Lepton Flavour Violation in SUSY GUTs

Jonathan Parry

Centre of High Energy Physics,
Tsinghua University

November 7, 2006

‘TeV scale Physics at the LHC’, CCAST Beijing,
Sept 15th 2006
Lepton Flavour Violation in SUSY SO(10)

Jonathan Parry

Centre of High Energy Physics,
Tsinghua University

November 7, 2006

‘TeV scale Physics at the LHC’, CCAST Beijing,
Sept 15th 2006
\[U_{e3} \text{ and BR}(\mu \rightarrow e\gamma) \text{ in SUSY SO}(10) \]

Jonathan Parry

Centre of High Energy Physics,
Tsinghua University

November 7, 2006

‘TeV scale Physics at the LHC’, CCAST Beijing,
Sept 15th 2006
U_{e3} and BR($\mu \rightarrow e\gamma$) in SUSY SO(10)

Jonathan Parry

Centre of High Energy Physics,
Tsinghua University

November 7, 2006

‘TeV scale Physics at the LHC’, CCAST Beijing,
Sept 15th 2006
Outline

- Introduction to $SO(10)$
- Two Simple examples
- Invariance of the Casas-Ibara R matrix
- U_{e3} versus $\mu \rightarrow e\gamma$
- Summary
General SO(10)

Each SM family, plus a right-handed neutrino in a single 16-dim rep.

\[W_{SO(10)}^Y = h_{ij}^{10} 16_i 16_j 10_H + h_{ij}^{126} 16_i 16_j 126_H + h_{ij}^{120} 16_i 16_j 120_H \]

Here the matrices \(h^{10,126} \) are symmetric and \(h^{120} \) is anti-symmetric.

\[
\begin{align*}
16 \ 16 \ 10 & \supset 5(uu^c + \nu\nu^c) + \bar{5}(dd^c + ee^c) \\
16 \ 16 \ 126 & \supset 1\nu^c\nu^c + 15\nu\nu + 5(uu^c - 3\nu\nu^c) + 4\bar{5}(dd^c - 3ee^c) \\
16 \ 16 \ 120 & \supset 5\nu\nu^c + 45uu^c + \bar{5}(dd^c + ee^c) + 4\bar{5}(dd^c - 3ee^c)
\end{align*}
\]

The resulting tree level mass matrices are as follows,

\[
\begin{align*}
M^u &= M_5^{10} + M_5^{126} + M_5^{120} \quad (3) \\
M^\nu &= M_5^{10} - 3M_5^{126} + M_5^{120} \quad (4) \\
M^d &= M_5^{10} + M_5^{126} + M_5^{120} + M_5^{120} \quad (5) \\
M^e &= M_5^{10} - 3M_5^{126} + M_5^{120} - 3M_5^{120} \quad (6) \\
M^\nu_{LL} &= M^{15}_{126} \quad (7) \\
M^\nu_R &= M^1_{126} \quad (8)
\end{align*}
\]
General SO(10)

Each SM family, plus a right-handed neutrino in a single 16-dim rep.

\[
W^Y_{\text{SO}(10)} = h_{ij}^{10} 16_i 16_j 10_H + h_{ij}^{126} 16_i 16_j 126_H + h_{ij}^{120} 16_i 16_j 120_H
\] \hspace{1cm} (9)

Here the matrices \(h^{10,126} \) are symmetric and \(h^{120} \) is anti-symmetric.

\[
\begin{align*}
16 & \ 16 & 10 \ni 5(uu^c + \nu\nu^c) + 5(dd^c + ee^c) \\
16 & \ 16 & 126 \ni 1\nu^c\nu^c + 15\nu\nu + 5(uu^c - 3\nu\nu^c) + 45(dd^c - 3ee^c) \\
16 & \ 16 & 120 \ni 5\nu\nu^c + 45uu^c + 5(dd^c + ee^c) + 45(dd^c - 3ee^c)
\end{align*}
\] \hspace{1cm} (10)

The resulting tree level mass matrices are as follows,

\[
\begin{align*}
M^u &= M^5_{10} + M^5_{126} + M^{45}_{120} \hspace{1cm} (11) \\
M^\nu &= M^5_{10} - 3M^5_{126} + M^5_{120} \hspace{1cm} (12) \\
M^d &= M^5_{10} + M^{45}_{126} + M^5_{120} + M^{45}_{120} \hspace{1cm} (13) \\
M^e &= M^5_{10} - 3M^{45}_{126} + M^5_{120} - 3M^{45}_{120} \hspace{1cm} (14) \\
M^\nu_{LL} &= M^1_{126} \hspace{1cm} (15) \\
M^\nu_R &= M^1_{126} \hspace{1cm} (16)
\end{align*}
\]
General SO(10)

Each SM family, plus a right-handed neutrino in a single 16-dim rep.

$$W_{\text{SO}(10)}^Y = h_{ij}^{10}16_i16_j10_H + h_{ij}^{126}16_i16_j126_H + h_{ij}^{120}16_i16_j120_H$$ \tag{17}

Here the matrices $h^{10,126}$ are symmetric and h^{120} is anti-symmetric.

$$16\ 16\ 10 \supset 5(uu^c + \nu^c) + \bar{5}(dd^c + ee^c)$$
$$16\ 16\ 126 \supset 1\nu^c\nu^c + 15\nu\nu + 5(uu^c - 3\nu^c) + 45(dd^c - 3ee^c)$$ \tag{18}
$$16\ 16\ 120 \supset 5\nu\nu + 45uu^c + \bar{5}(dd^c + ee^c) + 4\bar{5}(dd^c - 3ee^c)$$

The resulting tree level mass matrices are as follows,

$$M^u = M_{10}^5 + M_{126}^5 + M_{120}^{45}$$ \tag{19}
$$M^\nu = M_{10}^5 - 3M_{126}^5 + M_{120}^5$$ \tag{20}
$$M^d = M_{10}^5 + M_{126}^{45} + M_{120}^5 + M_{120}^{45}$$ \tag{21}
$$M^e = M_{10}^5 - 3M_{126}^{45} + M_{120}^5 - 3M_{120}^{45}$$ \tag{22}
$$M_{LL}^\nu = M_{126}^{15}$$ \tag{23}
$$M_{R}^\nu = M_{126}^1$$ \tag{24}
General SO(10)

Each SM family, plus a right-handed neutrino in a single 16-dim rep.

\[W_{SO(10)}^Y = h_{ij}^{10} 16_i 16_j 10_H + h_{ij}^{126} 16_i 16_j 126_H + h_{ij}^{120} 16_i 16_j 120_H \] \hspace{1cm} (25)

Here the matrices \(h^{10,126} \) are symmetric and \(h^{120} \) is anti-symmetric.

\[
16 \hspace{0.2cm} 16 \hspace{0.2cm} 10 \hspace{0.2cm} \supset \hspace{0.2cm} 5(uu^c + \nu \nu^c) + 5(dd^c + ee^c) \\
16 \hspace{0.2cm} 16 \hspace{0.2cm} 126 \hspace{0.2cm} \supset \hspace{0.2cm} 1\nu^c \nu^c + 15\nu \nu + 5(uu^c - 3\nu \nu^c) + 45(dd^c - 3ee^c) \\
16 \hspace{0.2cm} 16 \hspace{0.2cm} 120 \hspace{0.2cm} \supset \hspace{0.2cm} 5\nu \nu^c + 45uu^c + 5(dd^c + ee^c) + 45(dd^c - 3ee^c) \] \hspace{1cm} (26)

The resulting tree level mass matrices are as follows,

\[
M^u = M^5_{10} + M^5_{126} + M^{45}_{120} \\
M^\nu = M^5_{10} - 3M^5_{126} + M^5_{120} \\
M^d = M^5_{10} + M^{45}_{126} + M^5_{120} + M^{45}_{120} \\
M^e = M^5_{10} - 3M^{45}_{126} + M^5_{120} - 3M^{45}_{120} \\
M^\nu_{LL} = M^{15}_{126} \\
M^\nu_R = M^1_{126} \] \hspace{1cm} (27-32)
Two simple models of Y_ν mixing

The size of mixing in Y_ν determines LFV rates

Masiero et.al. hep-ph/0209303

- **Case I:** CKM type mixing in $Y_\nu \implies$ small LFV rates
 - $\tan\beta = 5$ and $\tan\beta = 50$

- **Case II:** MNS type mixing in $Y_\nu \implies$ large LFV rates
 - $\tan\beta = 5$ and $\tan\beta = 50$
I: CKM type mixings in Y_ν

Introduce separate Higgs couplings for the up and down type fermions.

$$W_{\text{SO}(10)} = \frac{1}{2} h_{ij}^{u}16i16j10_u + \frac{1}{2} h_{ij}^{d,e}16i16j10_d + \frac{1}{2} h_{ij}^{R}16i16j126$$ \hspace{1cm} (33)

Leading to the $MSSM + \nu_R$ superpotential,

$$W = h_{ij}^{u}Q_iu_jH_u + h_{ij}^{\nu}L_i\nu_jH_u + h_{ij}^{d}Q_i d_jH_d + h_{ij}^{e}L_i e_jH_d + \frac{1}{2} M_{ij}^{R} \nu_i \nu_j$$ \hspace{1cm} (34)

Here, $h^u = h^\nu$ and $h^d = h^e$. Here the symmetric h^u is diagonalised by,

$$h_{\text{diag}}^u = V_{\text{CKM}} h^u V_{\text{CKM}}^T$$ \hspace{1cm} (35)

so that,

$$h^\nu = V_{\text{CKM}}^T h_{\text{diag}}^u V_{\text{CKM}}$$ \hspace{1cm} (36)

The type I seesaw mechanism then gives,

$$m_\nu = h^\nu M_R^{-1} h^\nu T v_u^2$$ \hspace{1cm} (37)

So that the Majorana Mass matrix is of the form,

$$M_R = v_u^2 V_{\text{CKM}}^T h_{\text{diag}}^u V_{\text{CKM}} U_{\text{MNS}} (m_{\nu}^{\text{diag}})^{-1} U_{\text{MNS}}^T V_{\text{CKM}}^T h_{\text{diag}}^u V_{\text{CKM}}$$ \hspace{1cm} (38)
II: MNS type mixings in Y_ν

Introduce separate Higgs couplings for the up and down type fermions. To get MNS like mixing we must introduce an asymmetrical Higgs coupling, Φ.

$$W_{SO(10)} = \frac{1}{2} h_{ij}^{u,\nu} 16i16j10u + \frac{1}{2} h_{ij}^{d,\nu} 16i16j126 $$

(39)

If we write it in $SU(5)$ language then we have,

$$W_{SU(5)} = \frac{1}{2} h_{ii}^u 10i10j5u + h_{ii}^{\nu,\bar{5}} 1i5u + h_{ij}^d 10i\bar{5}j\bar{5}d + \frac{1}{2} M_{ij} 1i1j $$

(40)

Here, $h_{ii}^u = h_{ii}^{\nu}$. Rotating to the diagonal down quark basis,

$$h_{\text{diag}^d} = V_{\text{CKM}}^T h_{\text{diag}^d} U_{\text{MNS}}^T $$

(41)

And,

$$h_{\nu}^u = V_{\text{CKM}}^T h_{\text{diag}^u} V_{\text{CKM}} $$

(42)

$$h_{\nu}^\nu = U_{\text{MNS}} h_{\text{diag}^u} $$

(43)

The type I seesaw mechanism then gives,

$$m_{\nu} = h_{\nu}^\nu M_{\nu}^{-1} h_{\nu}^u T \nu^2 $$

(44)

Inverting this relation we have the right-handed neutrino mass,

$$M_{\nu} = h_{\nu}^\nu T m_{\nu}^{-1} h_{\nu}^u \nu^2 = h_{\text{diag}^u} (m_{\nu}^{-1})^{-1} h_{\text{diag}^u} \nu^2 = \text{diag} \left\{ \frac{m_u^2}{m_{\nu_1}}, \frac{m_c^2}{m_{\nu_2}}, \frac{m_t^2}{m_{\nu_3}} \right\} $$

(45)
The Casas-Ibara R matrix

Usually defined in the ‘Flavour Basis’; diagonal M_{RR}, Y_{LR}^E

$$\mathcal{L} = -Y_{LR}^E \text{diag} H_d \bar{L} E_R - Y_{LR}^\nu H_u \bar{L} \nu_R + \frac{1}{2} \nu_R^T M_{RR}^\text{diag} \nu_R$$ \hspace{1cm} (46)

The seesaw mass is,

$$m_\nu = v_u^2 Y_{LR}^\nu M_{RR}^\text{diag}^{-1} Y_{LR}^\nu$$ \hspace{1cm} (47)

Which is diagonalised by the MNS matrix,

$$m_\nu^\text{diag} = U_{MNS}^\dagger m_\nu U_{MNS}^*$$ \hspace{1cm} (48)

Inverting this equation gives you,

$$1 = v_u^2 (m_\nu^\text{diag})^{-1/2} U_{MNS}^\dagger Y_{LR}^\nu M_{RR}^\text{diag}^{-1/2} Y_{LR}^\nu U_{MNS}^* (m_\nu^\text{diag})^{-1/2}$$ \hspace{1cm} (49)

$$= RR^T$$ \hspace{1cm} (50)

So that,

$$R = v_u (m_\nu^\text{diag})^{-1/2} U_{MNS}^\dagger Y_{LR}^\nu M_{RR}^\text{diag}^{-1/2}$$ \hspace{1cm} (51)

Is the R matrix of Casas-Ibara, hep-ph/0103065, defined in the flavour basis.

$$Y_{LR}^\nu = U_{MNS} (m_\nu^\text{diag})^{1/2} R M_{RR}^\text{diag}^{1/2} 1/v_u$$ \hspace{1cm} (52)
Invariance of the Casas-Ibara R matrix

Recently S.F. King hep-ph/0610239, showed that R is basis invariant.

All models with the same, R matrix, are related by a simple basis rotation. i.e. Y_{LR}^E, Y_{LR}^ν, M_{RR} and R defines a ‘class’ of models:

In a general basis we have the seesaw mass,

$$m_\nu = v_u^2 Y_{LR}^\nu M_{RR}^{-1} Y_{LR}^{\nu T}$$ \hspace{1cm} (53)

Inverting again gives,

$$1 = v_u^2 m_\nu^{-1} Y_{LR}^\nu \sqrt{M_{RR}^{-1}} \sqrt{M_{RR}^{-1}}^{T} Y_{LR}^{\nu T} (m^{-1})^T = R R^T$$ \hspace{1cm} (54)

Where, $M_{RR}^{-1} = \sqrt{M_{RR}^{-1}} \sqrt{M_{RR}^{-1}}^{T}$ and $m_\nu = m_{\sqrt{\nu}} m_{\sqrt{\nu}}^{T}$

So that the R matrix in a general basis is,

$$R = v_u^2 m_{\sqrt{\nu}}^{-1} Y_{LR}^\nu \sqrt{M_{RR}^{-1}}$$ \hspace{1cm} (55)

And R is clearly basis invariant under a basis rotation,

$$m_{\sqrt{\nu}}^{-1} \rightarrow m_{\sqrt{\nu}}^{-1} V_{EL}^\dagger$$ \hspace{1cm} (56)

$$\sqrt{M_{RR}^{-1}} \rightarrow V_{\nu R} \sqrt{M_{RR}^{-1}}$$ \hspace{1cm} (57)

$$Y_{LR}^\nu \rightarrow V_{EL} Y_{LR}^\nu V_{\nu R}^\dagger$$ \hspace{1cm} (58)
R for our two simple models

• CKM mixing Case:

\[R = 1 \]

• MNS mixing Case:

\[R = 1 \]

The two models are related by a non-unitary transformation of the right handed neutrino field,

\[S^{-1} = V_{\text{CKM}}^T h_{\text{diag}}^{-1} V_{\text{CKM}} U_{\text{MNS}} h_{\text{diag}}^u \]

(59)

With R also invariant under,

\[Y_{\text{LR}}^{\nu} \rightarrow Y_{\text{LR}}^{\nu} S^{-1} \]
(60)

\[M_R \rightarrow S^{T-1} M_R S^{-1} \]
(61)
\(\mu \to e\gamma \) in model II

Approximate off-diagonal slepton mass terms induced by RG running as,

\[
[m_1^2]_{21} \approx -\frac{1}{8\pi^2}(3m_0^2 + A_0^2) [h^\nu h^{\nu T}]_{21} \ln \left(\frac{M_{\text{GUT}}}{M_R} \right)
\] \hspace{1cm} (62)

Then the branching ratio for \(l_i \to l_j \gamma \) is approximately,

\[
\text{Br}(l_i \to l_j \gamma) \approx \frac{\alpha^2 ([m_1^2]_{21})^2}{G_F^2 m_{\text{SUSY}}^8 \tan^2 \beta} \leq B
\] \hspace{1cm} (63)

Here \(B \) is the experimental bound set on this LFV decay. The present value is \(B = 1.2 \times 10^{-11} \) at 90\% C.L., but in the near future it could become \(B = 5 \times 10^{-14} \) at 90\% C.L.

For the MNS mixing model we have,

\[
[h^\nu h^{\nu T}]_{21} = y_u^2 U_{\mu 1} U_{e 1} + y_c^2 U_{\mu 2} U_{e 2} + y_t^2 U_{\mu 3} U_{e 3}
\] \hspace{1cm} (64)

Set a limit on the neutrino mixing angle \(\sin \theta_{13} \) from the above muon decay bound.
Limits set on θ_{13} from the present and future bounds on the LFV decay $\mu \rightarrow e\gamma$. (a) $\tan \beta = 50$, $B = 5 \times 10^{-14}$, (b) $\tan \beta = 50$, $B = 1.2 \times 10^{-11}$, (c) $\tan \beta = 5$, $B = 1.2 \times 10^{-11}$, (d) $\tan \beta = 5$, $B = 5 \times 10^{-14}$, The area above(below) the curves is allowed(excluded).
Summary

• Casas-Ibara R matrix is basis invariant and a general form of R has been given.

• Two limiting $SO(10)$ models were presented and the interplay of $\sin \theta_{13}$ and $\mu \to e\gamma$ was studied.