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 Why Advanced Techniques ?
« Artificial Neural Networks (ANN)
* Boosted Decision Trees (BDT)

o Application of ANN/BDT for MiniBooNE
neutrino oscillation analysis at Fermilab

« Application of ANN/BDT for ATLAS Di-
Boson Analysis

e Conclusions and Outlook
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Why Advanced Techniques?

o Limited signal statistics, low Signal/Background ratio
— To suppress more background & keep high Signal Efficiency

=» Traditional Simple-Cut technique
— Straightforward, easy to explain
— Usually poor performance

=>» Artificial Neural Networks (ANN)

— Non-linear combination of input variables
— Good performance for input vars ~20 variables
— Widely used in HEP data analysis

=>»Boosted Decision Trees (BDT)

— Non-linear combination of input variables
— Great performance for large number of input variables
(up to several hundred variables)

— Powerful and stable by combining many decision trees to
make a “majority vote”
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Training and Testing Events

 Both ANN and BDT use a set of known MC
events to train the algorithm.

* A new sample, an independent testing set of
events, Is used to test the algorithm.

|t would be biased to use the same event sample to
estimate the accuracy of the selection performance
because the algorithm has been trained for this

specific sample.
 All results quoted in this talk are from the testing
sample.
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Results of Training/Testing Samples

Training MC Samples .V'S. TestingMC Samples

=>» The AdaBoost outputs for MiniBooNE
training/testing MC samples with

number of tree iterations of 1, 100,
500 and 1000, respectively.

=>» The signal and background (S/B)
events are completely distinguished
after about 500 tree iterations for the
training MC samples. However, the
S/B separation for testing samples are
quite stable after a few hundred tree

Iterations.

=>» The performance of BDT using
training MC sample is overestimated.

11.6-10,2006

30000

20000

10000

2000

1000 -

3000

2000 -]

1000

2000

1500

=

000

] - 1500 —
E I\:!tree =1 I\,-!tree =1
B 1000 ] ;
s : ’I
0:““\“““\“‘\ 0 \“\\
2 1 0 2 1 0 1 2
— 10000 —
Ntr% - 100 8000 ; Ntree - 100
6000 i
wod 7
‘ s 0 s
20 10 0 10 20 20
] Ntree =500 10000 —
7500
; . 5000
: 'i: 2500 -
\ ] 0
20 0 20
Ny=1000 | =]
P 6000 ]
] : H 4000 -

50 ':_l 2000 —
0'-"-“\“"'\“‘\‘ 07"“\“‘\..-‘"“\‘
40 20 0 20 40 20 0 20
Boosting Outputs Boosting Outputs

5

H.J.Yang - CCAST Workshop



Artificial Neural Networks (ANN)

Input Hidden Lawer Output
Layer Layer =>Use a training sample to find an
nput #1 - optimal set of weights/thresholds
N between all connected nodes to
| distinguish signal and background.
Input #2 — .
Q— - Cutput
Input #3 —+ Inputs Weights Bias Transfer Output
) b function
1 LW, W1 -W4
Input #4 —= N i )

g(z) = %[1 + tanh(z)] = (1 + e %)~}
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Artificial Neural Networks

e Suppose signal events have output 1 and
background events have output O.

 Mean square error E for given N, training events
with desired output o = 0 (for background) orl
(for signal) and ANN output result t .

Z Z{ﬂt P) —T”}})

Ju'? I.'}l
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Artificial Neural Networks
e Back Propagation Error to Optimize Weights

W, =W +Aw,
' : ANN Parameters
where n=0.05
o = 0.07

OF T=0.50
QH} — _??T = V.

ow
+aAw, J"momentum _term _to stabalize"

—112

+o.,"noise _term to avoid local minima"

* Three layers for the application
— # Input nodes(= # input variables) — input layer
— # hidden nodes(= 1~2 X # input variables) — hidden layer
— 1 output node — output layer
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Boosted Decision Trees

e \What IS a decision tree?
e How to boost decision trees?
 Two commonly used boosting algorithms.

11.6-10,2006 H.J.Yang - CCAST Workshop



Decision Trees & Boosting Algorithms

=> Decision Trees have been available about two decades, they are known
to be powerful but unstable, 1.e., a small change in the training sample
can give a large change in the tree and the results.

Ref: L. Breiman, J.H. Friedman, R.A. Olshen, C.J.Stone, “Classification and Regression Trees”,
Wadsworth, 1983.

=>» The boosting algorithm (AdaBoost) is a procedure that combines many
“weak” classifiers to achieve a final powerful classifier.

Ref: Y. Freund, R.E. Schapire, “Experiments with a new boosting algorithm”, Proceedings of COLT,
ACM Press, New York, 1996, pp. 209-217.

=» Boosting algorithms can be applied to any classification method. Here,
it is applied to decision trees, so called “Boosted Decision Trees”. The
boosted decision trees has been successfully applied for MiniBooNE
PID, it is 20%-80% better than that with ANN PID technique.

* Hai-Jun Yang, Byron P. Roe, Ji Zhu, " Studies of boosted decision trees for MiniBooNE particle
identification", physics/0508045, NIM A 555:370,2005

* Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, lon Stancu, Gordon McGregor," Boosted decision
trees as an alternative to artificial neural networks for particle identification”, NIM A 543:577,2005

* Hai-Jun Yang, Byron P. Roe, Ji Zhu, “Studies of Stability and Robustness of Artificial Neural
Networks and Boosted Decision Trees”, physics/0610276.
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How to Build A Decision Tree ?

1. Put all training events in root node,
then try to select the splitting variable
and splitting value which gives the

best signal/background separation.

2. Training events are split into two parts,
left and right, depending on the value

of the splitting variable.

3. For each sub node, try to find the best
variable and splitting point which gives
the best separation.

4. If there are more than 1 sub node, pick
one node with the best signal/background
separation for next tree splitter.

5. Keep splitting until a given number of
terminal nodes (leaves) are obtained, or
until each leaf is pure signal/background,
or has too few events to continue.

Radius?
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Criterion for “Best” Tree Split

o Purity, P, Is the fraction of the weight of a
node (leaf) due to signal events.

e GiIni Index: Note that Gini index 1s O for all
signal or all background.

Gini=() W)P(1-P)
=1

e The criterion 1S to minimize
Gini_left_node+ Gini_right_node.
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Criterion for Next Node to Split

 Pick the node to maximize the change In
Gini index. Criterion =

Giniparent_node - Giniright_child_node - Ginileft_child_node
e \We can use Ginli index contribution of tree

split variables to sort the importance of
Input variables. (show example later)

* \We can also sort the importance of input
variables based on how often they are used
as tree splitters. (show example later)
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Signal and Background Leaves

e Assume an equal weight of signal and
background training events.

 |f event weight of signal is larger than %z of
the total weight of a leaf, It is a signal leaf;
otherwise It 1s a background leaf.

 Signal events on a background leaf or
background events on a signal leaf are
misclassified events.
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How to Boost Decision Trees ?

=>» For each tree iteration, same set of training events are
used but the weights of misclassified events in previous
Iteration are increased (boosted). Events with higher
weights have larger impact on Gini index values and
Criterion values. The use of boosted weights for
misclassified events makes them possible to be correctly
classified in succeeding trees.

=» Typically, one generates several hundred to thousand
trees until the performance is optimal.

=» The score of a testing event Is assigned as follows: If it
lands on a signal leaf, it is given a score of 1; otherwise -1.
The sum of scores (weighted) from all trees is the final

score of the event.
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Weak = Powerful Classifier
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1 1 e un-weighted misclassified event rate

1 a weighted misclassified event rate, err_
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* o =PB*In((1-err_)err ). !3. 0.3

&p o .Eéﬂ. | I4!%!'!:!'I | IﬁIIJUI | ISIIEI[JI | Illlillllilrii
Number of Tree Iterations
=>» Boosted decision trees focus on the
misclassified events which usually have
high weights after hundreds of tree
iterations. An individual tree has a very
weak discriminating power; the
weighted misclassified event rate err,, Is
about 0.4-0.45.

Background Efficiency(%)

=>» The advantage of using boosted
decision trees is that it combines all
decision trees, “weak” classifiers,
to make a powerful classifier The
performance of BDT Is stable after
few hundred tree Iterations.
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Two Boosting Algorithms

e AdaBoost Algorithm:
1. Initialize the observation weights w; = 1/n,i=1, 2...., n
2. Form = 1 to M:
2.a Fit a classifier T},,(z) to the training data using weights w;
2.b Compute

i wil (yi # T (r;)) — | 1 =1, 1f @ training
Yo q 8 event is misclassified;
Otherwise, | =0

E_i IT‘ Ir ]r? I —

2.c Compute oy, = 8 x log((1 — erry,) /errm)
2.d Set w; «— w; X exp(aml(y; # Tm(x;))), i=1, 2,...,n
2.e Re-normalize us = w;/ Y i W

3. Output T(x) = m—Lﬂ”m T}

e c—boosting Algorithm:

1. Initialize the observation weights w; = 1/n,i=1, 2,..., n

2. For m =1 to M:
2.a Fit a classifier T}, (x) to the training data using weights w;
2.b Set w; «— w; X exp(2el(y; # Ti(z;))), i=1, 2,...,n
2.c Re-normalize u? = wi/ > o 1 W

3. Output T(x) = S M_ €Ty ()
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Example

« AdaBoost: the weight of misclassified events is increased by
— errorrate=0.1and B =0.5, o, = 1.1, exp(1.1) = 3
— error rate=0.4 and B = 0.5, a,, = 0.203, exp(0.203) = 1.225

— Weight of a misclassified event is multiplied by a large factor
which depends on the error rate.

» g—boost: the weight of misclassified events is increased by
— If £=0.01,exp(2*0.01) = 1.02
— If £=0.04, exp(2*0.04) = 1.083
— It changes event weight a little at a time.

=>» AdaBoost converges faster than ¢-boost. However, the
performance of AdaBoost and e—boost are very comparable with
sufficient tree iterations.
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Application of ANN/BDT for
MiniBooNE Experiment at Fermilab

* Physics Motivation
e The MiniBooNE Experiment
o Particle Identification Using ANN/BDT
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Physics Motivation
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Physics Motivation

State of Oscillation Results
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= Simplest model has

three neutrino mass
eigenstates, but...

= Data indicates 3 mass

differences

» Am?, ~ 2-3x10-3 eV?
> Am?, ~ 7x107° eV?

Am?z,. .+ Am?., # Am?

sol Isnd
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Fermilab Booster
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The MiniBooNE Experiment

Y S W
& o i —
mpm - —n
=W W

8GeV
Booster

magnetic homn  decay pipe @4 450 m dirt H II ’. ' o
and target ~ 250r50m &O’é@ etector
e

 The FNAL Booster delivers 8 GeV protons to the MiniBooNE beamline.
e The protons hit a 71cm beryllium target producing pions and kaons.
» The magnetic horn focuses the secondary particles towards the detector.

« The mesons decay into neutrinos, and the neutrinos fly to the detector, all
other secondary particles are absorbed by absorber and 450 m dirt.

o 5.7E20 POT for neutrino mode since 2002.
« Switch horn polarity to run anti-neutrino mode since January 2006.
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MiniBooNE Flux

8 GeV protons on Be target gives:

D +Be -t , K+, K?

Flux /0.1 GeV

v, from:;

i

+ + + + 0 -t
touv, Kosuygv, K-o>muv,

Fraction of v

Intrinsic v, from:

+ + S + 0t 0 - ot
H—>ev, v Konev, Ki>me' v,

The intrinsic v, is ~0.5% of the
neutrino Flux, it’s one of major
backgrounds for v, 2 v, search.

127 LAm*

10

10

Py, 3 v)= sin’ (26)sin” (

)

0.5 1 1.5 2 2.5 3
E, (GeV)

L(m), E(MeV), Am?(eV?)
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The MiniBooNE Detector

MiniBooNE Detector

Signal Region

12m diameter tank
Filled with 800 tons
of ultra pure mineral oil

Optically isolated inner region
with 1280 PMTs

Outer veto region with 240 PMTs.
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Cerenkov Light...

From side

short track, «
no multiple

scattering

electrons:

short track, «
mult. scat.,

brems.

muons:
long track, %

slows down

neutral pions:
2 electron-like
tracks
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Background Efficiency - ANN (%)

Background Efficiency - BDT (%)

ANN vs BDT-Performance/Stability

smear = 0(dot), 0.03(box), 0.05(triangle), 0.1(star)

T T | T T | T 1T | L | L | L | T T T | T
& — .
n
+
4 . r.
"
* J
' i
2 * -
* * & . ‘
* ] ¢ N
s =
O T T I T T T T | LI T T | T T T T I T T T T I T T T T | LI T T | T T
30 40 30 60 70 80 90
Signal Efficiency (%)

[ | T T | T T | (L | T T | T T | T T | T
65— ¥
4 v -

'
2 N * ] —
« w ¢
| ]
a o s & 80
O | T | T T T | T T T°71 | T T T 1 | T T T 1 | LI | T T
30 40 30 60 70 80 90
Signal Efficiency (%)
11.6-10,2006

H.J.Yang - CCAST Workshop

=>» 30 variables for training

=>» 10 Training Samples(30k/30k);

selected randomly from 50000 signal
and 80000 background events.

=>» Testing Sample:
54291 signal and 166630 background

=»Smearing Testing Sample:
Each Variable and testing event is
smeared randomly using the formula,
V_ ij=V_ij*(1+smear*Rand_ij)
Where Rand_ij is random number with
normal Gaussian distribution.
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ANN vs BDT-Performance/Stability
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=>» BDT is more powerful and stable than ANN !
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Effect of Tree lterations

= It varies from analysis to analysis, depends on the training
and testing samples. For MiniBooNE MC samples (52 input
variables), we found ~1000 tree iterations works well.

Relative Ratio = Background Eff / Signal Eff x Constant

22 -
2 J* AdaBoost(B=0.5, 45 leaves, 100 trees) «. 15 _L‘ * AdaBoost(eff=50%.testing MC)
18 Ja AdaBoost(=0.5, 45 leaves, 200 trees)..s“. 1 = AdaBoost(eff=60%,testing MC)
16 Je AdaBoost(f=0.5, 45 leaves, 500 '51?.'%32‘4?
o ] fa oy o
S 1.4 1* AdaBoost(f=0.5, 45 leaves, 800 trées )3 =
E 123" AdaBoost(=0.5, 45 leaves, lQQg - 5) E |
= ] = ]
o TR
2 “ 1l v AdaBoost(eff=50%.,training MC)
10 | b AdaBoost(eff=70%,training MC)
20 30 40 50 60 70 80 0 200 400 600 800 1000
Signal Efficiency (%) Number of Tree Iterations
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Effect of Decision Tree Size

=>» Statistical literature suggests 4 —
8 leaves per decision tree, we

found larger tree size works S — |
significantly better than BDT " 14 AdaBoost(B=0.5, 20 leaves) :'!
with a small tree size using 14 36 AdaBoost(B=0.5, 45 leaves)

MiniBooNE MC. 24 AdaBoost(.[_’)=0*5, 100 leave/

=» The MC events are described by
52 input variables. If the size of
decision tree is small, only
small fraction of variables can
be used for each tree, so the U TR T e e
decision tree cannot be fully Signal Erfictency (%)

developed to capture the overall
signature of the MC events.
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Effect of Training Events

=» Generally, more training events are preferred. For
MiniBooNE MC samples, the use of 10-20K signal events,
30K or more background events works fairly well. Fewer
background events for training degrades the boosting PID
Performance. 1z

| AdaBoost, 45 leaves, N,___= 1000
] Training events, Signal = 20k
14 7e bg=10k = bg=20k

12 s bg=30k v bg=40k

Relative Ratio

30 35 40 45 50 55 60 65 70 75 80
Signal Efficiency (%)
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Relative Ratio

Tuning Beta () and Epsilon ()

=> 3 (AdaBoost) and Epsilon ( e-boost) are parameters to tune

the weighting update rate, hence the speed of boosting
convergence. 3= 0.5, € = 0.04 works well for MiniBooNE

MC samples.

1= AdaBoosi(B=0.3, 45 leaves)

]+ AdaBoost(=0.5, 45 leaves)
kel 1o A daBoost{B=0.8. 45 lea

Vi Eag L
VE5)
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1] Nype= 1000

Signal Efficiency (%)
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]* &Boost(e=0.01, 45 leaves)

L. 4 1EAVES)

X

|
:-:‘
a0

£L

30

H.J.Yang - CCAST Workshop

40 50 60
Signal Efficiency (%)

70

33

80



Soft Scoring Functions

In standard boost, the score for an event from an individual tree is a simple
step function depending on the purity of the leaf on which the event lands. If
the purity is greater than 0.5, the score is 1 and otherwise it is -1. Is it
optimal ? If the purity of a leaf is 0.51, should the score be the same as if the

purity were 0.997

=» For a smooth function (score=sign(2P-1) x|2P-1|P) with b=0.5, AdaBoost
performance converges faster than the original AdaBoost for the first few
hundred trees. However the ultimate performances are comparable.

Event Score

Event Score = :
sign(2P-1)*2P-1° |

o

| 1 AdaBoost, 45 leaves, N__
] Score= I2p—l|b, if p> 0.5, Signal leaf |
Score = - I2p—llb, if p=0.5, Bkgd leaf "‘A.
1. b=0 (standard value) s ]

= 1000

1 4 b=02 ¢ b=033 i
1 * b=0.5 e 4

0 0l 02 03 04 05 06 07 08 09
Purity

11.6-10,2006

120 30 40 50 60 70

Signal Efficiency (%)
H.J.Yang - CCAST Workshop

Q.75

—
s | s | s | s |

AdaBoost, 45 leaves, eff=60%
* b=0 (step function - standard)
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How to Select Input Variables ?

=>» The boosted decision trees can be used to select the most powerful variables
to maximize the performance. The effectiveness of the input variables was
rated based on how many times they were used as tree splitters, or which

variables were used earlier than others, or their Gini index contributions.
The performance are comparable for different rating techniques.

=» Some input variables look useless by eyes may turn out to be quite useful
for boosted decision trees.
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How to Select Input Variables ?

=» The boosting performance steadily improves with more input variables until

~ 200 for MiniBooNE MC samples. Adding further input variables (relative
weak) doesn’t improve and may slightly degrade the boosting performance.

=» The main reason for the degradation is that there is no further useful

Information in the additional variables and these variables can be treated as
“noise” variables for the boosting training.

May06 BL, YBoost_allbkgd VS. Input Vars May06 BL, YBoost_allbkgd VS. Input Vars
2.5 ;
~""| YBoost with 322-Vars 3 g 5 Cont. Ratio=1.0% _ |
& 2| YBoost with 200-Vars 3 2 80 !
-%1-75 YBoost with 150-Vars s 2 i
M 1.5 YBoost with 100-Vars 15 =
= i3 M 76
5125 AF. - |
S YBoost with 50-Vars ~ #F g 74 214 Vars
k= g »n 72 (nouz)
éms & 70 206V
ars
S 05 8 68 (nouz)
0.25 = :
; | ~ 66 - |
10 20 30 40 SO 60 70 80 90 0 50 100 150 200 250 300
v, CCQE Signal Efficiency (%) No. of Input Vars for YBoost Training

11.6-10,2006 H.J.Yang - CCAST Workshop 36



Output of Boosted Decision Trees

Osc v, CCQE vs All Background
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Application of ANN and BDT for
ATLAS Di-Boson Analysis
(H.J. Yang, Z.G. Zhao, B. Zhou)

« ATLAS at CERN
e Physics Motivation
« ANN/BDT for Di-Boson Analysis
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ATLAS at CERN
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ATLAS Experiment

ATLAS Is a particle physics experiment that will
explore the fundamental nature of matter and the
basic forces that shape our universe.

ATLAS detector will search for new discoveries
In the head on collisions of protons of very high
energy (14 TeV).

ATLAS is one of the largest collaborations ever in
the physical sciences. There are ~1800 physicists
participating from more than 150 universities and
laboratories in 35 countries.

ATLAS is expected to begin taking data in 2007.

11.6-10,2006 H.J.Yang - CCAST Workshop 40



Physics Motivation

e Standard Model
— Di-Boson (WW, ZW, ZZ, W v, Z y etc.)

— to measure triple-gauge-boson
couplings, ZWW and yWW etc.

— Example: WW leptonic decay

* New Physics

— to discover and measure Higgs - WW
— to discover and measure G, Z’ 2> WW

— More ...

11.6-10,2006
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WW signal and bickground

WW > ¢
fvev+X 1 W q W q "
- Zu.'.r
Signal
background .
q
Contains addit
bﬂCkgf‘OUﬂd q ¢ q AN Must have "fake" missing—F_
zZ
W R A A
y
_ gEIIIT—— q’
q v

Jet must fake a lepton.

Jet must fake a lepton.

G() =t ,
\q

Background rates are of the order of 3-4 higher than the signal
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WW (euX) vs tt (background)

Preselection Cuts:

— e, pwith Pt > 10 GeV,

— Missing Et > 15 GeV

— Signal: WW = euX, 47050 18233 (Eff = 38.75%)
— Background: tt, 433100 = 14426 (Eff = 3.33%)

All 48 input variables for ANN/BDT training

Training Events — selected randomly
— 7000 signal and 7000 background events for training

— To produce ANN weights and BDT Tree index data file, which
will be used for testing.

Testing Events — the rest events for test
— 11233 signal and 7426 background events

More MC signal and background events will be used for
ANN/BDT training and testing to obtain better results.
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Some Powerful Variables
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Some Weak Variables
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Testing Results — 1(Sequentially)

WW —eu(signal-red) vs. tt(bkgd-blue), try0 WW —ep(signal-red) vs. ti(bkgd-blue), try0
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Testing Results — 2 (Randomly)

WW—eun(signal-red) vs. ttibkgd-blue), try1

WW—en(signal-red) vs. tiibkgd-blue), try1
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Testing Results

o To train/test ANN/BDT with 11 different sets of MC events by
selecting events randomly.

e To calculate average/RMS of 11 testing results

=>» For given signal efficiency (50%-70%), ANN keeps more
background events than BDT.

Signal Eff | Effbg_ANN Effog BDT | Effog ANN/Effog BDT
Nbg_ ANN Nbg BDT
50% (0.267+-0.043)% | (0.138+-0.033)% 1.93
20 10
60% (0.689+-0.094)% | (0.380+-0.041)% 1.81
51 28
70% (1.782+-0.09)% (1.22+-0.073)% 1.46
132 91
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Z\W/ZZ L eptonic Decays

 Signal Events - 3436:
— Z\W - eee, eep, eppu, pup + X
e Background Events — 9279
— ZZ - eee, eey, eup, pup + X
 Training Events — selected randomly
— 2500 signal and 6000 background events

e Testing Events — the rest events for test
— 936 signal and 3279 background events

11.6-10,2006 H.J.Yang - CCAST Workshop
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Testing Results

For fixed Eff bkgd =7.5 %
Signal Efficiencies are
32% -- Simple cuts
57% -- ANN
67% -- BDT

Boosted Decision Trees vs Artificial Neural Networks

Artificial Neural Networks (ANN)
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Boosted Decision Trees (BDT)
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ANN vs BDT - Performance

ANN(blue) vs BDT(red)

Signal Eff (%)

54 ®
52 - ® & . Training events are selected
56,8 @ B randomly. The rest events are
7] e ® used for test. The signal eff of
48 7 ANN and BDT for 10 different
46 - 2 ® random numbers are shown
i ® in the left plot.
44 @
42 - @ . ® - = 4 | For 3.5% background eff, the
40 4 Signal eff are
. 42.45%+/-2.06%(RMS) for ANN
B4 . 50.52%+/-1.93%(RMS) for BDT
36
0 > 4 6 8 10

Tests with 10 random numbers
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ANN vs BDT - Stability

Smear all input variables for all events in the testing samples.
Var(i) = Var(1)*(1+0.05*normal Gaussian random number)
For 3.5% bkgd eff, the signal eff are
— Eff ANN =40.03% +/- 1.71%(RMS)
— Eff BDT =50.27% +/- 2.20%(RMS)
The degradation of signal eff using smeared test samples are
— -2.43% +/- 2.68% for ANN
— -0.25% +/- 2.93% for BDT

2 BDT is more stable than ANN for smeared test samples.
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More Applications of BDT

e More and more major HEP experiments begin to use BDT
(Boosting Algorithms) as an important analysis tool.
— ATLAS Di-Boson analysis

— ATLAS SUSY analysis — hep-ph/0605106 (JHEP060740)
— BaBar data analysis — hep-ex/0607112, physics/0507143, 0507157
— DO/CDF data analysis — hep-ph/0606257, Fermilab-thesis-2006-15

— MiniBooNE data analysis — physics/0508045 (NIM A555, p370),
physics/0408124 (NIM A543, p577), physics/0610276

 Free softwares for BDT

— http://gallatin.physics.lsa.umich.edu/~hyang/boosting.tar.gz
— http://gallatin.physics.Isa.umich.edu/~roe/boostc.tar.gz, boostf.tar.gz

— TMVA toolkit, CERN Root-integrated environment
http://root.cern.ch/root/html/src/TMVA___MethodBDT.cxx.html

http://tmva.sourceforge.net/
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Conclusions and Outlook

=>BDT Is more powerful and stable than ANN.

=>BDT Is anticipated to have wide application in HEP
data analysis to improve physics potential.

=> UM group plan to apply ANN/BDT to ATLAS SM
physics analysis and searching for Higgs and SUSY
particles.
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