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I. INTRODUCTION

• String theory could be the theory which correctly describes quantum

gravity.

• String phenomenology goal: the SM or MSSM as low energy

effective theory.

• The future model building is the string model building.



II. M-THEORY ON S1/Z2

M-theory on S1/Z2 is a 11-dimensional supergravity theory with two

boundaries where the two E8 Yang-Mills fields live on respectively.

Compactification:

• Keep 4-dimensional N=1 supersymmetry.

• Break the observable E8 down to a smaller gauge group.



(A) Prediction: Newton’s Constant

(i) Weakly coupled heterotic string theory:
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The string scale can not be the GUT scale.

(ii) M-theory on S1/Z2
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Convention: 8πG
(d)
N = M 2−d

d = κ2
d, M4 = MPl = 2.4 × 1018 GeV,

M11 = κ−2/9.

The 11-dimensional Planck scale and the compactification scale of the

Calabi-Yau manifold can be around the GUT scale, i. e., it correctly

predicts the Newton’s constant.



(B) Compactification

A supergravity theory is described by the gauge kinetic function, Kähler

potential, and superpotential.

At leading order, the gauge kinetic function, Kähler potential, and

superpotential are related to the Witten et al’s previous results from the

weakly-coupled heterotic string compactification via field

transformation.



• Gauge kinetic function

Refαβ = fReS δαβ .

• Kähler potential

K = − ln [S + S̄] − 3 ln [T + T̄ − 2C∗
xC

x] .
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T 6/Z12 orbifold compactification:

• Three families of the SM fermions, and the observable gauge

symmetry is U(1) × U(1) × E6.

• At the next to leading order, we can calculate the Kähler potential,

superpotential, and gauge kinetic functions. Unlike the weakly

coupled heterotic string theory, the next to the leading order

corrections can be very large (O(1)).

• We can calculate the supersymmetry breaking soft terms and show

that the universality of the scalar masses will be violated, but the

violation might be small.



• Gauge kinetic functions

f o
αβ = (S+α1T1 + α2T2 + α3T3) δαβ ,
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• Superpotential

W = cgc dxyzC
xCyCz .



(C) Model Building

GUTs can be realized naturally through the elegant E8 breaking chain:

E8 ⊃ E6 ⊃ SO(10) ⊃ SU(5).

(1) SU(5) Model

• A Calabi–Yau threefold X with a SU(5) holomorphic vector bundle

V .

• Π1(X) = Z2.

• Ngen = 1
2c3(V) = 3.

• Anomaly cancellation: c2(V) + c2(V ′) + [W ] = c2(TX).

• Natural doublet-triplet splitting.



Symmetry breaking:

E8
Bundle V−→ SU(5)

Z2 Wilson line−→ SU(3)C × SU(2)L × U(1)Y .

E8 ⊃ SU(5) × SU(5)

248 = (24,1) ⊕ (1,24) ⊕ (5,10) ⊕ (5̄, 1̄0) ⊕ (10, 5̄) ⊕ (1̄0,5) .

On the covering space X̃ (X = X̃/Z2) with a SU(5) holomorphic

vector bundle Ṽ , we can calculate the numbers of fields:

n24 = H1(X̃, adṼ ) = 1 , n1 = H0(X̃,OX̃) , n10 = H1(X̃,∧2Ṽ ) ,

n10 = H1(X̃,∧2Ṽ ∗) , n5 = H1(X̃, Ṽ ) , n5 = H1(X̃, Ṽ ∗) .

Math Question: How to construct the suitable Calabi–Yau threefold X?



(2) SO(10) Model

• A Calabi–Yau threefold X with a SU(4) holomorphic vector bundle

V .

• Π1(X) = Z3 × Z3.

• Ngen = 1
2c3(V) = 3.

• Anomaly cancellation: c2(V) + c2(V ′) + [W ] = c2(TX).

• Natural doublet-triplet splitting.



Symmetry breaking:

E8
Bundle V−→ Spin(10)

Wilson line−→ SU(3)C × SU(2)L × U(1)I3R × U(1)B−L .

E8 ⊃ SU(4) × SO(10)

248 = (15,1) ⊕ (1,45) ⊕ (4,16) ⊕ (4̄, 1̄6) ⊕ (6,10) .

Math Question: How to construct the suitable Calabi–Yau threefold X?



UPENN Math-Physics group have developed the techniques to

construct the Calabi-Yau threefolds with the SU(4) and SU(5) vector

bundles and with non-trivial fundamental groups.

Realistic model building and systematically search are needed!



III. TYPE II ORIENTIFOLDS

Due to the advent of D-branes, we can construct the open string models

that are non-perturbative from the dual heterotic string description.

There are two kinds of theories with chiral fermions from the D-brane
constructions:

• D-branes located at orbifold singularities where the chiral fermions

appear on the worldvolume of D-branes.

• Intersecting D-branes on Type II orientifolds where the open string

spectrum contains chiral fermions localized at the D-brane

intersections.



A lot of non-supersymmetric three-family Standard-like models and

grand unified models, were constructed on the Type IIA orientifolds

with D6-brane intersections during last several years.

Generic Problems:

• There are uncancelled Neveu-Schwarz-Neveu-Schwarz (NSNS)

tadpoles.

• There may exist the gauge hierarchy problem.



The supersymmetric models with the quasi-realistic features of the

supersymmetric Standard-like models have been constructed in Type

IIA theory on T 6/Z2 × Z2 orientifold with D6-brane intersections.

And the supersymmetric models based on Z4, Z4 ×Z2, ZN , and Z3 ×Z3

orientifolds with intersecting D6-branes were also constructed.



Briefly Review the Rules for Model Building

• T 6 = T 2
1 × T 2

2 × T 2
3 ; zi, i = 1, 2, 3

• T 6/(Z2 × Z2) orbifold is obtained by T 6 moduloing the equivalent

classes

θ : (z1, z2, z3) ∼ (−z1,−z2, z3) ,

ω : (z1, z2, z3) ∼ (z1,−z2,−z3) .

• The orientifold action ΩR

R : (z1, z2, z3) → (z1, z2, z3) .

Four kinds of orientifold 6-planes (O6-planes) for the actions of ΩR,

ΩRθ, ΩRω, and ΩRθω.

• Two kinds of complex structures for a torus – rectangular and tilted.



ΩR ΩRθ

ΩRω ΩRθω

a) b)

c) d)



ΩR ΩRθ

ΩRω ΩRθω

a) b)

c) d)



For each stack of D6-branes and its ΩR image, the orientifold group

actions on the Chan-Paton indices are

γθ,a = diag (i1Na/2,−i1Na/2 ;−i1Na/2, i1Na/2) ,

γω,a = diag





 0 1Na/2

−1Na/2 0


 ;


 0 1Na/2

−1Na/2 0





 ,

γΩR,a =




0 0 1Na/2 0

0 0 0 1Na/2

1Na/2 0 0 0

0 1Na/2 0 0




.

γθ,a, γω,a, and γΩR,a are traceless.



Symmetry breaking chains:

U(2N) → (due to γΩR) U(N)

→ (due to γθ) U(N/2) × U(N/2)

→ (due to γω ) U(N/2) ,

U(2N) → (due to γθ) U(N) × U(N)

→ (due to γω ) U(N)

→ (due to γΩR) USp(N) .



We denote the homology class wrapped by the a D6-brane stack as [Πa],

denote the homology class wrapped by its ΩR image as [Πa′].

The intersection numbers are

Iab = [Πa] · [Πb] , Iab′ = [Πa] · [Πb′] ,

Iaa′ = [Πa] · [Πa′] , IaO6 = [Πa] · [ΠO6] .



Table 1: General spectrum on intersecting D6-branes at generic angles which is valid

for both rectangular and tilted tori.

Sector Representation

aa U(Na/2) vector multiplet

3 adjoint chiral multiplets

ab + ba Iab ( a, b) fermions

ab′ + b′a Iab′ ( a, b) fermions

aa′ + a′a 1
2(Iaa′ − 1

2Ia,O6) fermions

1
2(Iaa′ +

1
2Ia,O6) fermions



RR Tadpole Cancellation

Orientifolds by ΩR action do not generate the twisted crosscaps. And

the twisted disk tadpoles vanish because of the traceless Chan-Paton

matrices. Cancellation of untwisted RR tadpoles simply requires that

the total RR charges of D6-branes and O6-planes be zero

4∑

i=1

N (i)[Π
(i)
O6] +

∑

a

Na[Πa] +
∑

a

Na [Πa′] − 4[ΠO6] = 0 .

The tadpole cancellation conditions directly lead to the SU(Na)
3 cubic

non-abelian anomaly cancellation. And the cancellation of U(1) mixed
gauge and gravitational anomaly or [SU(Na)]

2U(1) gauge anomaly can
be achieved by Green-Schwarz mechanism mediated by untwisted RR
fields.



4-Dimensional N = 1 Supersymmetric D6-Brane Configuration

The rotation angle of any D6-brane with respect to the O6-plane is an

element of SU(3)

θ1 + θ2 + θ3 = 0 mod 2π .

All the possible N = 1 Supersymmetric D6-brane configurations are

(1) All the wrapping numbers are non-zero.

(2) One wrapping number is zero.

(3) Three wrapping numbers are zero.



Searching Conditions and Symmetry Breakings

• Three stacks of D6-branes, a, b, and c with number of D6-branes 8,

4, and 4. The gauge symmetries are U(4)C , U(2)L and U(2)R.

• The anomalies from three U(1)s are cancelled by the

Green-Schwarz mechanism, and the gauge fields of these U(1)s

obtain masses via the linear B ∧ F couplings.

• The unbroken gauge symmetry is SU(4)C × SU(2)L × SU(2)R.



We require that the intersection numbers satisfy

Iab + Iab′ = 3 ,

Iac = − 3 , Iac′ = 0 .

Iac′ = 0 implies that a stack of D6-branes is parallel to the orientifold

(ΩR) image c′ of the c stack of D6-branes along at least one torus, for

example, the third torus. If the a and c′ stack of D6-branes are on the top

of each other on the third torus, we obtain the I
(1,2)
ac′ pairs of the massless

vector-like chiral multiplets with quantum numbers (4̄,1,2) and

(4,1,2).

To stabilize the modulus and possibly break the SUSY by gaugino

condensation, we require that there be at least two USp groups with

negative β functions in the model building.



Symmetry Breaking

• SU(4)C and SU(2)R can be broken down to SU(3)C × U(1)B−L and

U(1)I3R
by brane splittings. The gauge symmetry is

SU(3)C × SU(2)L × U(1)B−L × U(1)I3R

• I
(1,2)
ac′ pairs of massless vector-like chiral multiplets with quantum

numbers (1,1,−1,1/2) and (1,1,1,−1/2) from N = 2 subsector.

• SU(3)C × SU(2)L × U(1)B−L × U(1)I3R
can be broken down to the

SM gauge symmetry.



Systematically Pati-Salam Model Searching

We only consider the models which are not equivalent under the

T-duality and its variations.

Strategy: we analytically exclude most of the parameter space for the

D6-brane wrapping numbers which can not give the models that we

want to construct, and then scan the rest parameter space numerically. If

no torus is tilted, we can not have odd families of the SM fermions. So,

there are three possibilities: one tilted torus, two tilted tori, and three

tilted tori.



Numerical results indicate that no model is available for the cases with

two and three tilted tori. For the case with one-tilted torus, we find 11

inequivalent models

• Nine models have no gauge coupling unification for SU(2)L and

SU(2)R at string scale.

• Two models have the SU(2)L and SU(2)R gauge coupling

unification at string scale, and their Higgs fields arise from an N = 2

subsector.

• In eight of our models, the number of the pairs of Higgs doublets is

less than 9. In particular, there are only two pairs of Higgs doublets

in one model.

• Generic Problem: How to explain the fermion masses and mixings,

especially the neutrino masses and mixings.



Table 2: D6-brane configurations and intersection numbers for the three-family left-

right symmetric model I-Z-5

model I-Z-5 U(4) × U(2)L × U(2)R × USp(2) × USp(2) × USp(2)

stack N (n1, l1) × (n2, l2) × (n3, l3) n n b b′ c c′ 1 2 3

a 8 (0,−1) × (1, 1) × (1, 1) 0 0 3 0 -3 0 1 -1 0

b 4 (3, 1) × (1, 0) × (1,−1) -2 2 - - 0 -3 0 1 0

c 4 (3,−2) × (0, 1) × (1,−1) 1 -1 - - - - -2 0 3

1 2 (1, 0) × (1, 0) × (2, 0) XA = XB = 3

2
XC = 3XD

2 2 (1, 0) × (0,−1) × (0, 2) β
g
1

= −2, β
g
2

= −3, β
g
3

= −3

3 2 (0,−1) × (1, 0) × (2, 0)



Table 3: The chiral spectrum in the open string sector of model I-Z-5

I-Z-5 SU(4) × SU(2)L × SU(2)R × USp(2)3 Q4 Q2L Q2R Qem Field

ab 3 × (4, 2, 1, 1, 1, 1, 1) 1 -1 0 − 1

3
, 2

3
, −1, 0 QL, L

ac −3 × (4, 1, 2, 1, 1, 1, 1) -1 0 1 1

3
, −2

3
, 1, 0 QR, R

bc′ −3 × (1, 2, 2, 1, 1, 1, 1) 0 -1 -1 1, 0, 0, −1 H

a1 1 × (4, 1, 1, 2, 1, 1, 1) 1 0 0 1

6
, −1

2

a2 −1 × (4, 1, 1, 1, 2, 1, 1) -1 0 0 − 1

6
, 1

2

b2 1 × (1, 2, 1, 1, 2, 1, 1) 0 1 0 ± 1

2

c1 −2 × (1, 1, 2, 2, 1, 1, 1) 0 0 -1 ± 1

2

c3 3 × (1, 1, 2, 1, 1, 2, 1) 0 0 1 ± 1

2

b −2 × (1, 3, 1, 1, 1, 1, 1) 0 -2 0 0,±1

b 2 × (1, 1, 1, 1, 1, 1, 1) 0 2 0 0

c 1 × (1, 1, 3, 1, 1, 1, 1) 0 0 2 0,±1

c −1 × (1, 1, 1, 1, 1, 1, 1) 0 0 -2 0



Briefly Comment on the Other Models

Model 1. Standard-like Model with gauge symmetry

[U(4)C×USp(8)L×USp(8)R]observable× [U(4)×USp(8)×USp(8)]hidden.

• U(4)C × USp(8)L × USp(8)R and U(4) × USp(8) × USp(8) are

symmetric.

• The SU(4)C × USp(8)L × USp(8)R gauge symmetry can be broken

down to SU(3)C × U(1)B−L × U(2)L × U(2)R via brane splitting.

• There is no exotic particle.

• The gauge couplings of U(2)L and U(2)R can be unified at string

scale.

• The beta functions for two USp(8) groups in the hidden sector are

negative.

• Problem: Four families and 16 pairs of Higgs doublets.



Model 2. Standard-like Model with gauge symmetry

[U(4)C×USp(6)L×USp(6)R]observable× [U(5)×USp(8)×USp(8)]hidden.

• The SU(4)C × USp(6)L × USp(6)R gauge symmetry can be broken

down to SU(3)C × U(1)B−L × SU(2)L × SU(2)R via the brane

splittings and the Higgs mechanism which breaks the SUSY.

• There is no exotic particle.

• Three families of the SM fermions.

• The gauge couplings of SU(2)L and SU(2)R can be unified at string

scale.

• The beta functions for two USp(8) groups in the hidden sector are

negative.

• 9 pairs of Higgs doublets.



Model 3. Standard-like Model with gauge symmetry

[U(4)C×USp(2)L×USp(2)R]observable×[U(1)×USp(6)×USp(42)]hidden.

• The gauge symmetry is SU(3)C × SU(2)L × SU(2)R × U(1)B−L.

• Three families of the SM fermions.

• One pair of Higgs doublets.

• A lot of exotic particles.

• Only one family of the SM fermions can have masses.



D-brane models in Type II B theory with flux compactification.

• Due to the Dirac quantization, the NSNS and RR fluxes contribute

large positive D3-brane charges, Nflux = 64 × nf .

• It is very diffcult to cancel D3-brane RR tadpoles.

• Magnetized D9-branes, which carry large negative D3-brane

charges, are introduced in the hidden sector.

• The supersymetry is broken explicitly due to nf = 1.

• The soft supersymmetry breaking masses are about Msoft ∼ M2
s

MPl
. To

stabilize the electroweak scale, we either have an intermediate string

scale or an inhomogeneous warp factor in the internal space.



Questions:

• Can we construct the SUSY flux models with nf = 3?

• The NSNS and RR fluxes stabilize the dilaton and toroidal complex

structure moduli. Can we stabilize the Kähler moduli?

• All the previous flux models are T-dual to the intersecting D6-brane

models where the D3-brane RR tadpoles are cancelled similarly.

Can we construct the new flux models?



New Idea:

Magnetized D9-branes, which carry large negative D3-brane charges,

are introduced in the observable sector.

The constructions of SM-like flux vacua are much less constrained and

a large class of new models can be constructed.



Supersymmetric three-family and four-family SM-like models

• String scale can be close to the Planck scale.

• The toroidal Kähler moduli can be stabilized by supersymmetry

conditions.

• No Yukawa couplings.



Non-supersymmetric three-family and four-family models

• Yukawa couplings are allowed, but, at most two families of the SM

fermions can obtain the suitable masses and mixings.

• The toroidal Kähler moduli can be stabilized by supersymmetry

conditions or via SUSY+KKLT a.

• The rest SM fermion masses can not be generated radiatively

because the supersymmetry breaking trilinear soft terms are

universal and the supersymmetry breaking soft masses for the

left/right-chiral squarks and sleptons are universal.

• Intermediate string scale or inhomogeneous warp factor in the

internal space.

aKachru, Kallosh, Linde and Trivedi.



IV. COMMENTS

(A) In the free-fermionic string model building, only the SM-like model

(SU(3)C × SU(2)L × U(1)Y × U(1)n), the Pati-Salam model and the

flipped SU(5) model can be realized semi-realistically because the

dimensions of the Higgs fields’ representations in these models are

smaller than those of the adjoint representations, and then, these models

can be constructed at the Kac-Moody level 1.

(B) For the model building in the orbifold compactification of the

weakly coupled heterotic string theory, the doublet-triplet can be

splitted natually while there generically exist some additional U(1)

gauge symmetry.



(C) String scale gauge coupling unification and its implications.

(i) XE + XE with masses about 668 GeV, and XG + 2(XQ + XQ)

with masses around 1.1 × 1013 GeV.

(ii) XL + XL + XU + XU with masses about 668 GeV, and

XG + 2(XQ + XQ) with masses around 1.1 × 1013 GeV.



Figure 1: One-loop gauge coupling unification for scenario (i).



Figure 2: One-loop gauge coupling unification for scenario (ii).



V. SUMMARY

M-theory on S1/Z2:

• The 11-dimensional Planck scale and the compactification scale of

the Calabi-Yau manifold can be around the GUT scale.

• Unlike the weakly coupled heterotic string theory, the next to the

leading order corrections to the Kähler potential, superpotential, and

gauge kinetic functions can be very large.

• GUTs can be realized naturally through the elegant E8 breaking

chain while the construction of the suitable Calabi–Yau threefold is

very complicated.



Type II Orientifolds.

(A) PS Model:

• Gauge symmetry breaking.

• The moduli can be stabilized, and the SUSY maybe broken.

• Less pairs of the Higgs doublets. In particular, there are only two

pairs of Higgs bidoublets in one model.

• The SU(2)L and SU(2)R gauge coupling unification in two models.

• Yukawa couplings are allowed in some models.



(B) Other Models:

I briefly discuss the other models:

• [U(4)C × USp(8)L × USp(8)R]observable × [U(4) × USp(8) ×
USp(8)]hidden model.

• [U(4)C × USp(6)L × USp(6)R]observable × [U(5) × USp(8) ×
USp(8)]hidden model.

• [U(4)C × USp(2)L × USp(2)R]observable × [U(1) × USp(6) ×
USp(42)]hidden model.

• Supersymmetric and non-supersymmetric flux models

(C) Generic Problem: How to explain the fermion masses and mixings,

especially the neutrino masses and mixings.


