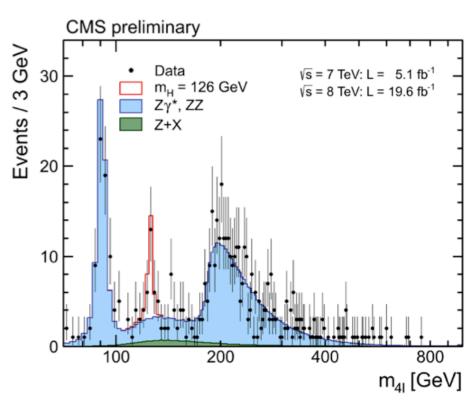
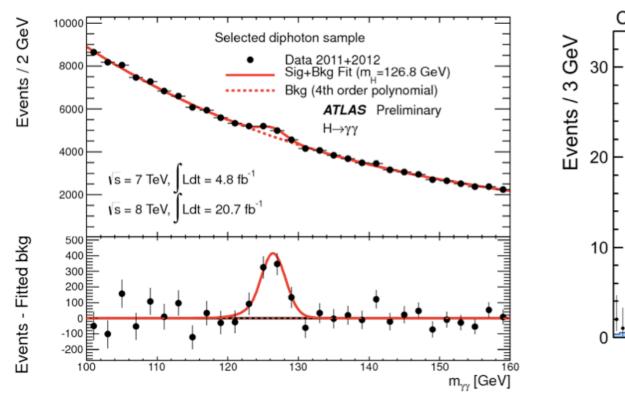
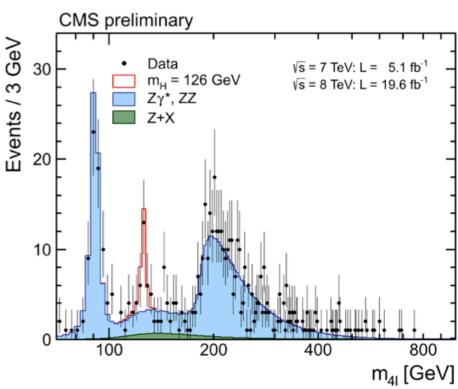
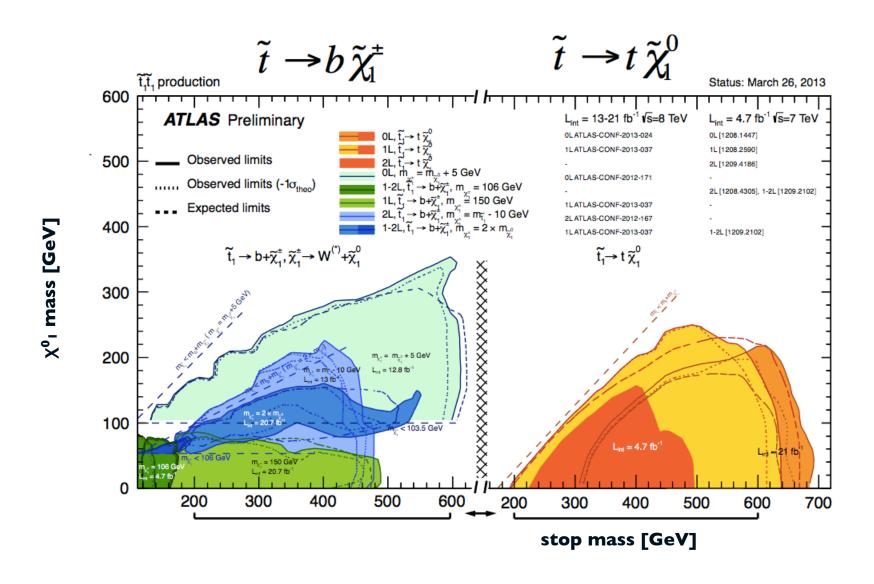

Lessons from the LHC and future prospects

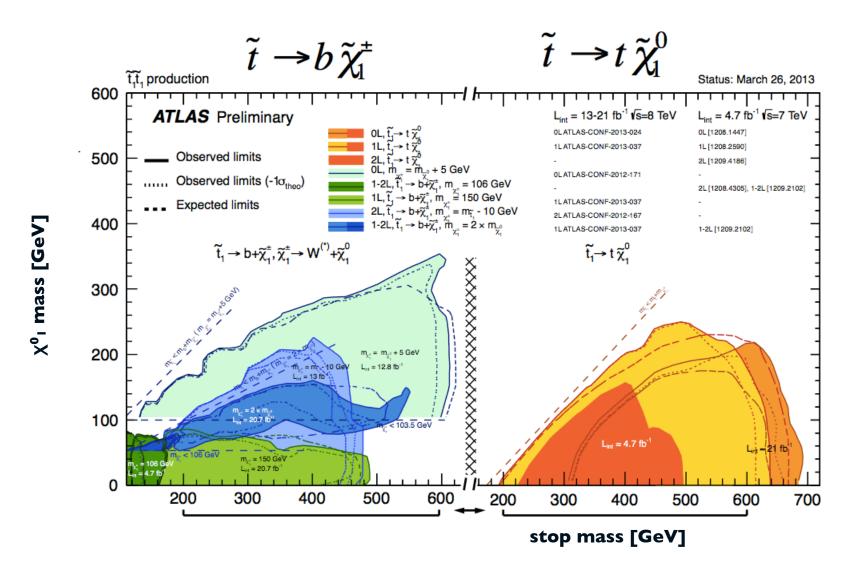

Colloquium series for the 10th anniversary of the
Tsinghua High Energy Physics Center
June 12 2014

Michelangelo L. Mangano


TH Unit, Physics Department, CERN michelangelo.mangano@cern.ch

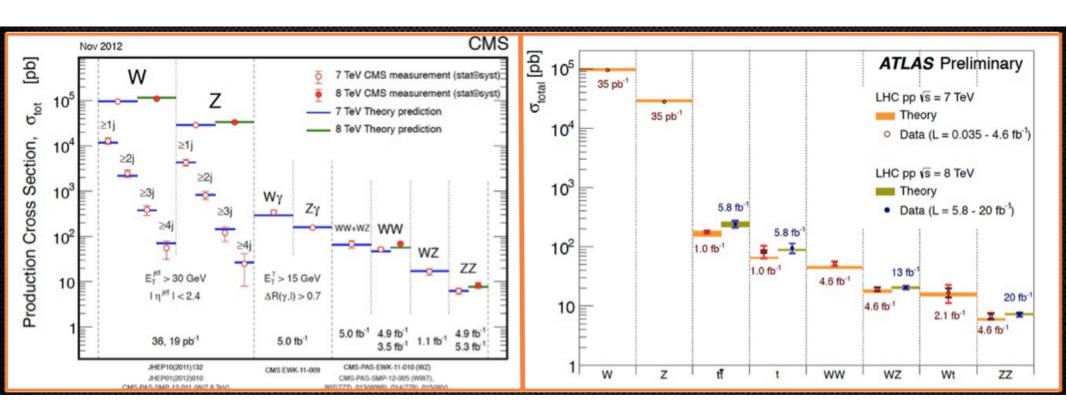

- + The Higgs signal has been detected through sharp mass peaks in several channels
- + Its production and decay rates are consistent with the SM expectation, at the +/- 20% level


- + The Higgs signal has been detected through sharp mass peaks in several channels
- + Its production and decay rates are consistent with the SM expectation, at the +/- 20% level

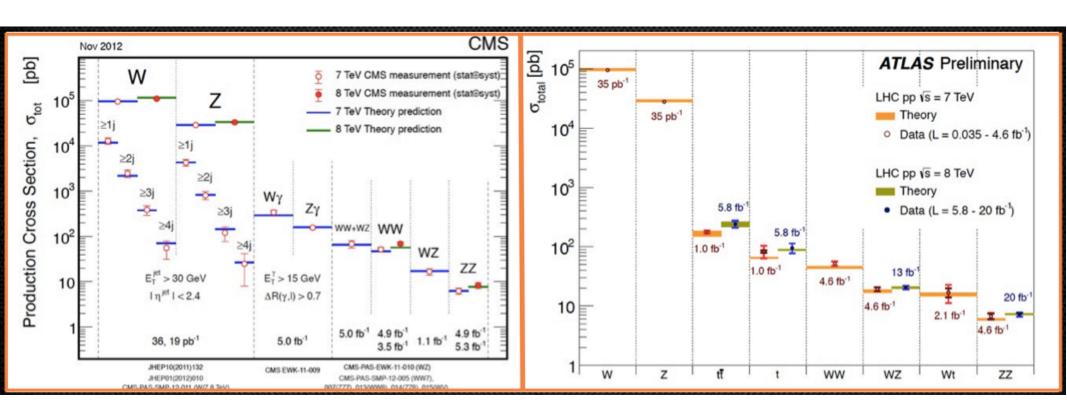


.... how far can we push the accuracy of these tests, and probe the mechanism of EWSB?

No strong sign of BSM, in all places the experiments have looked



No strong sign of BSM, in all places the experiments have looked



.... how to access regions of parameters of BSM models where the sensitivity is low?

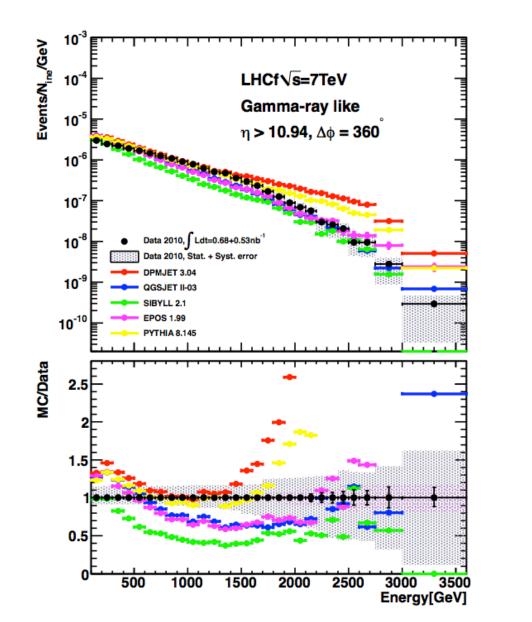
The theoretical description of high-Q² processes at the LHC is very good

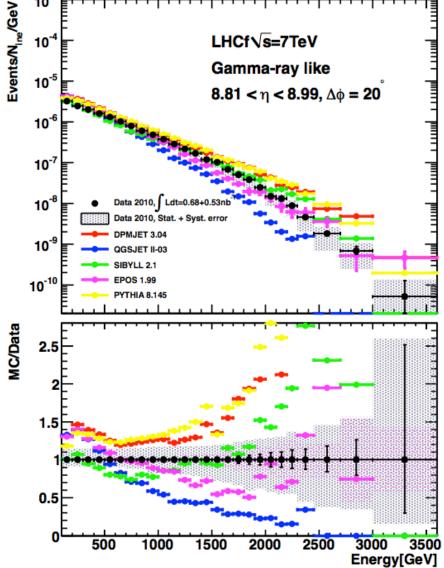
The theoretical description of high-Q² processes at the LHC is very good

.... but must and can be improved

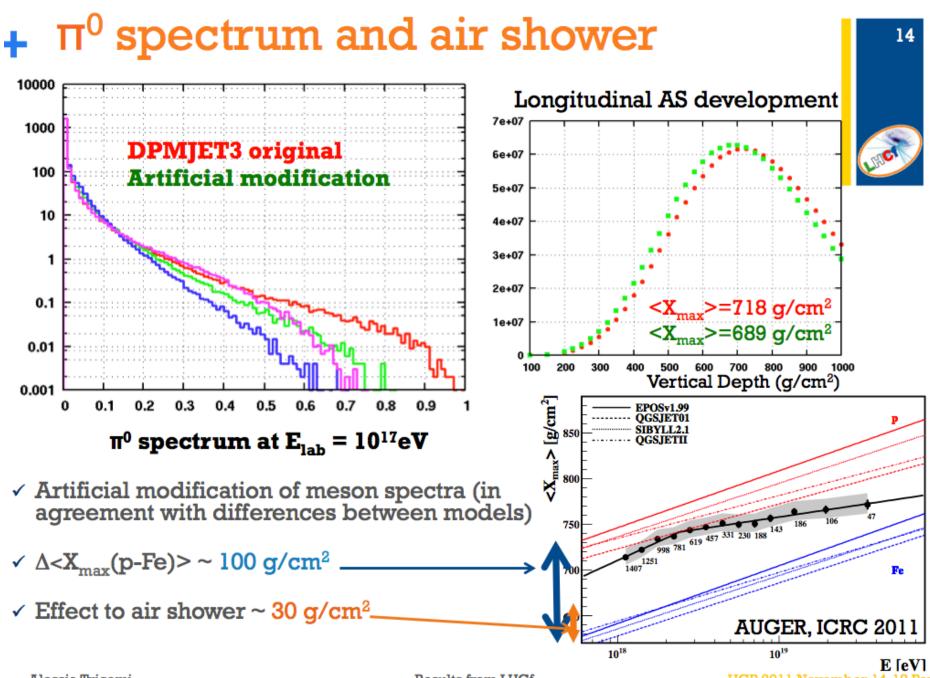
Tasks for the future LHC programme

- Continue the search for BSM phenomena
- Continue improving the accuracy of Higgs measurements
- Continue the exploration of SM phenomena, improving the accuracy of theoretical calculations and of experimental measurements
 - => increase the potential for precise measurements of the Higgs and for more sensitive BSM searches

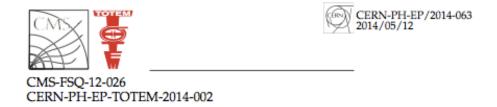

Outline of this talk


- Review some of the achievements of the LHC, focusing on lesser known aspects of the programme
- Review the case for BSM physics at the LHC
- Discuss the role and prospects of precision physics at the LHC
- Present the long-term plans for the LHC, and for possible future high-energy pp colliders

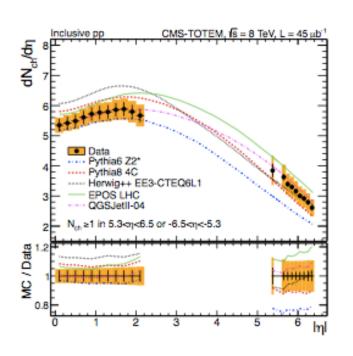
LHCf: Very forward energy flow

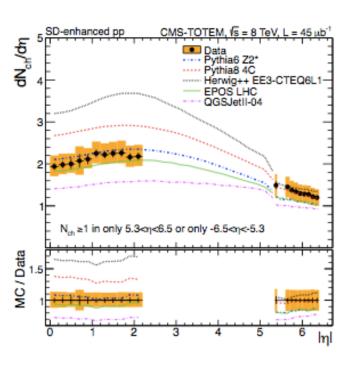


"Measurement of zero degree single photon energy spectra for √s = 7 TeV proton-proton collisions at LHC" PLB 703 (2011) 128



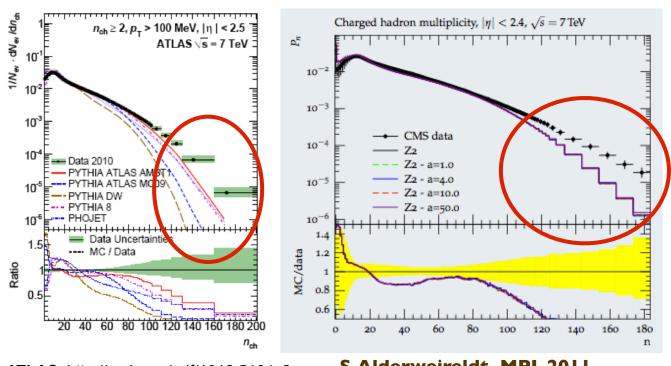
Impact on modeling of HECR showers: first assessment


EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)


Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at $\sqrt{s}=8\,\text{TeV}$ by the CMS and TOTEM experiments

The CMS and TOTEM Collaborations*

http://arxiv.org/abs/1405.0722



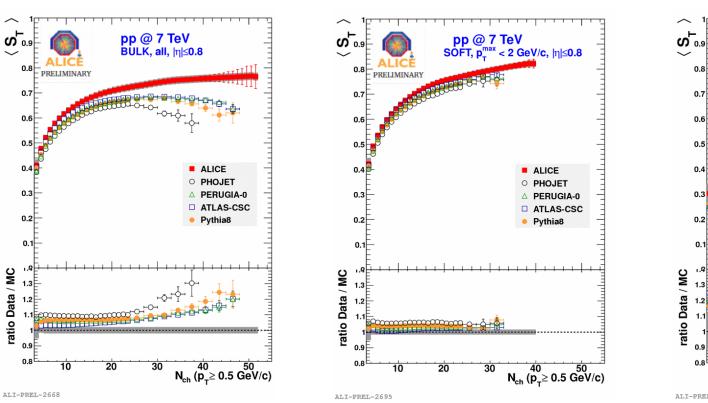
Properties of final states in "0-bias" events

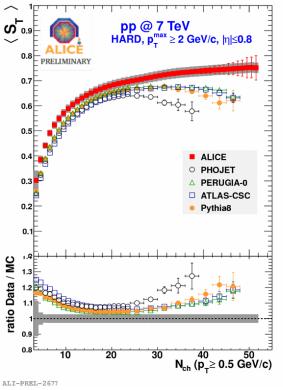
Large multiplicity final states

ATLAS, http://arxiv.org/pdf/1012.5104v2

S.Alderweireldt, MPI-2011

Need a detailed characterization of the structure of large-multiplicity final states:


- are they dominated by 2-jets back to back?
- are they dominated by many soft jets (e.g. multiple semi-hard collisions)
- do they look "fireball"-like (spherically symmetric)?
- does the track-pt spectrum of high-Nch events agree with MCs?
- y-distribution of very soft tracks in high-Nch events?


Are we staring at something fundamental, or is this just QCD chemistry and MC-tuning?

.... see also the CMS ridge effect

Further insight and puzzles on large-N_{ch} events

ALICE study of transverse sphericity vs N_{ch} arXiv:1110.2278

Events are generically more spherical, less jetty, than MC.

Most of the discrepancy comes however from hard events, not soft ones

Given the smaller rapidity coverage of ALICE, the multiplicities used in this study, with N_{ch} up to ~50, probe final state consistent with those of extreme N_{ch} (>100) measured by ATLAS/CMS in a larger rapidity volume

Open challenge:

To prove that the underlying mechanisms of multiparticle production at high energy are <u>understood</u>, in addition to being simply <u>properly modeled</u>

$$B_s \rightarrow \mu^+\mu^-$$

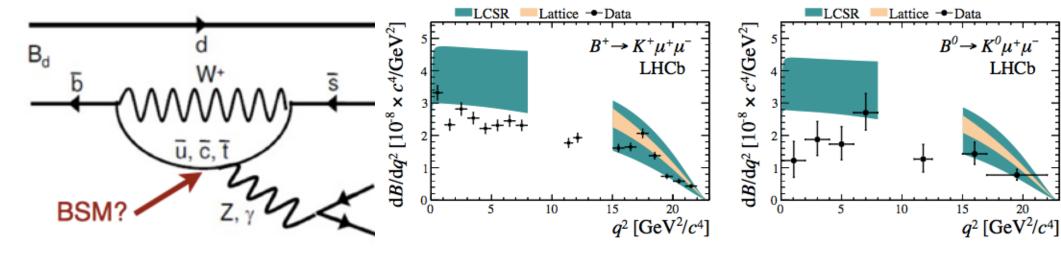
(LHCb+CMS): B(Bs
$$\rightarrow \mu + \mu -) = (2.9 \pm 0.7) \times 10^{-9}$$

Instrinsic TH uncertainty **below** 1%, after recent calculation of 3-loop NNLO QCD and 2-loop NLO EW effects:

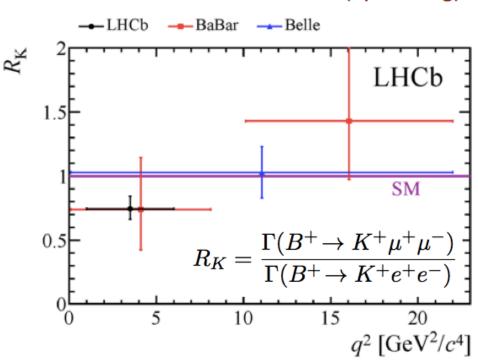
arXiv:1311.0903v2

FLAVOUR(267104)-ERC-53, LTH 990, SFB/CPP-13-82, TTP13-033

 $B_{s,d} \to \ell^+\ell^-$ in the Standard Model


Christoph Bobeth,¹ Martin Gorbahn,^{2,1} Thomas Hermann,³ Mikołaj Misiak,^{4,5} Emmanuel Stamou,^{1,6} and Matthias Steinhauser³

Uncertainty dominated by f_{Bs} (lattice)

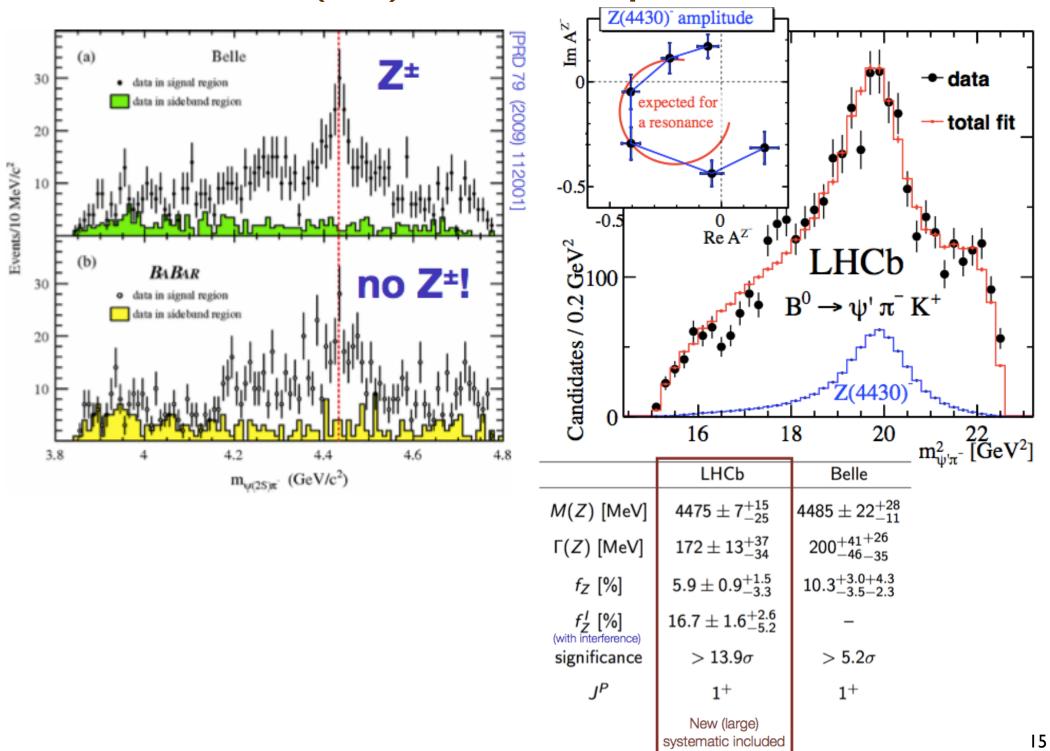

⇒ November 2013:

(Theory): $B(Bs \rightarrow \mu + \mu -) = (3.65 \pm 0.23) \times 10^{-9}$

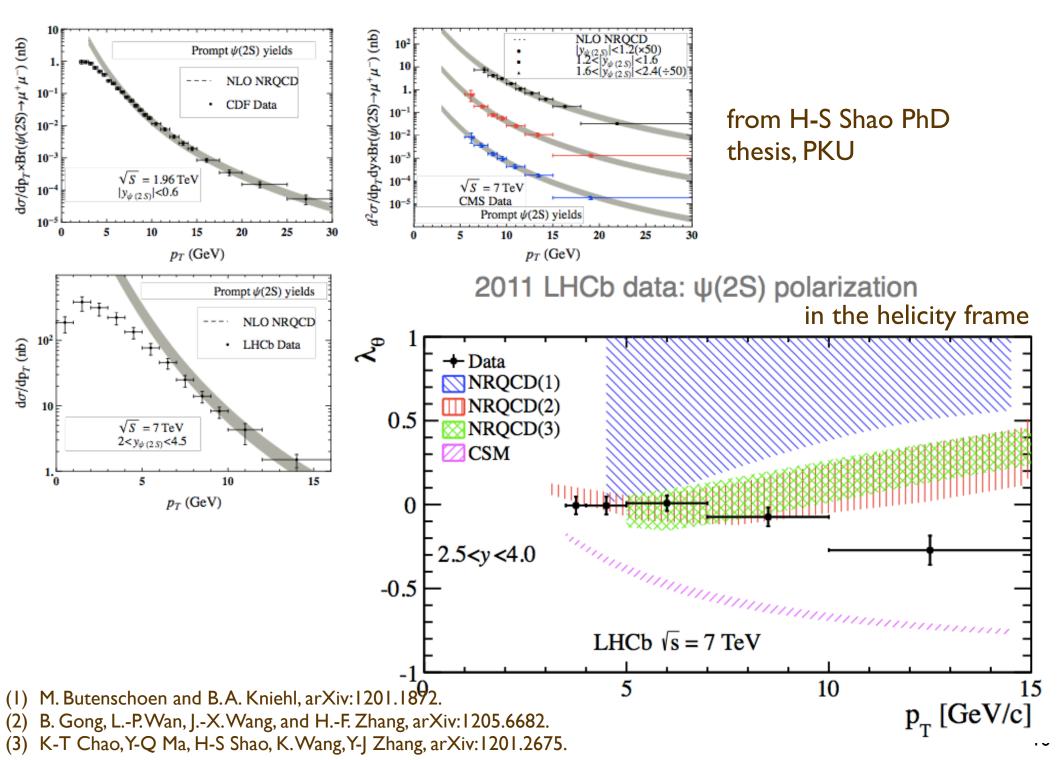
Interesting anomalies are emerging from B decays

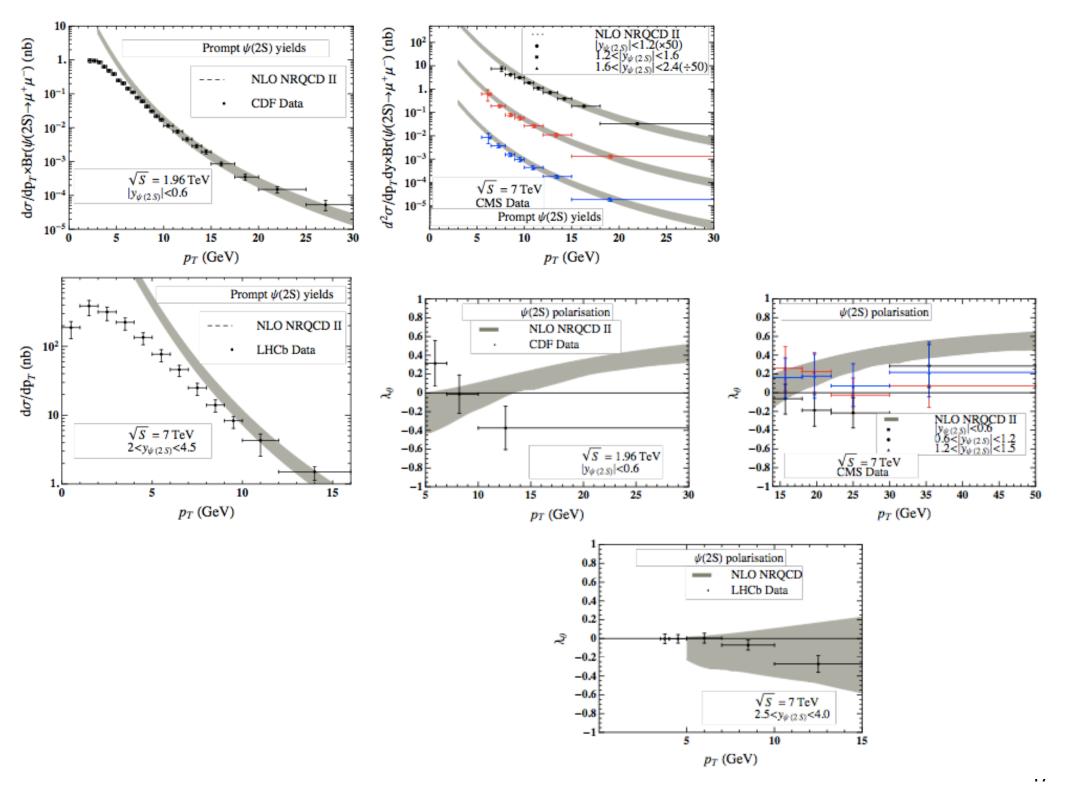
LHCb-PAPER-2014-024 (upcoming)

LHCb-PAPER-2014-006 updated to 3/fb


Decay mode	Measurement	Prediction
$B^+\!\to K^+\mu^+\mu^-$	$8.5\pm0.3\pm0.4$	10.7 ± 1.2
$B^0\! o K^0\mu^+\mu^-$	$6.7\pm1.1\pm0.4$	9.8 ± 1.0
$B^+\!\to K^{*+}\mu^+\mu^-$	$15.8^{+3.2}_{-2.9} \pm 1.1$	26.8 ± 3.6

$$R_K = 0.745^{+0.090}_{-0.074}({
m stat}) \pm 0.036({
m sys})$$


 \sim 2.5 σ from SM value of I


expect update soon

Confirmation of the Z(4430), evidence of 4-quark nature

The understanding of chamonium polarization at large p_T remains a puzzle!

What's hiding behind/beyond the TeV scale?

What's hiding behind/beyond the TeV scale?

- Hierarchy problem/Naturalness
 - where is everybody else beyond the Higgs?

What's hiding behind/beyond the TeV scale?

- Hierarchy problem/Naturalness
 - where is everybody else beyond the Higgs?
- EW dynamics above the symmetry breaking scale
 - weakly interacting? strongly interacting? other interactions, players?

What's hiding behind/beyond the TeV scale?

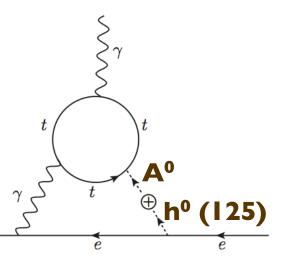
- Hierarchy problem/Naturalness
 - where is everybody else beyond the Higgs?
- EW dynamics above the symmetry breaking scale
 - weakly interacting? strongly interacting? other interactions, players?
- Dark matter
 - is TeV-scale dynamics (WIMPs) at the origin of Dark Matter?

What's hiding behind/beyond the TeV scale?

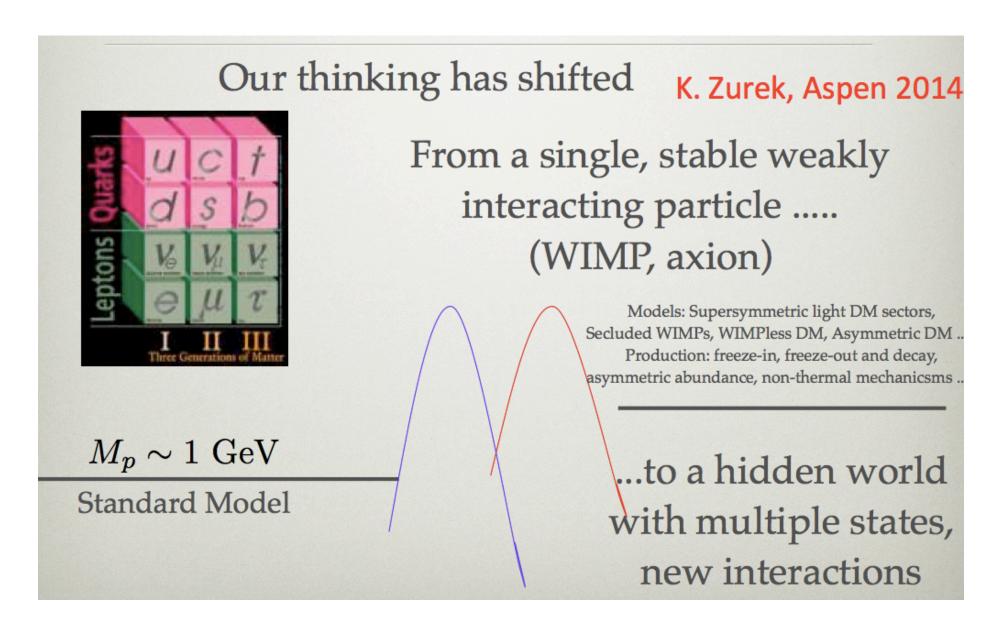
- Hierarchy problem/Naturalness
 - where is everybody else beyond the Higgs?
- EW dynamics above the symmetry breaking scale
 - weakly interacting? strongly interacting? other interactions, players?
- Dark matter
 - is TeV-scale dynamics (WIMPs) at the origin of Dark Matter?
- Cosmological EW phase transition
 - is it responsible for baryogenesis?

EW phase transition and BAU

- To generate and maintain a baryon asymmetry at the EWPT we need
 - a strong 1st order phase transition:
 - impossible in the SM if m_H > 60 GeV
 - requires modification of Higgs potential, via H interactions with new TeV states
 - sufficient CP violation
 - not enough through CKM
 - need non-CKM CPV in the quark, lepton or Higgs sectors
 - most examples engage TeV-scale particles (for v's could be higher)

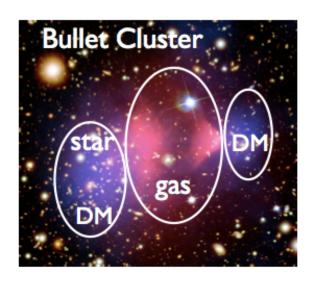

Example

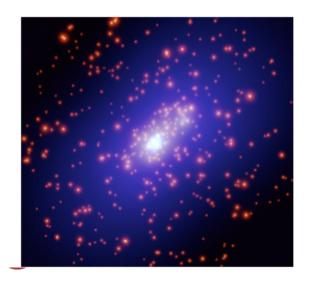
2-Higgs double models
$$h^0$$
 (125), H^0 , A^0 , H^{\pm}


- \Rightarrow interactions among various H fields can create conditions for strong 1st order transition (Higgs vev(T_c) > T_c) typically favours m(A⁰) > 400 GeV
- ⇒ mixing of different CP states, even at few % level, is sufficient to induce enough CPV

Observables:

- additional Higgs states (direct or indirect evidence)
- h⁰(125) not a CP eigenstate
- electric dipole moments (electron, neutron). Current EDM(e) close to range of CPV compatible with EW baryogenesis




Dark Matter

ASPEN 2014: https://indico.cern.ch/event/276476/

Evidence building up for self-interacting DM

A really large scattering cross section!
 a nuclear-scale cross section

 $\sigma \sim 1 \text{cm}^2 (m_X/g) \sim 2 \times 10^{-24} \text{ cm}^2 (m_X/GeV)$

For a WIMP: $\sigma \sim 10^{-38}$ cm² (m_X/100 GeV)

SIDM indicates a new mass scale

Hai-BoYu, ASPEN 2014: https://indico.cern.ch/event/276476/

More in general, interest is growing in scenarios for EWSB with rich sectors of states only coupled to the SM particles via weakly interacting "portals"

It is appealing to consider that they key to our puzzles lies in a tighter interplay between the DM sector, EWSB and "naturalness".

This would be an intellectual revolution without precedents.

Uncovering or disproving a connection between DM and EWSB should remain a primary target of future programmes

Naturalness

NATURALNESS, CHIRAL SYMMETRY, AND SPONTANEOUS

CHIRAL SYMMETRY BREAKING

Naturalness is not a recent "fashion": it's an original sin of the SM itself, first identified by one of the fathers of the SM

G. 't Hooft

Institute for Theoretical Fysics

Utrecht, The Netherlands

break down at 30 TeV or so.

Aug 1979. 23 pp.
NATO Adv.Study Inst.Ser.B Phys. 59 (1980) 135

As we will see, naturalness will put the severest restriction on the occurrence of scalar particles in renormalizable theories. In fact we conjecture that this is the reason why light, weakly interacting scalar particles are not seen.

Pursuing naturalness beyond 1000 GeV will require theories that are immensely complex compared with some of the grand unified schemes.

A remarkable attempt towards a natural theory was made by Dimopoulos and Susskind 2). These authors employ various kinds of confining gauge forces to obtain scalar bound states which may substitute the Higgs fields in the conventional schemes. In their model the observed fermions are still considered to be elementary.

Most likely a complete model of this kind has to be constructed step by step. One starts with the experimentally accessible aspects of the Glashow-Weinberg-Salam-Ward model. This model is natural if one restricts oneself to mass-energy scales below 1000 GeV. Beyond 1000 GeV one has to assume, as Dimopoulos and Susskind do, that the Higgs field is actually a fermion-antifermion composite field. Coupling this field to quarks and leptons in order to produce their mass, requires new scalar fields that cause naturalness to

We're finally
there, at I TeV,
facing the fears
about a light SM
Higgs
anticipated long
ago

- The observation of the Higgs where the SM predicted it would be, its SM-like properties, and the lack of BSM phenomena up to the TeV scale, make the naturalness issue as puzzling as ever
- Whether to keep believing in the MSSM or other specific BSM theories after LHC@8TeV is a matter of personal judgement. But the broad issue of naturalness will ultimately require an understanding.
- The future of accelerator physics should be tailored to address this question

Remarks

- Our field has other open puzzles, associated e.g. to
 - neutrinos
 - flavour
 - axion
 - ...
- These puzzles hint at scales that are typically much larger than O(TeV), even as large as the GUT scale
- The complete understanding of TeV-scale physics is necessary to put in perspective and properly interpret the information about those high scales that may come from indirect probes (neutrinos, p-decay, coupling unification, ...)

Remarks

- Despite the relevance of these questions, and the conviction that they will find an answer, there is no guarantee that such answer will come soon.
- There is no absolute no-lose theorem in sight, pointing with absolute certainty to a given experimental facility
- The planning of future facilities may need to be driven by the exploratory spirit that characterized the golden age of particle physics.
- But the directions are clear:
 - higher-precision studies (of Higgs sector, of EW interactions)
 - higher energy (push the search for "everyone else")

Precision physics at the LHC

The LHC timeline

Spring 2015 \rightarrow 2017 $\sqrt{S} \rightarrow 13\text{-}14\,\text{TeV}$ $\int L \sim 100\,\text{fb}^{-1}$

Winter 2018
→ 2019
shutdown

Spring 2020 \rightarrow 2022 $\sqrt{S} = 14 \text{ TeV}$ $\int L \sim 300 \text{ fb}^{-1}$

Winter 2021

→ 2023

shutdown

Spring 2023 $\rightarrow 2032$ $\sqrt{S} = 14 \text{ TeV}$ $\int L \sim 3000 \text{ fb}^{-1}$

Ex: Future precision in the determination of Higgs coupling ratios

$L(fb^{-1})$	Exp.	$\kappa_g \cdot \kappa_Z / \kappa_H$	$\kappa_{\gamma}/\kappa_{Z}$	κ_W/κ_Z	κ_b/κ_Z	$\kappa_{ au}/\kappa_{Z}$	κ_Z/κ_g	κ_t/κ_g	κ_{μ}/κ_{Z}	$\kappa_{Z\gamma}/\kappa_Z$
300	ATLAS	[3,6]	[5,11]	$[4,\!5]$	N/a	[11,13]	[11,12]	[17,18]	[20,22]	[78,78]
	CMS	[4,6]	[5,8]	[4,7]	[8,11]	[6,9]	[6,9]	[13,14]	[22,23]	[40,42]
3000	ATLAS	[2,5]	[2,7]	[2,3]	N/a	[7,10]	[5,6]	[6,7]	[6,9]	[29,30]
	CMS	[2,5]	[2,5]	[2,3]	[3,5]	[2,4]	[3,5]	[6,8]	[7,8]	[12,12]

Table 1. Estimated precision on the measurements of ratios of Higgs boson couplings. These values are obtained at $\sqrt{s} = 14$ TeV using an integrated dataset of 300 fb⁻¹ at LHC, and 3000 fb⁻¹ at HL-LHC. Numbers in brackets are % uncertainties on couplings for [no theory uncertainty, current theory uncertainty] in the case of ATLAS and for [Scenario2, Scenario1] in the case of CMS.

CMS Scenario 1: same systematics as 2012 (TH and EXP)

CMS Scenario 2: half the TH syst, and scale with I/sqrt(L) the EXP syst

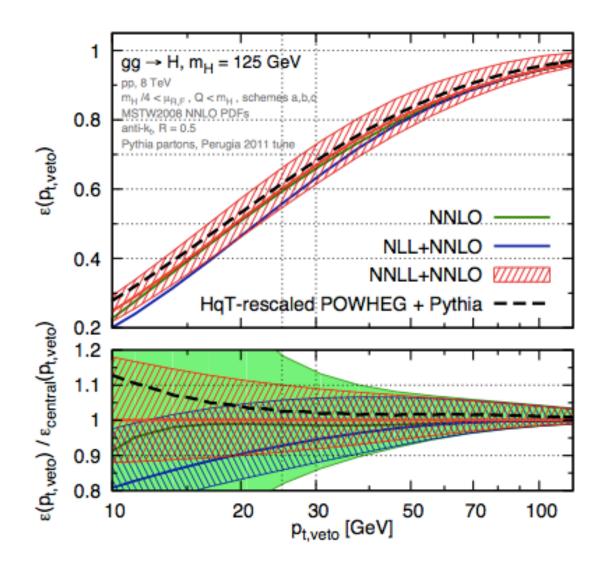
Note: assume no invisible Higgs decay contributing to the Higgs width

Note: results of scenario 2 @ 3000/fb are overall as powerful as LC@500GeV !!

Current challenges for the field: precision

Theoretical uncertainties on production rates (Higgs XS WG, arXiv:1101.0593)

I4 TeV	δ(pert. theory)		$\delta(PDF, \alpha_S)$	
gg→H	± 10 %		± 7%	
VBF (WW→H)	± 1 %		± 2%	
qq→WH	± 0.5 %		± 4%	
(qq,gg)→ZH	± 2 %	\	± 4%	
(qq,gg)→ttH	± 8 %		± 9%	

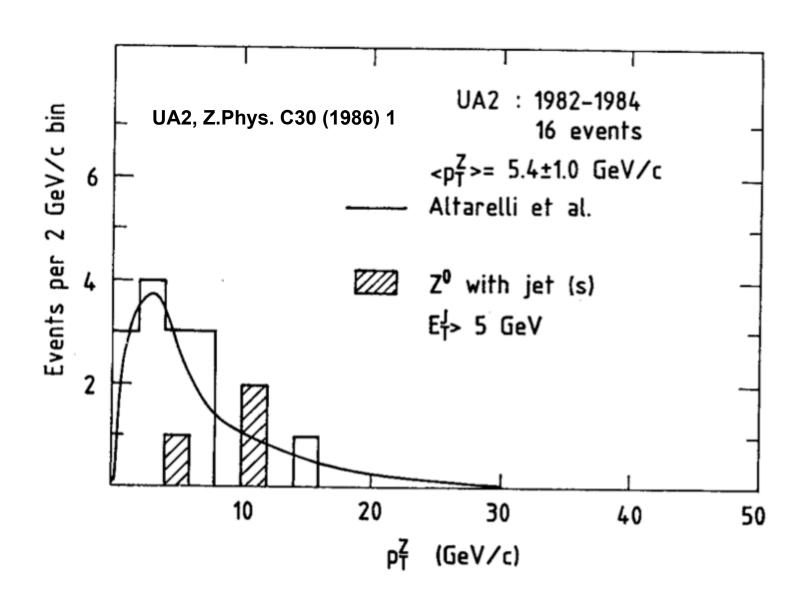

Improve with higher-loop calculations:

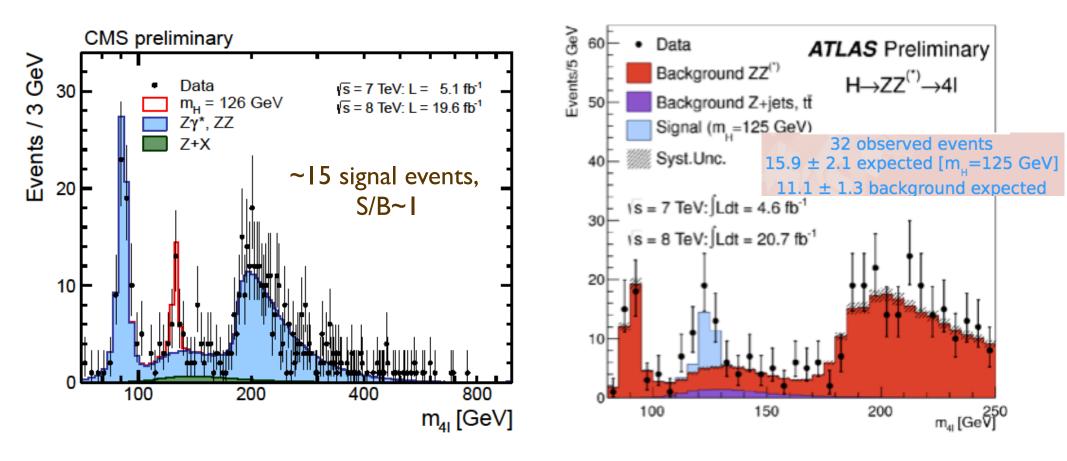
gg->H @ NNNLO ttH @ NNLO

Improve with dedicated QCD measurements, and appropriate calculations

Current challenges for the field: accurate description of final states

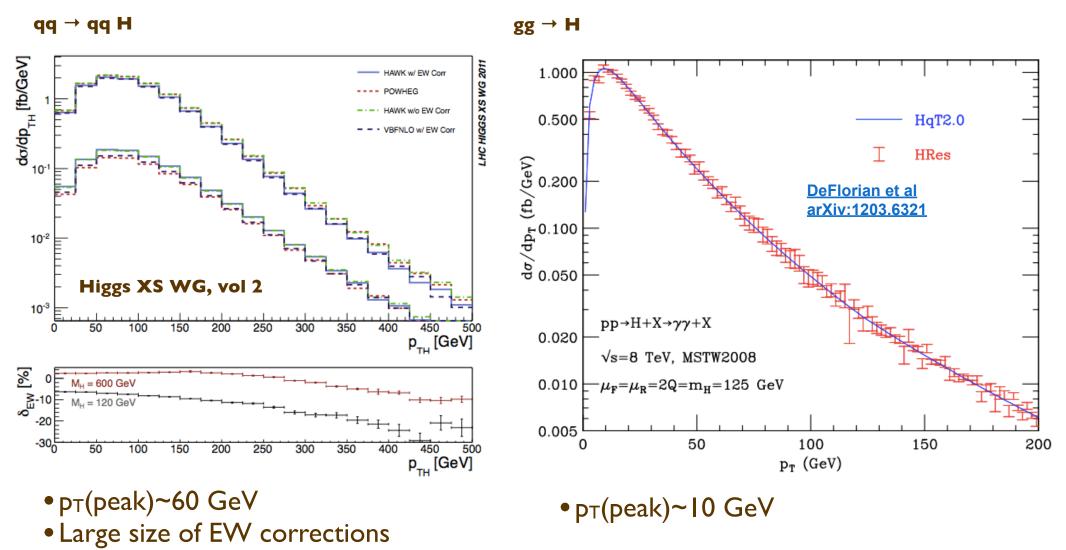
- to properly model experimental selection cuts
- to properly model the separation between signals and background
- to improve the sensitivity to rare and "stealthy" final states in BSM searches

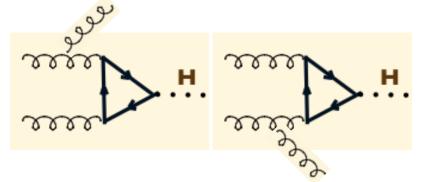


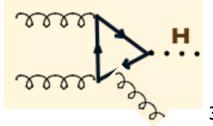

Ex. jet veto efficiency, required to reduce bg's to H→WW*

Banfi, Monni, Salam, Zanderighi, arXiv:1206.4998

Towards experimental constraints on Higgs production dynamics


To put it in perspective, W/Z physics started like this, from a score of events:




There is enough to start plotting pt(H), N_{jet} distribution in H production, etc.

$p_T(H)$: $qq \rightarrow qq H vs gg \rightarrow H$

gg \rightarrow H at p_T > m_{top} resolves the inside of the production triangle, an alternative probe to its components

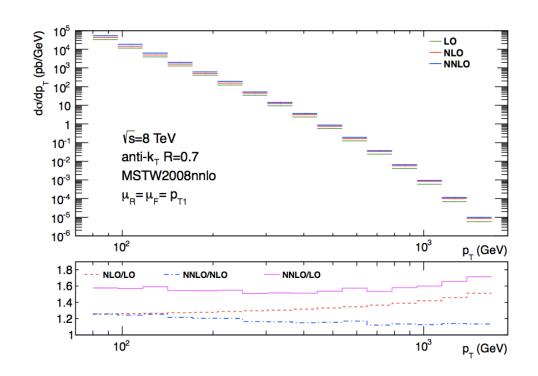
Recent progress in NNLO

- Two long-awaited milestone calculations in progress, delivering first results:
 - **Jet production**. Completed so far:
 - gg initial state: A. Gehrmann-De Ridder, T. Gehrmann, E.W. N. Glover, J. Pires, arxiv:1301.7310
 - σ(tt) (Czakon, Mitov et al): full results available for total cross section, at NNLO+NNLL

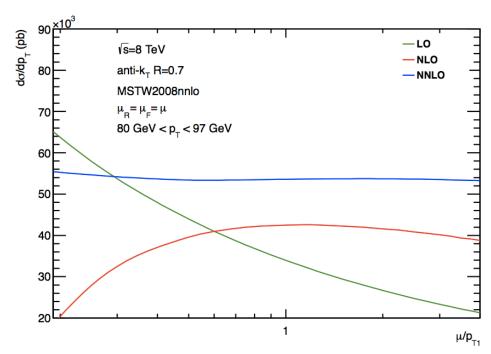
Baernreuther, Czakon, Mitov arXiv:1204.5201

Czakon, Mitov arXiv:1207.0236 Czakon, Mitov arXiv:1210.6832

Czakon, Fiedler, Mitov arXiv:1303.6254


implemented in a numerical code

Top++: Czakon, Mitov arXiv:1112.5675


 first NNLO result for production of coloured final state in hadron collisions, first direct probe of gluon PDF known to NNLO

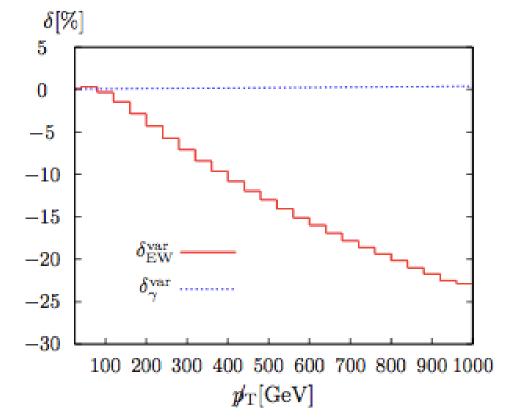
Inclusive jet cross section at NNLO

"Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution", A. Gehrmann-De Ridder, T. Gehrmann, E.W. N. Glover, J. Pires, arXiv:1301.7310

NNLO/NLO ~ 1.2

NNLO scale systematics \sim few % ... - does this survive if $\mu_F \neq \mu_R$?

Notice that NNLO outside the NLO scale-variation band

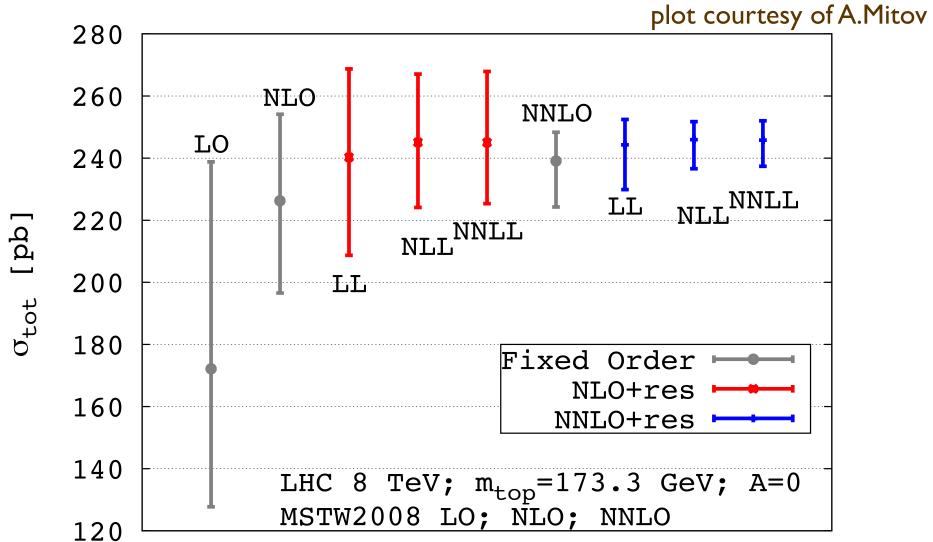

At this level of precision, there are other things one should start considering. E.g. non-perturbative systematics and <u>EW corrections</u>

Impact of EW radiative corrections, example:

Jet+MET spectrum from $(Z \rightarrow vv)$ +jet: corrections due to pure EW and pure EM

corrections

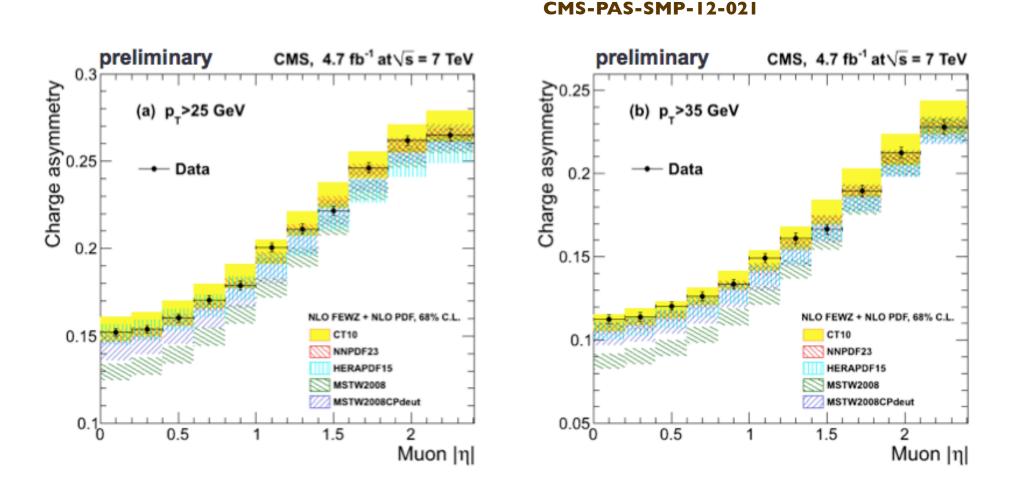
Denner, Dittmaier, Kasprzik, Mück, arxiv:1211.5078v2


Unless EW corrections are included in the calculations, we might end up removing possible differences between data and QCD predictions for the Z pt spectrum by retuning the QCD MCs!

Very-high pt data on the Z pt spectrum are crucial to assess that the effect is indeed so large!

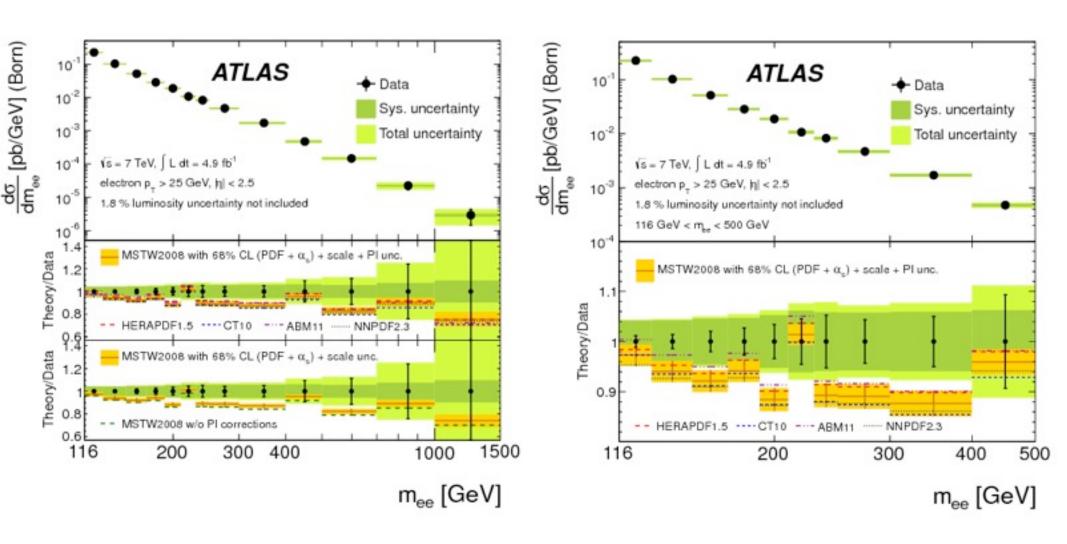
How does one convince himself that possible deviations of this size from the QCD expectation are indeed the result of EW corrections?

Inclusive ttbar cross section at NNLO


Scale variation

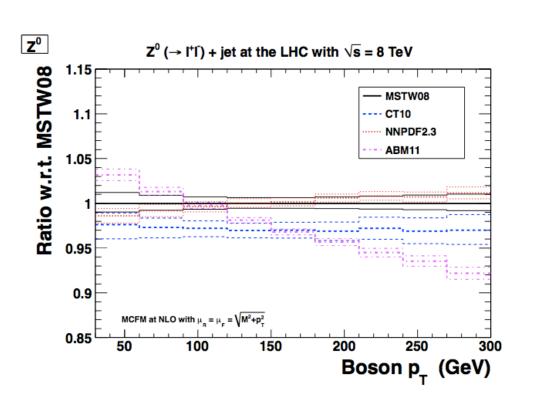
Independent μ_R , μ_F variation, with μ_0 = m_{top} , 0.5 μ_0 < $\mu_{R,F}$ < 2 μ_0 and 0.5 < μ_R / μ_F < 2

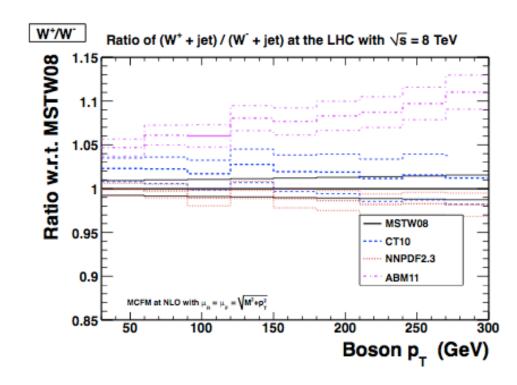
Improving the PDF systematics using LHC data


There is still room to further constrain PDF distributions relevant for W/Z production properties.

Questions:

- How do we convince ourselves that we are actually fitting the PDFs, and not missing higher-order QCD or EW effects in the matrix elements?
- Would this have an impact in the extraction of mw?

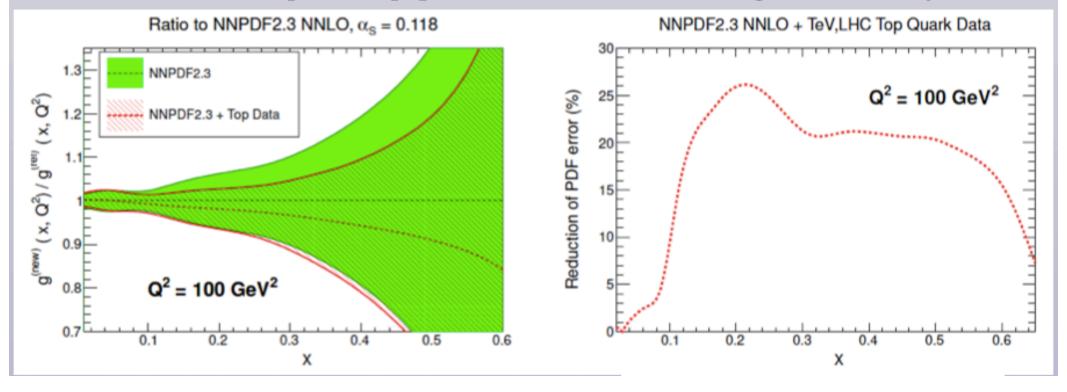

High-mass DY cross sections and PDFs



ATLAS, Phys.Lett. B725 (2013) 223-242 arXiv:1305.4192

Large-pt production of gauge bosons as a probe of gluon PDF in the region of relevance to gg→H production

S.Malik and G.Watt, arXiv:1304.2424



 \Rightarrow excellent motivation to undertake the calculation of d σ /dp_T(V) at NNLO !!

Constraining the gluon PDF with $\sigma(tt)$

M. Czakon et al arXiv:1303.7215

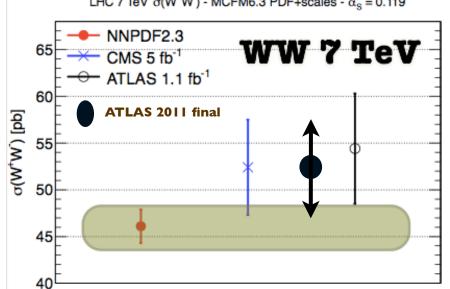
- From Top quark cross-section data discriminates between PDF sets
- In addition, it can also be used to reduce the PDF uncertainties within a single PDF set
- We included the most precise top quark data into the NNPDF2.3 global PDF analysis

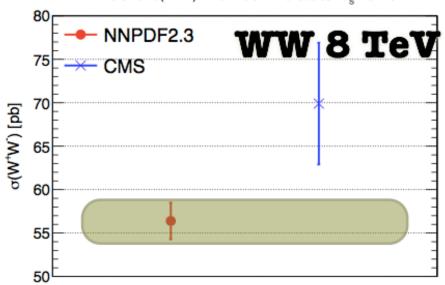
Collider	Ref	Ref+TeV	Ref +TeV+LHC7	Ref+TeV+LHC7+8
Tevatron	7.26 ± 0.12	-	-	-
LHC 7 TeV	172.5 ± 5.2	172.7 ± 5.1	-	-
LHC 8 TeV	247.8 ± 6.6	248.0 ± 6.5	245.0 ± 4.6	-
LHC 14 TeV	976.5 ± 16.4	976.2 ± 16.3	969.8 ± 12.0	969.6 ± 11.6

8TeV/7TeV and I4TeV/8TeV cross section ratios: the ultimate precision

MLM and J.Rojo, arXiv:1206.3557

E_{1,2}: different beam energies


X,Y: different hard processes


$$R_{E_2/E_1}(X) \equiv \frac{\sigma(X, E_2)}{\sigma(X, E_1)} \longrightarrow$$

- TH: reduce "scale uncertainties"
- TH: reduce parameters' systematics: PDF, m_{top} , α_S , at E_1 and E_2 are fully correlated
- TH: reduce MC modeling uncertainties
- EXP: reduce syst's from acceptance, efficiency, JES,

$$R_{E_2/E_1}(X,Y) \equiv \frac{\sigma(X,E_2)/\sigma(Y,E_2)}{\sigma(X,E_1)/\sigma(Y,E_1)} \equiv \frac{R_{E_2/E_1}(X)}{R_{E_2/E_1}(Y)} \longrightarrow$$

- TH: possible further reduction in scale and PDF syst's
- EXP: no luminosity uncertainty
- EXP: possible further reduction in acc, eff, JES syst's (e.g. X,Y=W+,W-)

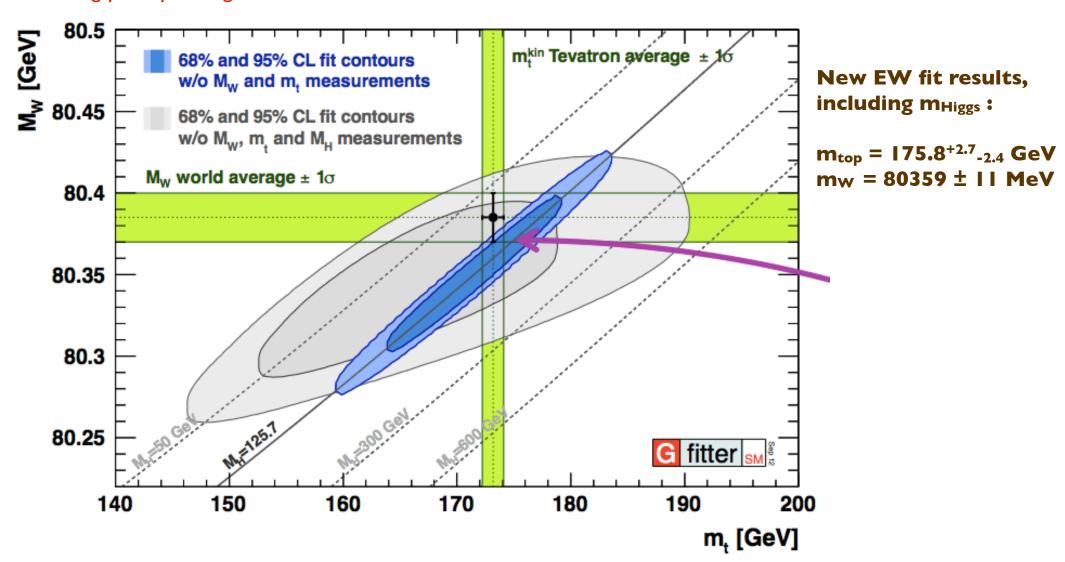
Diboson cross section ratios

8 over 7 TeV	$R^{ m th,nnpdf}$	$\delta_{\mathrm{PDF}}(\%)$	δ_{scales} (%)	
\overline{WW}	1.223	± 0.1	-0.4 - 0.2	
$gg \to WW$	1.330	± 0.2	-0.0 - 0.0	(scale errors missing)
WW/W	1.057	± 0.1	-0.3 - 0.2	
WZ	1.209	± 0.4	-1.2 - 0.4	
ZZ	1.165	± 0.4	-0.6 - 1.1	
$gg \to ZZ$	1.218	± 1.2	-0.0 - 0.0	(scale errors missing)
ZZ/Z	1.000	± 0.4	-0.5 - 1.1	
WW/WZ	1.012	± 0.4	-0.2 - 1.0	
WW/ZZ	1.050	± 0.4	-0.9 - 0.7	
WZ/ZZ	1.038	± 0.5	-1.7 - 0.4	

14 TeV / 8 TeV: NNPDF results

CrossSection	rth,nnpdf	$\delta_{ ext{PDF}}(\%)$	δ_{α_s} (%)	$\delta_{ m scales}$ (%)
	,	OPDF(70)	σ_{α_s} (70)	Oscales (70)
t ar t/Z	2.121	1.01	-0.84 - 0.75	0.42 - 1.10
$tar{t}$	3.901	0.84	-0.51 - 0.66	0.38 - 1.07
Z	1.839	0.37	-0.10 - 0.34	0.28 - 0.18
W^+	1.749	0.41	-0.03 - 0.27	0.31 - 0.18
W^-	1.859	0.39	-0.08 - 0.26	0.32 - 0.13
W^+/W^-	0.941	0.28	0.00 - 0.05	0.00 - 0.04
W/Z	0.976	0.09	-0.07 - 0.04	0.04 - 0.02
ggH	2.564	0.36	-0.10 - 0.09	0.89 - 0.98
$ggH/tar{t}$	0.657	0.75	-0.56 - 0.41	1.38 - 1.05
$t\bar{t}(M_{tt} \geq 1 \text{TeV})$	8.215	2.09	0.00 - 0.00	1.61 - 2.06
$t\bar{t}(M_{ m tt} \geq 2{ m TeV})$	24.776	6.07	0.00 - 0.00	3.05 - 1.07
$\sigma \mathrm{jet}(p_T \geq 1\mathrm{TeV})$	15.235	1.72	0.00 - 0.00	2.31 - 2.19
$\sigma \mathrm{jet}(p_T \geq 2\mathrm{TeV})$	181.193	6.75	0.00 - 0.00	3.66 - 5.76

- δ <10⁻² in W[±] ratios: absolute calibration of 14 vs 8 TeV lumi
- $\delta \sim 10^{-2}$ in $\sigma(tt)$ ratios
- $\delta_{scale} < \delta_{PDF}$ at large p_{T}^{jet} and M_{tt} : constraints on PDFs


14 TeV / 8 TeV: NNPDF vs MSTW vs ABKM

Ratio	$r^{ m th,nnpdf}$	$\delta_{ ext{PDF}}(\%)$	$r^{ m th,mstw}$	$\delta_{ ext{PDF}}(\%)$	$\Delta^{mstw}(\%)$	$r^{ m th,abkm}$	$\delta_{ m ABKM}(\%)$	Δ^{abkm} (%)
$tar{t}/Z$	2.121	1.01	2.108	0.95	0.93	2.213	1.87	-3.99
$tar{t}$	3.901	0.84	3.874	0.91	0.97	4.103	1.87	-4.90
Z	1.839	0.37	1.838	0.41	0.04	1.855	0.34	-0.87
W^+	1.749	0.41	1.749	0.49	0.03	1.767	0.30	-0.98
W^-	1.859	0.39	1.854	0.42	0.21	1.879	0.32	-1.11
W^+/W^-	0.941	0.28	0.943	0.19	-0.19	0.940	0.13	0.13
W/Z	0.976	0.09	0.976	0.10	0.03	0.977	0.10	-0.14
ggH	2.564	0.36	2.572	0.57	-0.30	2.644	0.66	-3.12
$ggH/tar{t}$	0.657	0.75	0.000	0.00	0.00	0.000	0.00	0.00
$t\bar{t}(M_{tt} \geq 1 { m TeV})$	8.215	2.09	7.985	2.02	3.12	8.970	3.58	-8.83
$t\bar{t}(M_{ m tt} \geq 2{ m TeV})$	24.776	6.07	23.328	4.32	6.05	23.328	4.93	6.05
$\sigma \mathrm{jet}(p_T \geq 1\mathrm{TeV})$	15.235	1.72	15.193	1.62	-1.33	14.823	1.84	1.13
$\sigma \mathrm{jet}(p_T \geq 2\mathrm{TeV})$	181.193	6.75	191.208	3.34	-6.52	174.672	4.94	2.69

• Several examples of 3-4 σ discrepancies between predictions of different PDF sets, even in the case of W and Z rates

Top quark and W mass

Inclusion of m_H in EW fits greatly tightens correlation between m_W and m_{top} introducing perhaps a slight tension?

Continued improvement in the direct determination of m_W and m_{top} remains a high priority

Tevatron combined W mass: M_W =80387±16 MeV

Tevatron+LEP2 combined W mass: M_W =80385±15 MeV

Uncertainties

Uncertainty	D0	CDF	Largely stat.
Lepton energy scale/resn/modelling	17	7	in origin
Hadronic recoil energy scale and resolution	5	6	10 MeV
Backgrounds	2	3	Largely theory
Parton distributions	11	10	in origin
QED radiation	7	4 -	12 MeV
$p_T(W)$ model	2	5	12 WeV
Total systematic uncertainty	22	15	
W-boson statistics	13	12	
Total uncertainty	26 MeV	19 MeV	

90% of M_W information is in transverse mass

Oliver Stelzer-Chilton TRIUMF 29

Top quark mass

Tevatron combination:

 $m_{top} = 173.20 \pm 0.51$ (stat) ± 0.71 (syst) = 173.20 ± 0.87 GeV

LHC combination:

TOPLHC NOTE

ATLAS-CONF-2013-102 CMS PAS TOP-13-005

September 15, 2013

Combination of ATLAS and CMS results on the mass of the top-quark using up to 4.9 fb⁻¹ of $\sqrt{s} = 7$ TeV LHC data

The ATLAS and CMS Collaborations

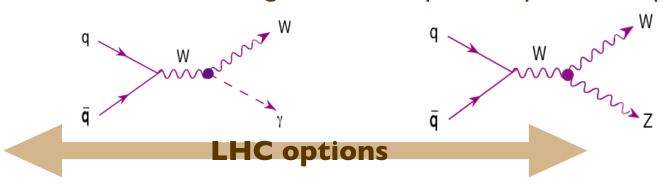
 $m_{top} = 173.29 \pm 0.23 \text{ (stat)} \pm 0.92 \text{ (syst)} = 173.29 \pm 0.95 \text{ GeV}$

World average:

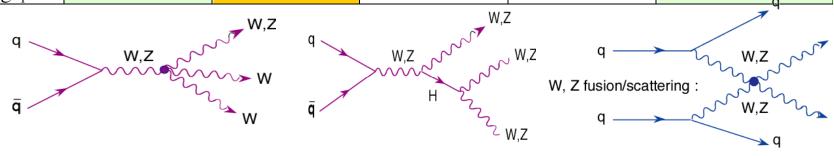
LHC/Tevatron NOTE

ATLAS-CONF-2014-008 CDF Note 11071 CMS PAS TOP-13-014 D0 Note 6416

March 17, 2014



First combination of Tevatron and LHC measurements of the top-quark mass


$$m_{top} = 173.29 \pm 0.27 \text{ (stat)} \pm 0.71 \text{ (syst)} = 173.29 \pm 0.76 \text{ GeV}$$

Precise determinations of the self-couplings of EW gauge bosons

5 parameters describing weak and EM dipole and quadrupole moments of gauge bosons. The SM predicts their value with accuracies at the level of **IO**⁻³, which is therefore the goal of the required experimental precision

Coupling	14 TeV	14 TeV	28 TeV	28 TeV	LC
	100 fb ⁻¹	1000 fb ⁻¹	100 fb ⁻¹	1000 fb ⁻¹	500 fb ⁻¹ , 500 GeV
λ_{γ}	0.0014	0.0006	0.0008	0.0002	0.0014
$\lambda_{ m Z}$	0.0028	0.0018	0.0023	0.009	0.0013
$\Delta \kappa_{\gamma}$	0.034	0.020	0.027	0.013	0.0010
$\Delta \kappa_{z}$	0.040	0.034	0.036	0.013	0.0016
g_1^Z	0.0038	0.0024	0.0023	0.0007	0.0050 _g

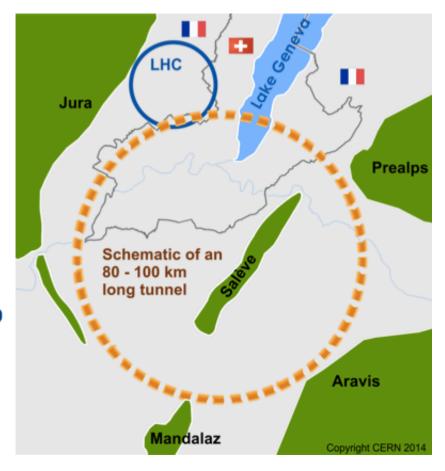
(LO rates, CTEQ5M, $k \sim 1.5$ expected for these final states)								
Process	WWW	WWZ	ZZW	ZZZ	WWWW	WWWZ		
$N(m_H = 120 \text{ GeV})$	2600	1100	36	7	5	0.8		
$N(m_H = 200 \text{GeV})$	7100	2000	130	33	20	1.6		

pp collisions beyond the LHC

Febr 2014

Design study for Future Circular Colliders

https://espace2013.cern.ch/fcc/


Forming an international collaboration to study:

pp-collider (FCC-hh)
 → defining infrastructure requirements

~16 T \Rightarrow 100 TeV pp in 100 km ~20 T \Rightarrow 100 TeV pp in 80 km

- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- 80-100 km infrastructure in Geneva area

M.Benedikt

Future Circular Colliders Study Kickoff Meeting

12-15 February 2014 University of Geneva, Geneva Europe/Zurich timezone

Webcast: Please note that this event will be available live via the Webcast Service.

Future Circular Collider Kickoff Meeting

Search

Machines and Physics Technologies R&D activities infrastructure experiments detectors conceptual designs **Planning** MLM Hadron physics Infrastructure High-field magnets **F.Gianotti** experiments A.Ball interface, integration Hadron collider Superconducting RF systems conceptual design J. Ellis e+ e- coll. physics P. Janot experiments A. Blondel Hadron injectors Cryogenics interface, integration M. Klein e- - p physics and Lepton collider Specific technologies integration aspects conceptual design Safety, operation,

Target: conceptual design report (CDR) ready for the next Strategy Group assessment (~2018)

Planning

energy management environmental aspects

 Goal of this effort: Conceptual design report (CDR) and first cost estimate ready for the next Strategy Group assessment (~2018)

- Goal of this effort: Conceptual design report (CDR) and first cost estimate ready for the next Strategy Group assessment (~2018)
- Likely next step: Commission a full technical design report (TDR), ready for the following Strategy Group assessment (~2024)

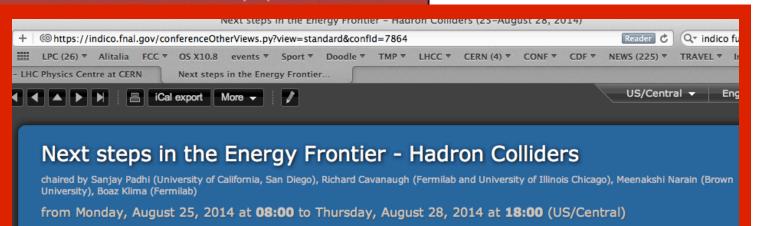
- Goal of this effort: Conceptual design report (CDR) and first cost estimate ready for the next Strategy Group assessment (~2018)
- Likely next step: Commission a full technical design report (TDR), ready for the following Strategy Group assessment (~2024)
- Plausible next step at 2024 Strategy Review: Review TDR and updated cost estimate, in view of LHC14@300fb⁻¹ results and more. Recommend CERN Council to approve, abort, or postpone.

- Goal of this effort: Conceptual design report (CDR) and first cost estimate ready for the next Strategy Group assessment (~2018)
- Likely next step: Commission a full technical design report (TDR), ready for the following Strategy Group assessment (~2024)
- Plausible next step at 2024 Strategy Review: Review TDR and updated cost estimate, in view of LHC14@300fb⁻¹ results and more. Recommend CERN Council to approve, abort, or postpone.

==> we have ~10 years to articulate the physics case, focusing on the physics discussion and on the study of LHC results

Workshop on Physics at a 100 TeV Collider

April 23-25, 2014, SLAC


Parallel activities in the world

1st CFHEP Symposium on circular collider physics (23-February 25, 2014)

Organizing Committee
Timothy Cohen (SLAC)
Mike Hance (LBNL)
Jay Wacker (SLAC)
Michael Peskin (SLAC)
Nima Arkani-Hamed (IAS)

www.slac.stanford.edu/th/100TeV.html

Asia/Shanghai timezone

Higgs physics

NLO rates

 $\mathbf{R}(\mathbf{E}) = \sigma(\text{E TeV})/\sigma(14 \text{ TeV})$

	σ(14 TeV)	R(33)	R(40)	R(60)	R(80)	R(100)
ggH	50.4 pb	3.5	4.6	7.8	11.2	14.7
VBF	4.40 pb	3.8	5.2	9.3	13.6	18.6
WH	1.63 pb	2.9	3.6	5.7	7.7	9.7
ZH	0.90 pb	3.3	4.2	6.8	9.6	12.5
ttH	0.62 pb	7.3	11	24	41	61
НН	33.8 fb	6.1	8.8	18	29	42

In several cases, the gains in terms of "useful" rate are much bigger. E.g. when we are interested in the large-invariant mass behaviour of the final states:

$$\sigma(ttH, p_T^{top} > 500 \text{ GeV}) \Rightarrow R(100) = 250$$

Task: explore new opportunities for measurements, to reduce systematics with independent/complementary kinematics, backgrounds, etc.etc.

Examples: how much can we reduce jet veto systematics by "measuring" jet rates/vetoes in "clean" channels like $H \rightarrow ZZ^* / \gamma \gamma$?

Additional Higgs bosons

- ⇒ commonly present in most SM extensions. E.g. <u>at least 2 H doublets is mandatory in SUSY</u>
- ⇒ implications for flavour, CPV, EW baryogenesis, ...

Difficult scenarios for searches at LHC:

- suppressed couplings to W/Z
- large masses

Problems addressed at 100 TeV thanks to higher rates, higher M reach

Additional Higgs bosons

- ⇒ commonly present in most SM extensions. E.g. at least 2 H doublets is mandatory in SUSY
- ⇒ implications for flavour, CPV, EW baryogenesis, ...

Difficult scenarios for searches at LHC:

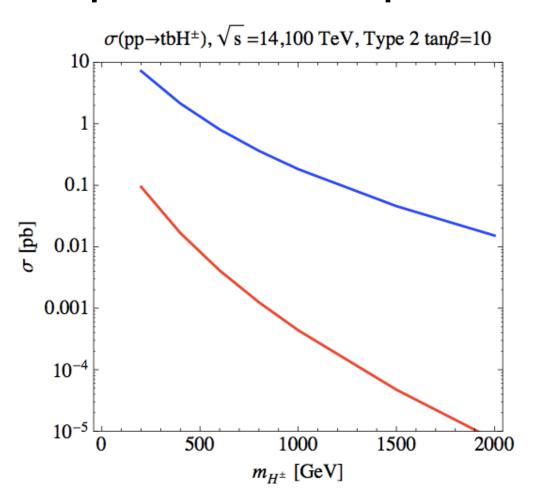
- suppressed couplings to W/Z
- large masses

Problems addressed at 100 TeV thanks to higher rates, higher M reach

E.g. 2HDM in SUSY

$$m_h, m_H, m_A, m_{H^\pm}$$

$$\tan \beta \equiv \langle \Phi_2 \rangle / \langle \Phi_1 \rangle$$


Fine tuning and naturalness: (N.Craig, BSM@100 Wshop)

$$\Delta \approx \sin^2(2\beta) \frac{m_H^2}{m_h^2}$$

$$\Delta(\tan \beta = 50) \le 1 - m_H \lesssim 3.1 \text{ TeV}$$

Extra H can be heavy, well above LHC reach, but cannot be arbitrarily heavy

Example: associated H[±] t b production

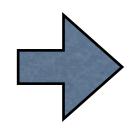
(N.Craig, BSM@100 Wshop)

Generic features of very heavy H production/decay

Decoupling from W/Z

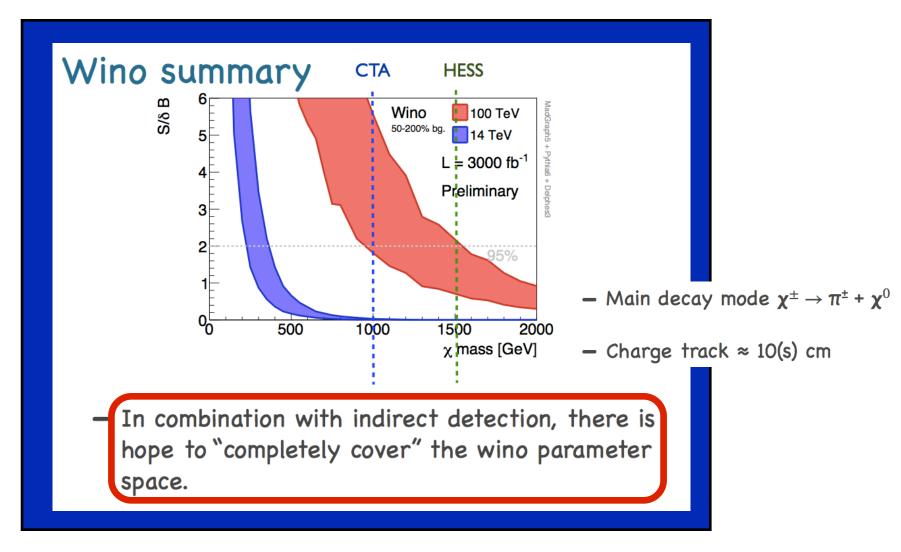
- "narrow", since $\Gamma \propto m_H$ (cfr $\Gamma \propto m_{H^3}$ when decaying to W/Z)
- H/A →hh, tt dominate (boosted regime)

WIMP DM search


Can a 100 TeV collider detect or rule out WIMP scenarios for DM?

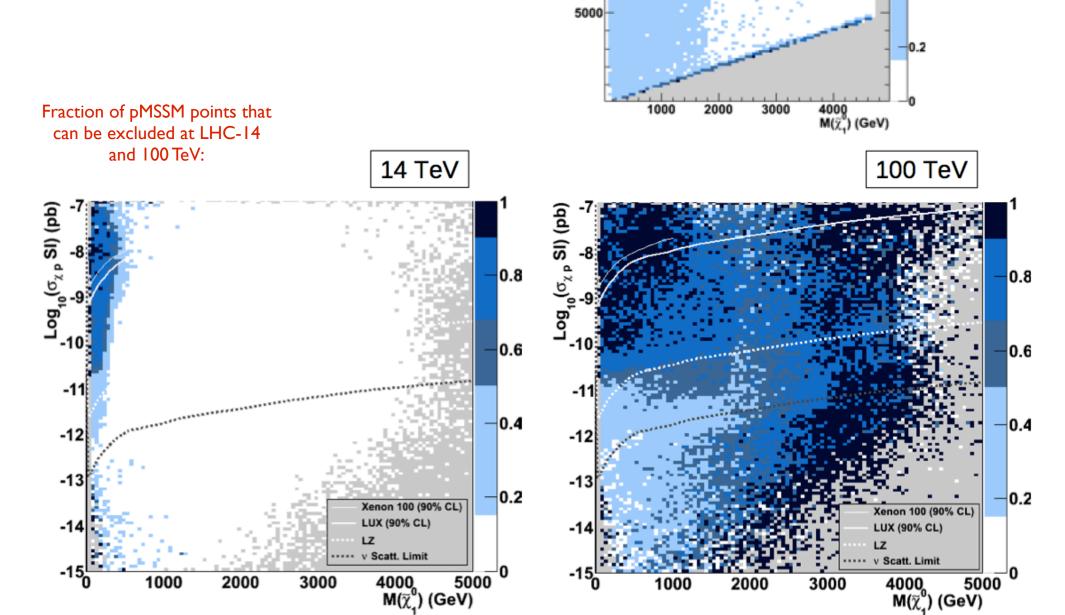
DM overclosure upper limits:

 $M_{WIMP} < 1.8 \text{ TeV } (g^2/0.3) \Rightarrow$


wino: m≤3 TeV

higgsino: m≤1.1 TeV

In anomaly-mediated SUSY or split SUSY ⇒


m_{gluino} ≤ 10 TeV

L.T. Wang, (see also P.Schwaller and T.Cohen) BSM@100 TeV Workshop

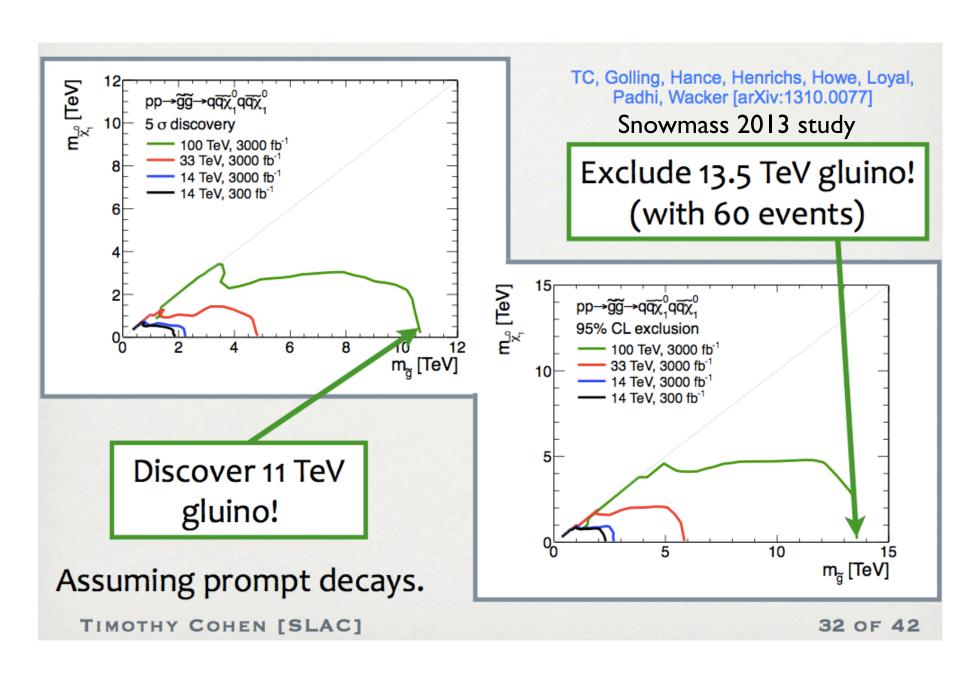
Coverage of pMSSM parameter space using DM constraints and direct searches at 14 and 100 TeV

Arbey, Battaglia, Mahmoudi

15000

10000

Fraction of pMSSM


points allowed by

DM over-closure

constraints

8.0

0.4

T.Cohen, BSM@100 TeV Workshop, http://indico.cern.ch/event/284800/

Production and study of SM particles and processes

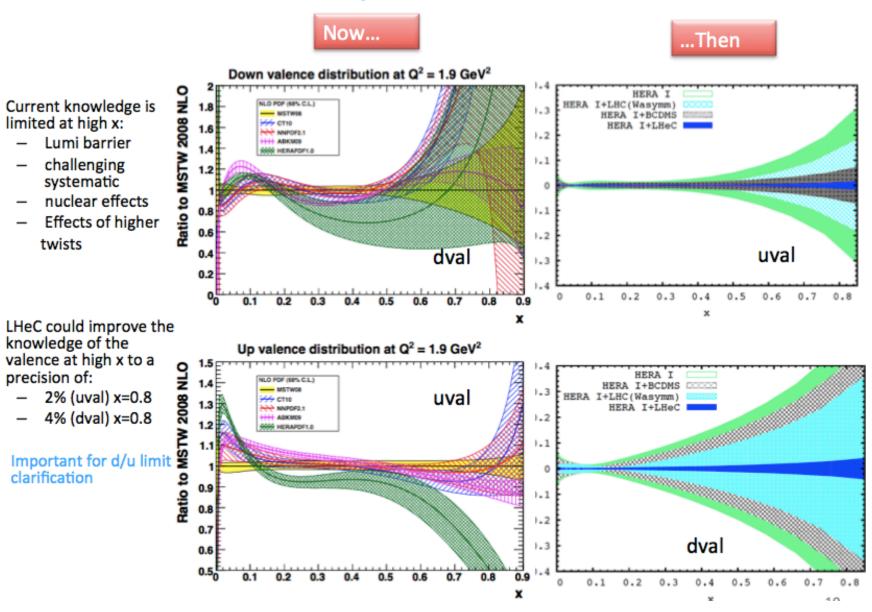
Improving knowledge of SM interactions contributes to improving sensitivity to BSM searches

The continued exploration of the properties of SM interactions, both in the EW and QCD sector, remains a goal of any future facility, and provides benchmarks for the performance and optimization of the experiments

Example: FCC-ee

Quantity	Physics	Present precision		TLEP Stat errors	Possible TLEP Syst. Errors	TLEP key	Challenge
M _z (keV)	Input	91187500 ±2100	Z Line shape scan	5 keV	<100 keV	E_cal	QED corrections
$\Gamma_{_{_{Z}}}$ (keV)	Δρ (Τ) (no Δα!)	2495200 ±2300	Z Line shape scan	8 keV	<100 keV	E_cal	QED corrections
R_ℓ	$\alpha_{s,\delta}$	20.767 ± 0.025	Z Peak	0.0001	<0.001	Statistics	QED corrections
N	PMNS Unitarity sterile γ's	2.984 ±0.008	Z Peak	0.00008	<0.004		Bhabha scat.
N	PMNS Unitarity sterile ν's	2.92 ±0.05	$(\gamma+Z_{inv})$ $(\gamma+Z\rightarrow \ell\ell)$	0.001 (161 GeV)	<0.001	Statistics	
R _b	$\delta_{_{b}}$	0.21629 ±0.00066	Z Peak	0.000003	<0.000060	Statistics, small IP	Hemisphere correlations
A _{LR}	$\Delta \rho, \varepsilon_{3}^{} \Delta \alpha$ (T, S)	0.1514 ±0.0022	Z peak, polarized	0.000015	<0.000015	4 bunch scheme, > 2exp	Design experiment
M W MeV/c2	$\Delta \rho, \varepsilon_{3}, \varepsilon_{2}, \Delta \alpha$ (T, S, U)	80385 ± 15	Threshold (161 GeV)	0.3 MeV	<0.5 MeV	E_cal & Statistics	QED corections
m top MeV/c2	Input	173200 ± 900	Threshold scan	10 MeV	<10MeV	E_cal & Statistics	Theory interpretation 40 MeV?

http://CERN.CH/tlep


TLEP/FCC-ee Physics Report: http://arxiv.org/abs/arXiv:1308.6176

Example: FCC-eh

Valence quark distributions

http://CERN.CH/lhec LHeC Physics Report: http://arxiv.org/abs/arXiv:1206.2913

10 ab⁻¹ at 100 TeV imply:


```
⇒ precision measurements
10^{10} Higgs bosons => 10^4 x today
                                                          ⇒ rare decays, FCNC probes
                                                          (H \rightarrow e\mu, t \rightarrow cV (V=Z,g, \gamma), t \rightarrow cH, ....)
10^{12} top quarks => 5 \cdot 10^4 x today
                                                          \Rightarrow CP violation
    =>10<sup>12</sup> W bosons from top decays
    =>10<sup>12</sup> b hadrons from top decays (particle/antiparticle tagged)
    =>10^{11} t \rightarrow W \rightarrow taus \Rightarrow rare decays \tau \rightarrow 3\mu, \mu\gamma, CPV
    => few \times 10^{11} t \rightarrow W \rightarrow charm hadrons
                                              \Rightarrow rare decays D\rightarrow \mu^+\mu^-, ..., CPV
```

The possibility of detectors dedicated to final states in the 0.1 - I TeV region deserves <u>very</u> serious thinking:

focus on Higgs, DM and weakly interacting new particles, top, W

W decays

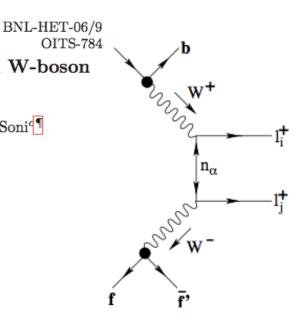
oW mass ??

o SM rare decays -- Examples:

$$W^{\pm} \rightarrow \pi^{\pm} \gamma$$
 BR_{SM} ~ 10^{-9} , CDF $\leq 6.4 \times 10^{-5}$

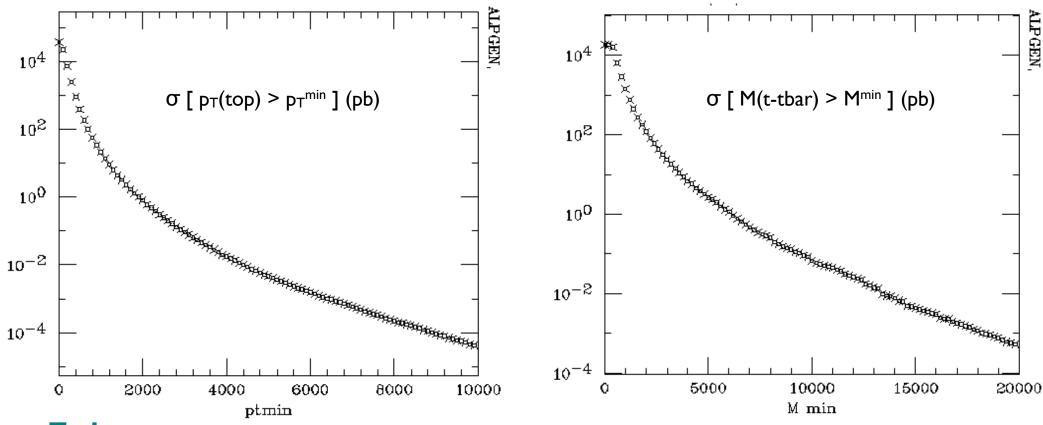
$$W^{\pm} \rightarrow D_s^{\pm} \gamma$$
 $BR_{SM} \sim 10^{-9}, CDF \leq 1.2 \times 10^{-2}$

What is the theoretical interest in measuring these rates? What else?


o SM inclusive decays -- Examples:

R = BR_{had} / BR_{lept}: what do we learn? Achievable precision for CKM, α_S , ...?

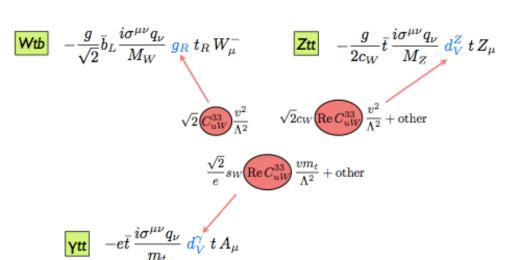
o BSM decays -- Are there interesting channels to consider? -- Example

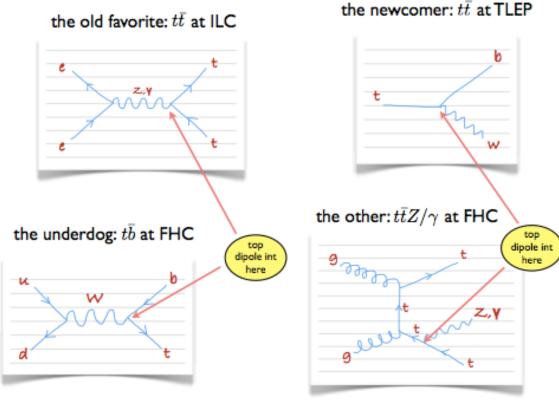

Majorana neutrinos and lepton-number-violating signals in top-quark and W-boson rare decays

Shaouly Bar-Shalom a Nilendra G. Deshpande b Gad Eilam a Jing Jiang b and Amarjit Soni \P

Inclusive t-tbar production: distributions

Tasks:


- o explore tagging of multi-TeV tops
- o study mass resolution for resonance searches, define search potential (σ_{BSM} vs M_{BSM})
- o explore opportunities for top coupling studies at large Q


Example: what can we learn from $10^4 \text{ pp} \rightarrow \text{W}^* \rightarrow \text{top+ bottom with M(tb)} > 7 \text{ TeV ?}$

Probing top couplings

Weak moments: the contenders

JA Aguilar-Saavedra

Projected sensitivity reach:

ILC
$$\operatorname{Re} C_{uW}^{33}/\Lambda^2 \in [-0.128, 0.140] \, \operatorname{TeV}^{-2}$$
 95% CL $\Lambda > 2.7\sqrt{\operatorname{Re} C} \, \operatorname{TeV}$

$$\Lambda > 2.7 \sqrt{{\rm Re}\, C} \,\, {\rm TeV}$$

FCC-ee
$$\operatorname{Re} C_{uW}^{33}/\Lambda^2 \in [-0.083, 0.083] \, \text{TeV}^{-2}$$
 95% CL $\Lambda > 3.5\sqrt{\operatorname{Re} C} \, \, \text{TeV}$

$$\Lambda > 3.5\sqrt{\mathrm{Re}\,C}~\mathrm{TeV}$$

$$\operatorname{Re} C_{uW}^{33}/\Lambda^2 \in [-0.043, 0.046] \text{ TeV}^{-2}$$
 95% CL

$$\Lambda > 4.7\sqrt{C}~{
m TeV}$$

 LHC measurements of SM phenomena moved to a new phase of quantitative and precision level

- LHC measurements of SM phenomena moved to a new phase of quantitative and precision level
- It's a great reward for theorists to see the fruits of years of work developing tools

- LHC measurements of SM phenomena moved to a new phase of quantitative and precision level
- It's a great reward for theorists to see the fruits of years of work developing tools
 - theory/data agreement beyond expectations and hopes

- LHC measurements of SM phenomena moved to a new phase of quantitative and precision level
- It's a great reward for theorists to see the fruits of years of work developing tools
 - theory/data agreement beyond expectations and hopes
 - thanks to the expt's for the thorough and incisive tests of theory

- LHC measurements of SM phenomena moved to a new phase of quantitative and precision level
- It's a great reward for theorists to see the fruits of years of work developing tools
 - theory/data agreement beyond expectations and hopes
 - thanks to the expt's for the thorough and incisive tests of theory
 - still, interesting open issues and problems to keep the challenge up

- LHC measurements of SM phenomena moved to a new phase of quantitative and precision level
- It's a great reward for theorists to see the fruits of years of work developing tools
 - theory/data agreement beyond expectations and hopes
 - thanks to the expt's for the thorough and incisive tests of theory
 - still, interesting open issues and problems to keep the challenge up
- The Higgs is there ... but where is everyone else ??

- LHC measurements of SM phenomena moved to a new phase of quantitative and precision level
- It's a great reward for theorists to see the fruits of years of work developing tools
 - theory/data agreement beyond expectations and hopes
 - thanks to the expt's for the thorough and incisive tests of theory
 - still, interesting open issues and problems to keep the challenge up
- The Higgs is there ... but where is everyone else ??
- The LHC physics programme is immensely broad and diversified

- LHC measurements of SM phenomena moved to a new phase of quantitative and precision level
- It's a great reward for theorists to see the fruits of years of work developing tools
 - theory/data agreement beyond expectations and hopes
 - thanks to the expt's for the thorough and incisive tests of theory
 - still, interesting open issues and problems to keep the challenge up
- The Higgs is there ... but where is everyone else ??
- The LHC physics programme is immensely broad and diversified
- While the search for BSM physics and the precision study of EWSB remain the main goals, greatly valuable information about SM dynamics is emerging from the data

- LHC measurements of SM phenomena moved to a new phase of quantitative and precision level
- It's a great reward for theorists to see the fruits of years of work developing tools
 - theory/data agreement beyond expectations and hopes
 - thanks to the expt's for the thorough and incisive tests of theory
 - still, interesting open issues and problems to keep the challenge up
- The Higgs is there ... but where is everyone else ??
- The LHC physics programme is immensely broad and diversified
- While the search for BSM physics and the precision study of EWSB remain the main goals, greatly valuable information about SM dynamics is emerging from the data
- The I00 TeV collider is far away, but offers the richest prospects for the long-term future of HEP