

They could be there,...

Gunnar Nordstrom Théodore Kaluza Oscar Klein

In GR Symmetries of **Extra Dimensions** yield Gauge Fields Quantum Version? Sources?

.. which inspires holography/duality,...

Equivalence of theory on boundary of space-time to that on the interior...

(More Later)

Large Extra Dimensions \checkmark $V_{Grav}(r) \propto \begin{cases} \frac{m_1m_2}{M_{Pl}^2 r} & r \gg R \\ \frac{m_1m_2}{M^{2+n}r^{n+1}} & r \ll R \end{cases}$ \checkmark $M_{Pl}^2 \propto M^{2+n} R^n$

• $n = 2 \Rightarrow R = \mathcal{O}(1 \text{ mm}) \& R^{-1} \simeq 10^{-4} \text{ eV}$ SuperNovae require $M \ge 50$ TeV for n = 2

For M = I TeV:

• $n = 6 \Rightarrow R = \mathcal{O}(10^{-12} \,\mathrm{cm}) \& R^{-1} \simeq 10 \,\mathrm{MeV}$

Arkani-Hamed, Dimopoulos, Dvali, & Antoniadis, Lykken, Dudas, Gerghetta, ...

Collider Limits on LED

Warped Extra Dimensions

Island Universes in Warped Space-Time

Randall and Sundrum, ...

RS Experimental Limits

Can Extra-D be related to EWSB? Consider Loss of Unitarity in

Generalizations

- Applies to any 5-D manifold with Lorentz Invariance for fixed x^5 : $A^{\mu} = \sum A^{\mu}_n(x^{\nu}) f_n(x^5)$
- KK eigenvalues and wavefunctions depend on metric and boundary conditions
- KK couplings related to overlap of KK wavefunctions: $g_{nmp} \propto \int dx^5 f_n(x^5) f_m(x^5) f_p(x^5)$
- Yields Lorentz-invariant effective field theory for infinite tower of KK modes.

(b1) $-2c(x^4 \downarrow x^2)$

(c1)

(b2, 3)

(c2, 3)

Sum

 $-4cx^4$

 $-8cx^{2}$

 $\frac{-1}{2}(3-2c+c^2)x^4$ $\frac{1}{2}(3+2c-c^2)x^4$

 $+3(1-c)x^2$ $-3(1+c)x^2$

 $(-3+2c+c^2)x^4$ $(3+2c-c^2)x^4$

 $-8cx^2$

 $-8cx^2 \Rightarrow 0$

 $-8cx^2$

 $-8cx^2$

energy behavior through exchange of massive vector particles

Spin-j:
$$S_j = \mathcal{I} + 2i\mathcal{T}_j$$
, $\mathcal{T}_j = \begin{bmatrix} a_j^{\alpha \to \beta} \end{bmatrix}$ Rotation Coefficient
 $a_j^{\alpha \to \beta} = \frac{1}{32(\sqrt{2}_i)(\sqrt{2}_f)\pi} \begin{bmatrix} \frac{4k_ik_f}{s} \end{bmatrix}^{1/2} \int_{-1}^{1} d\cos\theta \mathcal{M}^{\alpha \to \beta}(s, \cos\theta) d_{\Delta\lambda_i \Delta\lambda_f}^{j}(\theta)$
Identical Particle Factors Feynman Amplitude
 $S_j^{\dagger}S_j = \mathcal{I} \Rightarrow \mathcal{T}_j = U^{\dagger} e^{i\Delta_j} \sin \Delta_j U$
Eigenvalues of \mathcal{T}_j bounded : $\max [|\operatorname{Re}(e^{i\Delta_j} \sin \Delta_j)|] < \frac{1}{2}$
These formulae apply to the scattering of pairs of particles of fixed helicity
see, for example Durand and Lopez, PRD 40, 207 (1989)

No Free Lunch

Non-renormalizability of 5-DYM implies lingering unitarity issues ... how is this manifest in KK scattering?

Consider a state composed of KK pairs with $n \leq N_0$

$$|\psi^{ab}\rangle = \frac{1}{\sqrt{N_0}} \sum_{\ell=1}^{N_0} |A_L^{a\ell} A_L^{b\ell}\rangle$$

Find 4-D s-wave, gauge-singlet amplitude of $|\psi^{aa}\rangle \rightarrow |\psi^{cc}\rangle$

$$a_{\psi}^{00} = \frac{N_0}{R} \frac{kg_5^2}{8\pi^2} \mathcal{O}(1)$$

Grows with $N_0!$

Moral: Unitarity can be delayed, but not avoided!

• unitary bound on a_{ψ}^{00} implies highest KK mode number is bounded from above:

$$\frac{N_0}{R} < \frac{\sqrt{32}\pi^2}{k} \frac{\mathcal{O}(1)}{g_5^2}$$

(consistent with 5-d intuition)

Higgsless Models

- Can we use this idea in EWSB?
- Unitarize TeV-scale W_LW_L scattering using vector bosons?
- If KK modes exist, $M_W << M_{KK}!!$
- Luckily, unitarization generalizes to a large class of 5-d manifolds and boundary conditions!

Csaki, Grojean, Murayama, Pilo, Terning

Foadi, Gopalkrishna, Schmidt hep-ph/0312324 Carena, Tait, Wagner hep-ph/0207056

Power Counting and Scales

Standard Model Recovered in limit: $g, \, g' \ll rac{g_5}{\sqrt{\pi R}}$

$$M_W \approx \frac{g}{g_5 \sqrt{\pi R}}, \quad M_Z \approx \frac{\sqrt{g^2 + g'^2}}{g_5 \sqrt{\pi R}} \quad M_{W^*} \simeq \frac{1}{R}$$

Need moderately strong g₅ in order to gain anything!

$$\Lambda_5 \simeq \frac{2\sqrt{2}\pi^2}{g_5^2} \gg \sqrt{4\pi}v$$

$$\frac{\pi^{3/2}}{\sqrt{2}} \gg \frac{g_5}{\sqrt{\pi R}} \gg g \simeq \mathcal{O}(1)$$

Just barely OK?

Recipe for a Higgsless Model:

- Choose "bulk" gauge group, location of fermions, and boundary conditions
- Choose $g(x_5)$
- Choose metric/manifold: $g_{MN}(x_5)$
- Calculate spectrum & eigenfunctions
- Calculate fermion couplings
- Compare to Standard Model: S, T, U, ...
- Can we find a viable model?
- How can we analyze many at once? Deconstruction!

More Next Lecture! AdS/CFT...

Kramers and Wannier, 1941

AdS/CFT Duality

Conjecture: Equivalence of 5D theory in AdS and 4D CFT

Strong evidence for N=4 SUSYYM string theory on AdS

Strongly-coupled CFT \Leftrightarrow Weakly-coupled 5D Theory!

AdS/CFT and Large-N

Tree-level in dual theory = "Large-N" limit of CFT

 $g^{2}_{CFT} N_{CFT} = \lambda$ fixed

Gluon:

Leading Term arises from planar diagrams :

't Hooft, NPB 72 (1974) 461

AdS/CFT Dictionary

Bulk of AdS	\leftrightarrow	CFT
Coordinate (z) along AdS	\leftrightarrow	Energy scale in CFT
Appearance of UV brane	\leftrightarrow	CFT has a cutoff
Appearance of IR brane	\leftrightarrow	conformal symmetry broken spontaneously by CFT
KK modes localized on IR brane	\leftrightarrow	composites of CFT
Modes on the UV brane	\leftrightarrow	Elementary fields coupled to CFT
Gauge fields in bulk	\leftrightarrow	CFT has a global symmetry
Bulk gauge symmetry broken on UV brane	\leftrightarrow	Global symmetry not gauged
Bulk gauge symmetry unbroken on UV brane	\leftrightarrow	Global symmetry weakly gauged
Higgs on IR brane	\leftrightarrow	CFT becoming strong produces composite Higgs
Bulk gauge symmetry broken on IR brane by BC's	\leftrightarrow	Strong dynamics that breaks CFT also breaks gauge symmetry

Csaki hep-ph/0510275

A Higgsless Theory on AdS could be "dual" to a conformally-invariant model of dynamical EWSB : like walking TC!

Simmons Lectures

Summary

- Extra dimensions could be present, and are motivated by various theoretical ideas.
- Higgsless models utilize 5-D gauge theories with BC's to realize EWSB.
- AdS/CFT interpretation of Higgsless models
 ⇔ "Walking Technicolor"
- Can we analyze theories in general and construct viable ones?

Next Time: Deconstruction

References

- Sundrum, TASI04, hep-th/0508134
- Csaki, TASI04 hep-ph/0510275
- Gerghetta, LesHouches05, hep-0601213
- Maldacena, TASI03, hep-ph/0309246