Top Spin Effects at Colliders

Zongguo Si Department of Physics, Shandong University Jinan Shandong 250100, China

Tsinghua University, Beijing, 18. Dec. 2005

- 1. Physics Issues
- 2. Theoretical Research at SDU

Physics Issues:

Top Quark is the heavist fundamental particle!!

Special Characters of Top-Quarks

- Top quark as heavy as gold atom ↔ yet pointlike particle!?
- Strong interactions of top quarks can be reliably predicted. (asset!)
- Extremely instable: Lifetime $\sim 4 \times 10^{-25}$ s \ll characteristic Hadronization time $\sim 28 \times 10^{-25}$ s
 - \Rightarrow Top-Quark decays before hadronization!

$$\left(\begin{array}{c} W^{-} \\ \overline{b} \\ \overline{t} \\ \overline{t} \\ t \end{array}\right)^{+} 1 \text{ fm}$$

 $\Rightarrow Unique opportunity to investigate interactions of a bare quark!$ $\Rightarrow Top-Polarization is not 'polluted' by the hadronization process!$ Within SM, t → Wb parity-violating (V – A Structure as well as μ-Decay)
 ⇒ Top-Polarization is transferred to its decay-products

 \mathbf{S}_{t}

Top-Quark Spin-Density-matrix $\rho = [1 + P_t \cdot \sigma]/2$ Decay-product f "analyze" Top-Quark Polarization P_t

Within SM, $t \rightarrow W^+b \rightarrow f + X$: $\frac{1}{\Gamma d \cos \vartheta_f} = \frac{1}{2}(1 + \kappa_f |\mathbf{P}_t| \cos \vartheta_f)$ $-1 \leq \kappa_f \leq 1$ Important Top-Spin-Analyser (incl. QCD Corrections) Czarnecki, Jezabek, Kühn '91 Brandenburg, Si, Uwer '02 \Rightarrow Top Quark Spin Effects can be measured Useful observables:

 t, \overline{t} polarisation and $t\overline{t}$ spin correlations

Top Quark Spin Effects are important:

 Dynamics of top production and decay is not known very precisely so far: Is *t*→*b* decay vertex really (V-A) ? New decay modes *t*→*bH*⁺, *t*→*t*⁺ + ..., ? Exp. analyses require precise SM predictions.

Excellent probe of mechanism of EWSB

if (light) Higgs boson *H* will be found measure its Yukawa coupling(s) $y_t \bar{t}tH$ definite prediction within SM: $y_t = m_t/(246GeV) \simeq 0.7$

Search for heavy resonances, e.g. heavy non-standard Higgs bosons, that couple strongly to $t\bar{t}$

Good probe for non-SM parity and/or non-SM CP violation:

effects could be induced, e.g., by non-standard Higgs bosons

Physics Issues:

Collider	Tevatron Run 1	Tevatron Run 2	LHC	LC
Туре	pp	pp	рр	e ⁺ e ⁻
Run-time	1992-1996	2001-2008(?)	2007-?	2015(?)-?
E _{CM} (TeV)	1.80	1.96	14.0	$< 2m_t - \sim 1.0$
$\sigma(tar{t})$ (pb)	\sim 5	\sim 7	\sim 800	\sim 0.8
<mark>σ</mark> (single t) (pb)	\sim 1	\sim 1.5	\sim 300	\sim 0

Tevatron (Run II): $\sim 10^4$ /y $t\bar{t}$ Pairs

Large Hadron Collider: 10^{7-8} /y $t\bar{t}$ Pairs

Linear Collider: $10^5/y t\bar{t}$ Pairs

t, \overline{t} polarization and $t\overline{t}$ spin correlations will be usefull tools to test SM and search for 'new physics' beyond SM!

Top-Quark Production and Decay: eg.

 $p\bar{p}/(pp) \rightarrow t\bar{t}X \rightarrow bW^+\bar{b}W^- + X \rightarrow b\ell^+\nu\bar{b}\ell^-\bar{\nu} + X \rightarrow B_1\ell^+B_2\ell^- + p_T^{miss} + X$

The distance between Top Quark Production- and Decay-verrtex is only $\sim 10^{-16}$ m \Rightarrow Reconstruct Top Quark from its Decay Product!

Investigation of Top Quark Spin-Effects

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_1 \cos \theta_2} = \frac{1}{4} \Big\{ 1 + B_1 \cos \theta_1 + B_2 \cos \theta_2 - C \cos \theta_1 \cos \theta_2 \Big\}$$

 $\theta_1 = \sphericalangle(\hat{a}_1, \hat{a}), \ \ \theta_2 = \sphericalangle(\hat{a}_2, \hat{b}), \ \ \ \hat{a}, \hat{b}$: interpreted as Spin-Quantum Axis

- B_1 and B_2 reflects top quark spin polarization
 - for pure QCD effects, only component normal to scattering plane
 - Weak int. leads to the component parrallel to scattering plane
- $\mathbf{C} = \kappa_+ \kappa_- \frac{\mathbf{N}(\uparrow\uparrow) + \mathbf{N}(\downarrow\downarrow) \mathbf{N}(\downarrow\downarrow) \mathbf{N}(\downarrow\uparrow)}{\mathbf{N}(\uparrow\uparrow) + \mathbf{N}(\downarrow\downarrow) + \mathbf{N}(\uparrow\downarrow) + \mathbf{N}(\downarrow\uparrow)}$: $-1 \le \mathbf{C} \le +1$

Spin-Correlation Strength for Chosen Quantum Axis

- C reflects spin-spin correlations between t and \overline{t}
 - contr. from initial $q\bar{q}$ and gg induced by pure QCD effects have different sign \implies C can be used as a tool to determine PDF

Selected Publications

- Next-to-Leading Order QCD Corrections to Top Quark Spin Correlations at Hadron Colliders: The Reactions $q\bar{q} \rightarrow t\bar{t}(g)$, Phys.Lett.B483:99-104,2000.
- Next-to-Leading Order QCD Corrections to Top Quark Spin Correlations at Hadron Colliders: The Reactions $gg \rightarrow t\bar{t}(g)$ and $gq(\bar{q}) \rightarrow t\bar{t}q(\bar{q}, \text{Phys.Lett.B509:53-58,2001.}$
- Top Quark Spin Correlations at Hadron Colliders: Predictions at Next-to-Leading Order QCD, Phys.Rev.Lett.87:242002,2001.
- QCD Corrected Spin Analyzing Power of Jets in Decays of Polarized Top Quarks, Phys.Lett.B539:235-241,2002.
- Top Quark Pair Production and Decay at Hadron Colliders, Nucl.Phys.B690:81-137,2004.
- Top Quark Pair Production and Decay at Polarized Photon Collider, Phys. Lett. B615:68-78,2005.
- Mixed QCD and Weak Corrections to $t\bar{t}$ Production by $q\bar{q}$ Annihilation, Phys. Lett. B???,???-???,2006.

 $\mathsf{C} = \kappa_{\mathsf{f}} \kappa_{\overline{\mathsf{f}}} \frac{\mathsf{N}(\uparrow\uparrow) + \mathsf{N}(\downarrow\downarrow) - \mathsf{N}(\uparrow\downarrow) - \mathsf{N}(\downarrow\uparrow)}{\mathsf{N}(\uparrow\uparrow) + \mathsf{N}(\downarrow\downarrow) + \mathsf{N}(\uparrow\downarrow) + \mathsf{N}(\downarrow\uparrow)}$

1. pp̄ at $\sqrt{s} = 1.96$ TeV (Tevatron), CTEQ6, $\mu_F = \mu_R = m_t = 175$ GeV

Decay-Channel: $t\overline{t} \rightarrow$		$\ell^+ + \ell^- + X$	ℓ + Jet + X	Jet + Jet + X
$C_{ ext{hel}}$	LO	-0.471	-0.240	-0.123
	NLO	-0.352	-0.168	-0.080
C_{beam}	LO	0.928	0.474	0.242
	NLO	0.777	0.370	0.176

2. pp at $\sqrt{s} = 14$ TeV (LHC), CTEQ6, $\mu_F = \mu_R = m_t = 175$ GeV

Decay-	Channel: $t\overline{t} \rightarrow$	$\ell^+ + \ell^- + X$	ℓ + Jet + X	Jet + Jet + X
C_{hel}	LO	0.319	0.163	0.083
	NLO	0.326	0.158	0.076

Spin-Correlations

Theory:

- Tevatron: Large Spin-Correlation in Beam basis
 QCD Correction ~-(10-30)%
- LHC: Beambasis small; Helicity basis good, QCD Correction small
- **Definite Prediction** of perturbative QCD!
- $\begin{array}{ll} \bullet & \mbox{Theoretical Uncertainty} \\ \mbox{Variation of Renormalization- and Factorization-scale } m_t/2 \leq \mu \leq 2m_t \\ \mbox{Tevatron: } \Delta C_{beam} \sim \pm 5\% \\ \mbox{LHC: } \Delta C_{hel} \lesssim 1\% \end{array}$

Experiment:

- Tevatron (Run II): SM-Spin-Correlationen as 2σ Effect
- LHC: $\Delta_{exper.}$ C ~ 0.03
 - \Rightarrow Test Spin-correlationen within SM
 - \Rightarrow Top-Quark \sim "bare" Quark

Results for Top quark polarization

Left:Scaling functions $f^{(0)}(\rho)_{q\bar{q}}$ (dashed for q = d-type, dash-dotted for q = u-type); $f^{(1)}(\rho)_{q\bar{q}}$ (solid for q = d-type, dotted for q = u-type), **Right**:Contributions of the LO (solid) and NLO QCD (dashed) contributions and of the mixed $\alpha_s^2 \alpha$ contributions (dotted and dash-dotted line refers to initial d-type and u-type quarks, respectively) to the cross section in units of $1/m_t^2$, and $m_H = 114$ GeV.

Results for Top quark polarization

Tevatron		$\mu = \frac{m_t}{2}$ (pb)	$\mu = m_t(pb)$	$\mu = 2m_t$ (pb)
CTEQ6L	LO QCD	4.808	3.622	2.836
CTEQ6.1M	NLO QCD	4.148	3.976	3.681
	LO QCD	4.568	3.396	2.629
	Mixed	0.0434	0.0401	0.0367
LHC				
CTEQ6L	LO QCD	53.733	45.913	40.168
CTEQ6.1M	NLO QCD	51.589	55.738	57.559
	LO QCD	59.078	50.296	43.858
	Mixed	-0.641	-0.444	-0.305

Results for $\sigma_{q\bar{q}}$ at NLO

Results for $2\sigma_{q\bar{q}} < \mathbf{s}_t \cdot \mathbf{p} > \text{at Tevatron}(\sqrt{s} = 1.96\text{TeV})$ and $2\sigma_{q\bar{q}} < \mathbf{s}_t \cdot \mathbf{k} > \text{LHC}(\sqrt{s} = 14\text{TeV})$.

Tevatron		$\mu = \frac{m_t}{2}$ (pb)	$\mu = m_t(pb)$	$\mu = 2m_t$ (pb)
CTEQ6.1M	Mixed	-0.00291	-0.00374	-0.00406
LHC				
CTEQ6.1M	Mixed	-0.0687	-0.0758	-0.0804

Works in Progress

- Mixed QCD and Weak Corrections to $t\bar{t}$ Production by $gg \rightarrow t\bar{t}$
- The influence of invariant mass cuts
- Threshold Resummation

works in plan Window to search for 'new' Physics

- Search for Resonance in tt invariant mass spectrum
- Search for new particle in Top-Decay
- Search for Effects with small contributions from SM

Top-Quark Physics will play an important role in particle physics!

Thanks a lot for your attention!