Boson — Vector Meson Mixing at LHC*

*M. Golden, et. al., hep-ph/9511206

Gauge-Boson Re-Scattering at the NLC*

$$F_T = \exp\left[\frac{1}{\pi} \int_0^\infty ds' \delta(s', M_\rho, \Gamma_\rho) \left\{\frac{1}{s' - s - i\epsilon} - \frac{1}{s'}\right\}\right]$$

*T. Barklow, Physics and Expts. with Linear Colliders

5. Chiral Symmetry Breaking Dynamics The Gap-Equation

Nonperturbative approximation to chiral-symmetry breaking dynamics: "rainbow" approximation to Schwinger-Dyson equation for $\Sigma(p)$.

Linearized Form:

$$\Sigma(p) = 3C_2(R) \int \frac{d^4k}{(2\pi)^4} \frac{\alpha_{TC}((k-p)^2)}{(k-p)^2} \frac{\Sigma(k)}{k^2}$$

"WKB" Solution(s):

$$\Sigma(p) \propto p^{-\gamma_m(\mu)}, \ p^{\gamma_m(\mu)-2}$$

$$\gamma_m(\mu) = 1 - \sqrt{1 - \frac{\alpha_{TC}(\mu)}{\alpha_C}}; \ \alpha_C \equiv \frac{\pi}{3C_2(R)}.$$

The Pagels-Stokar Formula*

How is $\Sigma(p)$ connected to F_{TC} ?

Approximating full vertex function... ...using $\Sigma(p)$ from gap equation... ...and assuming $Z(p) \equiv 1$, yields

$$F_{TC}^{2} = \frac{N_{TC}}{16\pi^{2}} \int_{0}^{\infty} dk^{2} \frac{4k^{2}\Sigma^{2} + \Sigma^{4}}{(k^{2} + \Sigma^{2})^{2}}$$

Size of F_{TC} determined by $\Sigma(0)$.

*Jackiw and Johnson, PRD 8 (1973) 2386 Pagels and Stokar, PRD 20 (1979) 2947 Appelquist *et. al.*, PRD 41 (1990) 3192. OPE Analysis of Chiral Symmetry Breaking Physical interpretation of two solutions:

$$\lim_{p \to \infty} \Sigma(p) \propto m(p) < 1 > + \sum_{p^2} (p) = 1$$

First solution \Rightarrow "hard mass", explicit χ SB.

Second solution \Rightarrow "soft mass".

Dynamical symmetry breaking requires

$$\lim_{m_0\to 0} \Sigma(p) \neq 0.$$

Analysis of Gap Equation implies this happens iff α_{TC} reaches α_C . Chiral symmetry breaking scale Λ_{TC}

$$\alpha_{TC}(\Lambda_{TC}) = \alpha_C \quad \iff \quad \gamma_m(\Lambda_{TC}) = 1.$$

 χ SB occurs when "hard" and "soft" masses scale the same way; generalizes to all orders?

OPE Analysis of Current Correlation Functions

$$\Pi_{LR}^{\mu\nu}(q) = 4i \int d^4x e^{iq \cdot x} \langle 0|T(j_L^{\mu}(s)j_R^{\nu}(0)^{\dagger}|0\rangle$$

Transversality implies:

In large- N_C approximation:

$$\Pi_{LR}(Q^2) = \frac{1}{Q^6} \left[-4\pi^2 \left(\frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2) \right) \langle \bar{\psi}\psi \rangle^2 \right] + \dots$$

Weinberg Sum Rules

"Duality": saturate spectral functions with resonances:

$$\Pi_{VV}(Q^2) = \sum_{\hat{l}} \frac{g_{\hat{l}V}^2}{m_{\hat{l}}^2 (m_{\hat{l}}^2 + Q^2)}$$
$$\Pi_{AA}(Q^2) = \frac{F^2}{Q^2} + \sum_{\hat{l}} \frac{g_{\hat{l}A}^2}{m_{\hat{l}}^2 (m_{\hat{l}}^2 + Q^2)}$$

$$\langle 0|J^a_{V,A\mu}(0)|A^{b\hat{l}}\rangle = g_{\hat{l}V,A}\delta^{ab}\varepsilon_{\mu}$$

 $\lim_{Q^2 \to \infty} Q^2 \,\Pi_{LR}(Q^2) = \lim_{Q^2 \to \infty} Q^4 \,\Pi_{LR}(Q^2) = 0 \Rightarrow$

$$\sum_{\hat{l}} \left(\frac{g_{\hat{l}V}^2}{m_{\hat{l}}^2} - \frac{g_{\hat{l}A}^2}{m_{\hat{l}}^2} \right) = F^2 \quad \& \quad \sum_{\hat{l}} \left(g_{\hat{l}V}^2 - g_{\hat{l}A}^2 \right) \equiv 0$$

Constraint on spectrum of resonances!

RECALL: 2-pt functions \Rightarrow Oblique Parameters[†]

$$S \equiv 16\pi \left[\Pi'_{33}(0) - \Pi'_{3Q}(0) \right]$$

= $-\frac{l_{10}}{\pi} \approx 4\pi \left(\frac{F_{\rho_{TC}}^2}{M_{\rho_{TC}}^2} - \frac{F_{A_{TC}}^2}{M_{A_{TC}}^2} \right) N_D$

 $\alpha T \equiv \frac{g^2}{\cos^2 \theta_W M_Z^2} \left[\Pi_{11}(0) - \Pi_{33}(0) \right] = \rho - 1$

Scaling from QCD $\Rightarrow S \approx 0.28 N_D (N_{TC}/3)$

[†] Particle Data Group 2006

6. Interim Conclusions

Strong Electroweak Symmetry Breaking Eliminates Fundamental Scalars

Electroweak gauge symmetry is broken by the nonzero expectation value of a fermion bilinear, driven by new strong interactions.

Understanding of strongly-interacting gauge theories is extremely limited. Theories often constructed by analogy!

Next: how to move beyond analogy and how to include fermions...

Flavor Symmetry Breaking and ETC

- 7. Fermions and Extended Technicolor
- 8. The Details
- 9. Walking Technicolor
- **10.** Conclusions

7. Fermion Masses & ETC Interactions

Extended Technicolor Interactions — Connect chiral-symmetries of TFs to quarks & leptons.

For QCD-like TC ("precociously" asymptotically free), γ_m is small over this range:

$$\langle \overline{U}U \rangle_{ETC} \approx \langle \overline{U}U \rangle_{TC} \approx 4\pi F_{TC}^3$$

$$\frac{M_{ETC}}{g_{ETC}} \approx 40 \,\mathrm{TeV} \left(\frac{F_{TC}}{250 \,\mathrm{GeV}}\right)^{\frac{3}{2}} \left(\frac{100 \,\mathrm{MeV}}{m_q}\right)^{\frac{1}{2}}$$

"Toy" Model : $SU(N_{ETC})$ $N_{ETC} = N_{TC} + N_F$

$$Q_L = (N_{ETC}, 3, 2)_{1/6} \qquad L_L = (N_{ETC}, 1, 2)_{-1/2} U_R = (N_{ETC}, 3, 1)_{2/3} \qquad E_R = (N_{ETC}, 1, 1)_{-1} D_R = (N_{ETC}, 3, 1)_{-1/3} \qquad N_R = (N_{ETC}, 1, 1)_0$$

$$\begin{array}{rcl} SU(N_{TC}+3) \\ \wedge_{1} & \downarrow & m_{1} \approx \frac{4\pi F^{3}}{\Lambda_{1}^{2}} \\ SU(N_{TC}+2) \\ \wedge_{2} & \downarrow & m_{2} \approx \frac{4\pi F^{3}}{\Lambda_{2}^{2}} \\ SU(N_{TC}+1) \\ \wedge_{3} & \downarrow & m_{3} \approx \frac{4\pi F^{3}}{\Lambda_{3}^{2}} \\ SU(N_{TC}) \end{array}$$

 $[G_{ETC}, SU(3)_C] = [G_{ETC}, SU(2)_W] = 0$

"One-Family" possesses chiral symmetry $SU(8)_L \times SU(8)_R \rightarrow SU(8)_V$

Yields three isospin-symmetric families of degenerate quarks and leptons, $m_1 < m_2 < m_3$. Moral: ETC interactions necessarily incorporate a dynamical theory of flavor!

Shortcomings of this toy model:

- What breaks ETC?
- Need a separate scale for each family.
- All quark (& lepton) mixing angles zero.
- $T_3 = \pm \frac{1}{2}$ fermions have equal masses. $u_R \& d_R$ must be in different representations of ETC.
- RH-technineutrinos \Rightarrow RH- ν 's, $m_{\nu} \neq 0$.

The devil is in the details ... no complete theory exists

8. The Details

Flavor-Changing Neutral Currents

Quark mixing implies transitions between different generations: $q \rightarrow \Psi \rightarrow q'$.

ETC algebra:

$$[\overline{q}\gamma\Psi,\overline{\Psi}\gamma q']\supset \overline{q}\gamma q'\,.$$

This is true of charged-current weak interactions as well. But $SU(2)_W$ respects a global $(SU(3) \times U(1))^5$ chiral symmetry: GIM!

ETC interactions cannot respect GIM (exactly): they must distinguish between the various generations to provide a hierarchy of masses. $|\Delta S| = 2$ interactions:

$$\mathcal{L}_{|\Delta S|=2} = \frac{g_{ETC}^2 \,\theta_{sd}^2}{M_{ETC}^2} \,\overline{s} \Gamma^{\mu} d \,\overline{s} \Gamma'_{\mu} d + \text{h.c.}$$

$$(\Delta M_K^2)_{ETC} = \frac{g_{ETC}^2 \,\theta_{sd}^2}{M_{ETC}^2} \,\langle \overline{K^0} | \overline{s} \Gamma^{\mu} d \,\overline{s} \Gamma'_{\mu} d | K^0 \rangle + \text{c.c}$$

Using vacuum insertion approximation, one finds

$$(\Delta M_K^2)_{ETC} \simeq \frac{g_{ETC}^2 \operatorname{Re}(\theta_{sd}^2)}{2M_{ETC}^2} f_K^2 M_K^2$$

 $\begin{array}{rcl} \mbox{Then} & \Delta M_K &< 3.5 \times 10^{-12} \mbox{ MeV} & \mbox{implies} \\ \hline \frac{M_{ETC}}{g_{ETC} \sqrt{{\rm Re}(\theta_{sd}^2)}} &> 600 \mbox{ TeV} \end{array}$

$$m_{q,\ell} \simeq \frac{g_{ETC}^2}{M_{ETC}^2} \langle \overline{T}T \rangle_{ETC} < \frac{0.5 \text{ MeV}}{N_D^{3/2} \theta_{sd}^2}$$

Hard to reach s & c masses, let alone b & t!

One-Family of Technifermions

$SU(8)_L \times SU(8)_R \rightarrow SU(8)_V \Rightarrow$

63 PGBs/Mesons:

$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_V$	Particle
1	1	$P^{0\prime}~,~\omega_{T}$
1	3	$P^{0,\pm} \;,\; \rho_T^{0,\pm}$
3	1	$P_3^{0\prime} \;,\; ho_{T3}^{0\prime}$
3	3	$P_3^{0,\pm} \;,\; ho_{T3}^{0,\pm}$
8	1	$P_8^{0\prime}(\eta_T) \;,\; ho_{T8}^{0\prime}$
8	3	$P_8^{0,\pm} \;,\; ho_{T8}^{0,\pm}$

Gauge interactions break chiral symmetry: color octets and triplets PGBs get masses of order 200 — 300 GeV, in analogy to $m_{\pi^+} - m_{\pi^0}$ in QCD. Others massless to $O(\alpha)!$

ETC-contributions to PGB Masses

Dashen's Formula \Rightarrow

$$F_{TC}^2 M_{\pi_T}^2 \propto \frac{g_{ETC}^2}{M_{ETC}^2} \langle (\overline{T}T)^2 \rangle_{ETC}$$

Assuming QCD-like dynamics, meaning small γ_m , one finds

$$M_{\pi_T} \simeq 55 \,\mathrm{GeV} \sqrt{\frac{m_f}{1 \,\mathrm{GeV}}} \sqrt{\frac{250 \,\mathrm{GeV}}{F_{TC}}}$$

Is this large enough?

Other model-building constraints on a realistic TC/ETC Theory:

- ETC should be asymptotically free.
- There can be no gauge anomalies.
- Neutrino masses, if nonzero, must be small.
- There should be no extra massless or light gauge bosons.
- Weak CP-violation, without strong CP-violation.
- Isospin-violation in fermion mass without large $\Delta \rho$.
- Accomodate a large m_t .
- Small corrections to $Z \rightarrow \overline{b}b$ and $b \rightarrow s\gamma$.

The rest of this lecture and tomorrow's lecture will attack these challenges.

9. "Walking" Technicolor

We have assumed (following QCD) that $\gamma_m(\mu)$ is small for $\Lambda_{TC} < \mu < M_{ETC}$.

However, if β_{TC} is *small*, α_{TC} may be large ... and therefore γ_m may be large.

$$\langle \overline{T}T \rangle_{ETC} = \langle \overline{T}T \rangle_{TC} \exp\left(\int_{\Lambda_{TC}}^{M_{ETC}} \frac{d\mu}{\mu} \gamma_m(\mu)\right)$$

 \Rightarrow could enhance $\langle \overline{T}T \rangle_{ETC}$ and fermion masses.

Question: How large can γ_m be and how does this affect TC χ -symmetry breaking dynamics?

Recall: The Gap-Equation

Nonperturbative approximation to chiral-symmetry breaking dynamics: "rainbow" approximation to Schwinger-Dyson equation for $\Sigma(p)$.

Linearized Form:

$$\Sigma(p) = 3C_2(R) \int \frac{d^4k}{(2\pi)^4} \frac{\alpha_{TC}((k-p)^2)}{(k-p)^2} \frac{\Sigma(k)}{k^2}$$

"WKB" Solution(s):

$$\Sigma(p) \propto p^{-\gamma_m(\mu)}, \ p^{\gamma_m(\mu)-2}$$

$$\gamma_m(\mu) = 1 - \sqrt{1 - \frac{\alpha_{TC}(\mu)}{\alpha_C}}; \ \alpha_C \equiv \frac{\pi}{3C_2(R)}$$

OPE Analysis of Chiral Symmetry Breaking Physical interpretation of two solutions:

$$\lim_{p \to \infty} \Sigma(p) \propto m(p) < 1 > + \sum_{p \to \infty} \frac{\langle TT \rangle_p}{p^2}$$

First solution \Rightarrow "hard mass", explicit χ SB.

Second solution \Rightarrow "soft mass".

Dynamical symmetry breaking requires

$$\lim_{m_0\to 0} \Sigma(p) \neq 0.$$

Analysis of Gap Equation implies this happens iff α_{TC} reaches α_C . Chiral symmetry breaking scale Λ_{TC}

$$\alpha_{TC}(\Lambda_{TC}) = \alpha_C \quad \iff \quad \gamma_m(\Lambda_{TC}) = 1.$$

 χ SB occurs when "hard" and "soft" masses scale the same way; generalizes to all orders?

Implications of Walking: Fermion Masses

If $\beta(\alpha_{TC}) \simeq 0$ all the way from Λ_{TC} to M_{ETC} , *i.e.* if the TC-coupling "walks" $\Rightarrow \gamma_m(\mu) \cong 1$

$$m_{q,l} = \frac{g_{ETC}^2}{M_{ETC}^2} \times \left(\langle \overline{T}T \rangle_{ETC} \cong \langle \overline{T}T \rangle_{TC} \frac{M_{ETC}}{\Lambda_{TC}} \right)$$

 $FCNCs \Rightarrow M_{ETC}/\Lambda_{TC} \approx 100 - 1000$

$$m_{q,l} pprox rac{50 - 500 \,\mathrm{MeV}}{N_D^{3/2} \theta_{sd}^2}$$

enough to accommodate s and c quarks.

Caveat: Estimates for "extreme walking" limit.

Query: What about top and bottom masses?

Implications of Walking: PGB Masses

Dashen's formula, revisited:

$$F_{TC}^2 M_{\pi_T}^2 \propto \frac{g_{ETC}^2}{M_{ETC}^2} \langle \left(\overline{T}T\right)^2 \rangle E_{TC}$$
$$\approx \frac{g_{ETC}^2}{M_{ETC}^2} \left(\langle \overline{T}T \rangle_{ETC} \right)^2$$
$$\simeq \frac{g_{ETC}^2}{M_{ETC}^2} \frac{M_{ETC}^2}{\Lambda_{TC}^2} \left(\langle \overline{T}T \rangle_{TC} \right)^2$$

Therefore,

$$M_{\pi_T} \simeq g_{ETC} \left(\frac{4\pi F_{TC}^2}{\Lambda_{TC}} \right)$$
$$\simeq g_{ETC} \left(\frac{750 \text{ GeV}}{N_D} \right) \left(\frac{1 \text{ TeV}}{\Lambda_{TC}} \right)$$

What about S?

Assumptions of previous calculation:

- Techni-isospin is a good symmetry.
- Technicolor is QCD-like.
 - •• Weinberg's sum rules are valid.
 - •• Spectral functions saturated by lowest resonances.

• Masses/couplings of resonances scaled from QCD.

A "realistic" walking technicolor theory may be very unlike QCD.

- Walking ⇒ different behavior of spectral functions.
- Many flavors/PGBs and non-fundamental representations makes scaling from QCD suspect.

10. Conclusions

Strong Electroweak Symmetry Breaking Eliminates Fundamental Scalars

Dynamical generation of fermion masses requires introducing ETC interactions – and creating a dynamical theory of flavor!

Challenges include

- Lack of GIM implies FCNCs
- Large chiral symmetry yields light PNGBs
- QCD-like dynamics makes S too large

Walking TC Theory ($\gamma_m \approx 1$)

- may create c quark mass w/o FCNCs
- helps boost masses of PNGBs
- can no longer predict S by scaling

Next time: the top quark.