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The TESLA Mission

Develop SRF Technology for the future Linear Collider
Basic goals on SRF Technology

• Increase gradient by a factor of 5: from 5 to 25 MV/m (Physical magnetic field 
limit for Nb is ~ 180 mT)

• Push cavity performances close to the physical limit, understanding practical limits 
• Set all the required quality control for reproducibility and industrial production 

• Make possible pulsed operation: Lorentz force detuning
• Combine SRF and mechanical engineering in cavity design
• Develop efficient Modulators and Klystrons
• Develop slow and fast tuners
• Develop appropriate couplers

• Reduce cost per MV by a factor 20: to make the LC feasible
• New cryomodule concept for cryolosses, cost and filling factor (for real estate gradient)
• All subsystems designed for large scale production
• Reliability and quality control as a general guide line 

Basic goals on Machine Design
• Design a Linear Collider based on the Cold Linac peculiarities
• Maximize Luminosity and optimize cost for a given plug power
• Design and quote major subsystems: DR, Positron Source, BDS, etc.
• Put all together in a consistent TDR, including cost estimation
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The TESLA TDR – 500 GeV    800 GeV
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About the TESLA TDR Site

TESLA in the Hamburg area Interaction Points and X-FEL at Ellerhoop

Ellerhoop more quite than HERA

Ground Motion

HERA

Ellerhoop
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TESLA 500 GeV Parameters
From the TESLA TDR
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TDR Luminosity vs. cm Energy
All cavities at 35 MV/m
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Site power: 140 MW
500 GeV baseline

Sub-Systems 
43MW

Main Linacs
97MW

Cryogenics:

21MW

RF: 
76MW

65%

78%

60%

Beam 
22.6MW

Injectors

Damping rings

Auxiliaries

BDS
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TESLA Collaboration Milestones

February 1992 – 1° TESLA Collaboration 
Board Meeting @ DESY

March 1993 - “A Proposal to Construct 
and Test Prototype Superconducting RF 
Structures for Linear Colliders”

1995 – 25 MV/m in multi-cell cavity

May 1996 – First beam at TTF

March 2001 – First SASE-FEL Saturation 
at TTF

March 2001 – TESLA Technical Design 
Report

February 2003 –TESLA X-FEL proposed 
as an European Facility,
50% funding from Germany

2004 – TTF II Commissioning start

April 2004 - 35 MV/m with beam

Infrastructure 
@ DESY in Hall 3

TESLA X-Ray FEL

TESLA Collider

TTF II

TTF I
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Electro-Polishing & Baking for 35 MV/m
The AC 70 example

Electro-Polishing (EP)
instead of

Buffered Chemical Polishing (BCP)
• less local field enhancement
• High Pressure Rinsing more effective 
• Field Emission onset at higher field

In-Situ Baking

@ 120-140 ° C  for 24-48 hours

• to re-distribute oxygen at the surface

• cures Q drop at high field

EP at the DESY plant
• Low Field Emission 
800°C annealing

120°C, 24 h, Baking
• high field Q drop cured
High Pressure Water Rinsing

Vertical and System Test in 1/8th Cryomodule
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A dedicated new infrastructure at DESY

laser driven 
electron gun

photon beam 
diagnostics

undulator
bunch 

compressor

superconducting accelerator modules pre-accelerator

e- beam 
diagnostics

e- beam 
diagnostics

240 MeV 120 MeV 16 MeV 4 MeV

TTF 1
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Cavity Vertical Test

The naked cavity is immersed in a 
super-fluid He bath.
High power coupler, He vessel 
and tuner are not installed
RF test are performed in CW 
with a moderate power(< 300W)
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Horizontal tests in “Chechia”
Chechia is a horizontal cryostat to test fully equipped cavities

Cavity is fully assembled

It includes all the 
ancillaries:
– Power Coupler
– Helium vessel
– Tuner (…and piezo)

RF Power is fed by a 
Klystron through the 
main coupler

Pulsed RF operation using 
the same pulse shape 
foreseen for TESLA
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DESY EP Infrastructure fully operational
• outstanding results recently obtained 
• 1400°C treatment not required

EP at DESY fully commissioned
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The inter-cavity connection is done
in class 10 cleanrooms

The assembly of a string of 8 cavities
• is a standard procedure

• is done by technicians from the TESLA   
Collaboration

• is well documented using the cavity database as 
well as an Engineering Data Management System

• was the basis for two industrial studies.

• ready to transfer to industry.

String Assembly
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Ancillaries: Power Coupler

bias voltage, suppressing multipactingisolated inner conductor
6 W70 K heat load

sufficient for safe operation and monitoringdiagnostic

0.5 W4 K heat load
0.06 W2 K heat load

safe operation
clean cavity assembly for high Eacc

two windows, TiN coated

pulsed: 500 µsec rise time,
800 µsec flat top with beam

operation

1.3 GHzfrequency

• TTF III Coupler has a robust and 
reliable design. 

• Extensively power tested with 
significant margin

• New Coupler Test Stand at LAL, 
Orsay

Pending Problems
• Long processing time: ~ 100 h
• High cost (> cavity/2)
• Critical assembly procedure
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Coupler Development at LAL-Orsay

TTF III

Clean room assemblyHigh Power Coupler Test Stand 

Alternative Designs
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Ancillaries: Cavity Tuners

The Saclay Tuner in TTF The INFN Blade-Tuner

Successfully operated with superstructures
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Lorentz Force Detuning

High magnetic field and high currents on the cavity surface produce 
a Lorentz force

At each RF millisecond power pulse the Lorentz force produces a 
cavity deformation at the micrometer level

Due to the high Q and the consequent small frequency band, ~ 400 
Hz over 1.3 GHz, the cavity moves from the original tuning
At 35 MV/m the Lorentz force detuning is ~ 1000 Hz
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Piezo-assisted Tuner on AC73

To compensate for Lorentz force detuning during the 1 ms RF pulse
Feed-Forward

To counteract mechanical noise, “microphonics”         
Feed-Back
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Successful Compensation @ 35 MV/m

Cavity detuning induced by Lorentz force during the tests 
performed in Chechia at TESLA-800 specs

Piezo-compensation on: just feed-forward resonant compensation
Piezo-compensation off
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New design with piezos
• CARE/JRA-SRF

• SOLEIL upgrades

• larger rigidity

• Fabrication of 2 tuners since beginning of 2005
• 12 NOLIAC piezos, 2 PHYTRON stepping motors ordered
• Coll. with IPN Orsay: CEA send NOLIAC piezos to IPN for 

characterization, and IPN send P.I. piezos for tests on tuners
• Coll. with INFN-Milano for measurement with stress sensors @ 2K

New Saclay Tuner for XFEL
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New INFN Blade-Tuner for ILC

• Integration of piezos for 
Lorentz forces and 
microphonics completed.

• Final Drawing delivered 
for fabrication.

• Two prototype, including 
the modified helium 
tank, are expected by 
October 2005

• Cold tests results by fall 
2005 (DESY, BESSY, 
Cornell?)
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TTF as operated for SASE FEL

TTF Goals:
• Demonstrate that Superconducting RF 

technology is suitable for LC
• Operate TTF at Eacc > 15 MV/m
• Develop cavity technology for Eacc > 25 MV/m

TTF = TESLA Test Facility

TTF and Cryomodules



2005 ILC School - Lecture 4
Beijing, 19 July 2005Carlo Pagani 24

TESLA Cryomodule Design Rationales

High Performance Cryomodule was central for the TESLA Mission
– More then one order of magnitude was to be gained in term of capital 

and operational cost

High filling factor: to maximize real estate gradient
– Long sub-units with many cavities (and quad): cryomodules
– Sub-units connected in longer strings
– Cooling and return pipes integrated into a unique cryomodule

Low cost per meter: to be compatible with a long TeV Collider
– Cryomodule used also for feeding and return pipes
– Minimize the number of cold to warm connections for static losses
– Minimize the use of special components and materials 
– Modular design using the simplest possible solution

Easy to be alligned and stable: to fullfil beam requirements
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Performing Cryomodules

Required plug power for static losses < 5 kW/(12 m module)

Reliable Alignment Strategy

Sliding Fixtures @ 2 K

“Finger Welded” Shields

Three cryomodule generations to:
improve simplicity and performances 
minimize costs
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Three Generation Cryomodules in TTF

Cry 1 Cry 2
Cry 3

Module 1 Module 2 & 3 Module 4 & 5

RF gun

400 MeV 120 MeV800 MeV

ACC 1ACC 2ACC 3ACC 4ACC 5

4 MeV
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Cryoodules installed in TTF II

RF gun

400 MeV 120 MeV800 MeV

ACC 1ACC 2ACC 3ACC 4ACC 5

4 MeV

ACC 4 & ACC 5 ACC 2 & ACC 3
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Cold time
[months]

Installation 
date

Type

15

18
18
18

29
8

35

44

12

5

50

Feb 04M2*

Apr 03
M3*
M4
M5

Jun 02M1*
MSS

Jun 99M3

Sep 98M2

Jan 98M1 rep.

Mar 97M1

Oct 96CryoCap

TTF Cryomodule Operation Experience

1

2
2

2

2
2

3
3
2

2

10 July 2005
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LCH and TESLA Module Comparison

From an LHC Status Report  by  Lyndon R. Evans

ACC 4 & ACC 5 in TTF ACC 2 & ACC 3 in TTF

∅ = 38”

∅ = 38”
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New fabrication sequence 
New strategy for tolerances

2nd Generation TESLA Cryomodule 

“Finger Welded” Shields
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• Reduce the Cross Section and use a standard “pipeline” tube
- Redistribute the internal components
- Reduce the distances to the minimum

•Improve the connection of the active elements to the HeGRP
-Active component longitudinal position determined by an invar rod
-Sliding fixtures to allow “Semi Rigid Coupler” and Superstructures

Reduce alignment sensitivity to the forces on the HeGRP edges
- Move the external posts closer to the edges

• Further simplify the assembling procedure
- Simplify coupler cones and braids
- Reduce by a factor two the shield components

• System thought for mass production cost cutting
- Tolerances reduced to the required ones
- Simpler components and standard tubes wherever possible 

3rd Generation TESLA Cryomodule
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Cry3 Cross Section

Helium
tank

Coupler
port

Thermal
shields

Sliding
support

Helium
GRP

Cryogenic
support

Two phase
flow

Pressurized
helium
feeding

Shield gas 
feedingWPM

Invar rod
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Support Posts
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• Four C-Shaped SS elements clamp a 
titanium pad welded to the helium tank.

• Rolling needles reduce drastically the 
longitudinal friction

• Cavities result independent from the 
elongation and contraction of the HeGRP. 

• Lateral and vertical position are defined 
by reference screws

• Longitudinal position by an Invar Rod

A Moke-up has been built to 
measure Friction force.

Results presented at CEC-99.

Friction force: 0.1 kgf

Sliding Fixtures to HeGRP



2005 ILC School - Lecture 4
Beijing, 19 July 2005Carlo Pagani 35

• Cooldown simulation of the 4.2 K and 70 K aluminum 
thermal shields. 

• We used a simultaneous 12 hour linear cooldown. 
• The maximal thermal gradient on the shields (upper 

left graph) is below 60 K, a safe value. 
• The temperature fields show that the gradient is 

concentrated in the welding  region, where the fingers 
unload the structure

Finger-Welded Shield Behavior

Temperature fields during cooldown

Maximum shield temperature

Maximum temperature gradient
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Applying the computed temperature field, deformations and stress 
distribution can be easily computed.

Maximum stresses are within acceptable limits

Maximum deformations due to asymmetric cooling is below 10 mm.

Thermo-mechanical analysis of Shields

Maximum shield displacementMaximum stresses during cool-down
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WPMs to qualify alignment strategy
WPM = Wire Position Monitor

On line monitoring of cold mass movements during cool-down, warm-up and operation

2 WPM lines with 2 x 18 sensors
4 sensors per active element
8 mm bore radius

1 WPM lines
1 sensors per active element
25 mm bore radius

1 WPM line
7 sensors/module
25 mm bore radius

Cry 1 Cry 2
Cry 3

Module 1 Module 2 & 3 Module 4 & 5
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Safe Cooldown of ACC4 and ACC5

X

Y
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ACC4 & ACC5 Met Specs

Still some work at the module interconnection
Cavity axis to be properly defined
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WPM as Vibration Sensors

A WPM is a sort of microstrip four channel 
directional coupler. A 140 MHz RF signal is 
applied on a stretched wire placed (nominally) in 
the center of the monitor bore.
A Wire Position Monitor (WPM) system has been 
developed for on-line monitoring of the cold mass 
during cooldown and operation. 
The low frequency vibrations of the cold mass, 
amplitude modulate the RF signals picked up by 
the microstrips.
The microphonics (and the sub-microphonics) can 
be recovered de-modulating the microstrip RF 
signal.
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We have preferred to not filter 
completely the wire oscillation 
lines to not suppress useful 
information.

Looking to WPM 14, a significant 
amount of noise is present 
between 10 Hz and 30 Hz, 30 
Hz and 40 Hz, due to the 
proximity of vacuum pumps and 
similar devices, and under 10 
Hz, possibly due to the 
cryogenic system.

On the contrary, the spectra of 
the WPM 11 signals, which is at 
the central post position, shows 
only the harmonics (filtered) of 
the wire oscillations.

Preliminary Vibration Spectra

WPMs 4 and 11 are close to the central post: cold mass fix point.
WPMs 7 and 14 are at the end of the corresponding cryomodules. 
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The module assembly is a well defined and 
standard procedure.

• experience of 10 modules exists

• the latest generation (type III) will be 
used for series production (XFEL 
requires 120 modules)

• several cryogenic cycles as well as long
time operation were studied

• the assembly problems occurred are 
well understood and cured 

Module Assembly
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laser driven 
electron gun

photon beam 
diagnostics

undulator
bunch 

compressor

superconducting accelerator 
modules

pre-
accelerator

e- beam 
diagnostics

e- beam 
diagnostics

240 MeV 120 MeV 16 MeV 4 MeV

The TTF I Linac – 6 Year exp.
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TTF II Commissioned

RF gun

400 MeV 120 MeV800 MeV

ACC 1ACC 2ACC 3ACC 4ACC 5

4 MeV

TESLA like tunnel for 
ACC 6 & ACC 7

Second Bunch
Compressor

ACC 4 & ACC 5 ACC 2 & ACC 3

VUV FEL User Facility
• Linac Commissioning under way

• SASE FEL Commisssioning by 
September this year
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RF results in module # 5
BCP Cavities

6 cavities exceed 30 MV/m (single cavity test)
1 cavity shows field emission at high field
1 cavity is quenching at 25 MV/m 
5 Hz Test to demonstrate a 25 MV/m module
with equal power feeding
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EP Cavity Test inside a Module
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1E+10

1E+11

0 10 20 30 40
Eacc [MV/m]

Q0

AC72 ep
AC73 ep
AC76 ep
AC78 ep

1011

109

1010

3rd Production  -  electro-polished CavitiesVertical CW tests of EP cavities
from 3rd production

1,0E+09

1,0E+10

1,0E+11

0 5 10 15 20 25 30 35 40
Eacc[MV/m]

Q0

Low power test
High power pulsed test 1Hz
High power pulsed test 5Hz

Cavity AC72: Horizontal Tests
1011

10 9

1010

20 January 2004

Cavity AC72 
in position 5
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April 1st 2004

Very fast conditioning 
of cavity and coupler

Full pulse length (800 
µs flat top) and 5 Hz 
repetition rate easily 
achieved

Quenches easily 
detected and recovered

With just feedforward 
for Lorentz force 
detuning compensation 
AC 72 was stably 
operated for several 
hours 

Feedback successfully 
tested
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Summary of AC72 Test in ACC1

One of the Electropolished cavities (AC72) 
was installed into the module ACC 1 for 
the VUV-FEL

Cooldown of the LINAC finished on March 
31st

Cavity was individually tested in the 
accelerator with high power RF

Result:
35 MV/m in the accelerator!

Calibration has been confirmed with beam 
and spectrometer

No field emission detected

Preliminary good results with LLRF and 
Piezo-tuner

No degradation, neither the cavity nor the 
coupler, as is expected for SRF cavities.
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Mechanical tuner 
(frequency adj.)
and piezo-electric tuner
(Lorentz force compensation)

D
A
C

D
A
C

ADC

ADC

Low
Level
RF 

System

vector sum

vector 
demodulator

pickup signal

MBK Klystron
vector 

modulator

cavity #1 cavity #12

coaxial coupler

circulator

stub tuner (phase & Qext)

accelerator module 1 of 3

1 klystron for 3 accelerating modules, 12 nine-cell cavities each

THE TESLA RF Unit
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TESLA Multi Beam Klystrons

The 3 major Klystron Industries are endorsed in the ILC klys development
Design goals reached – MTBF ~ 100,000 hours expected (40,000 quoted in the TDR)

Representatives of: Thales, CPI and Toshiba participated with posters to the ITRP visit to DESY 
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FNAL Modulator at TTF

10 Modulators have been built, 3 by 
FNAL and 7 by industry
7 modulators are in operation
10 years operation experience

Modulators are not a concern

Work towards a more cost efficient 
and effective design started
Hazardous components minimized
Most components are standard
Industry is ready to built turn key 
modulators fulfilling the specs

HVPS and Pulse Forming Unit
Pulse Transformer
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RF Waveguide Components

3 Stub Tuner (IHEP, Bejing, China)

Hybrid Coupler (RFT, Spinner)

E and H Bends (Spinner)
Circulator (Ferrite)

RF Load (Ferrite)

RF Load (Ferrite)

Peak Power = 5 MW

Peak Power = 1 MW

Peak Power = 0.4 MW

Peak Power = 2 MW

All standard components – Technology well established – Produced by Industry
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RF Distribution of Module # 4
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Figure 3: Influence of radiation pressure on the resonance curve of a sc cavity. a) Static detuning during cw oper-
ation and b) dynamical detuning during nominal TESLA pulse.
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Figure 2: Fluctuations of the cavity resonance frequency. a) Slow drifts over a period of one hour and b) prob-
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Operation with Final State Machine
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Adaptive Feed Forward can handle nonlinear systems through
linarisation around the operating point.
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The calculation of a new feed forward table needs only a
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from TTF Console in 
Milano

LLRF performance in TTF
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before adjustment after adjustment

RF vectors during 
800 µs flat top

LLRF: Operation Example
Phase Adjustment Using Beam Transients
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Cavity quench detection algorithms and exeption
handling procedures analyze the probe signals...

1st quench: Cavity 2
Eacc=19 MV/m

2nd quench: Cavity 6
Eacc=21 MV/m

3rd quench: Cavity 1
Eacc=24 MV/m

Stable Module #1* operation with slowly but steadily increased gradient

LLRF: Operation Example
Operation of a Module (# 1*) above its Quench limit 
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Global SCRF Test Facilities

TESLA Test Facility (TTF) @ DESY
currently unique in the world
VUV-FEL user facility
test-bed for both XFEL & ILC

US proposed SMTF @ FNAL
Cornell, JLab, ANL, FNAL, LBNL, LANL, MIT,
MSU, SNS, UPenn, NIU, BNL, SLAC
currently requesting funding
TF for ILC, Proton Driver, RIA (and more)

STF @ KEK
aggressive schedule to produce high-gradient
(45MV/m) cavities / cryomodules

Others?
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STF @ KEK
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SMTF @ FNAL as presented to DOE

“The SMTF proposal is to 
develop U.S. Capabilities in 
high gradient and high
Q superconducting 
accelerating structures 

in support of

International Linear Collider
Proton Driver

RIA
4th Generation Light Sources

Electron coolers
lepton-heavy ion collider
and other accelerator

projects of interest to U.S 
and the world physics 

community.”
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Main Linac: The Cost Driver

Main Linacs are the biggest single cost item
10 years of R&D by the TESLA collaboration has 
produced a mature technology
– But we’re not quite there yet…

Primary focus of future R&D should be
– successful tech. transfer to industry
– cost reduction through industrialisation
– need extensive effort to achieve high reliability !!!

XFEL project is already doing much of this within 
Europe
Within ‘brave new ILC world’, there is still room for 
discussion
– One important question: 

“What should the design gradient be?”
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About the Gradient for ILC

35MV/m is close to optimum
30 MV/m would give safety margin

Relative Cost

Gradient MV/m

2

0

$ lin
cryo

a Gb
G Q

≈ +

C. Adolphsen (SLAC)

Japanese are pushing 
for 40-45MV/m

“ICHIRO” cavity

Larger magnetic volume
Lower peak magnetic field
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A Few Remarks

Production of TESLA Cavities with accelerating field exceeding  
35 MV/m has been proven.

All the previous limiting factors, including Q-drop and dark 
current have been understood and can be cured,

TESLA Technology is widely distributed and its basics are on 
hands

Industry has already most of the required know-how and 
technology transfer started.

The costing process for the TESLA TDR has been based on 
industrial studies for mass production. All the fabrication steps 
have been  analyzed and reviewed by industry.

But a lot of work is still to be done for reproducibility, reliability 
and cost compatible with ILC 


