How to get a Very Small Cosmological Constant

戴自海

Henry Tye

Institute for Advanced Study, Hong Kong University of Science and Technology
Cornell University

November 13, 2012
7th Workshop of TeV Physics Working Group
Tsinghua University, Beijing, China
Happy Birthday to Professor Yu-Ping Kuang
Hong Kong University of Science and Technology
Institute for Advanced Study of HKUST
This talk is based on work with Yoske Sumitomo:

arXiv:1204.5177 (JCAP 1208 (2012) 032) and
arXiv:1209.5086

Applied to:
Large Volume Flux Compactification Scenario in Type IIB String Theory

in particular: M. Rummel and A. Westphal, arXiv:1107.2115

Also: A. Aazami and R. Easther, hep-th/0512102;
T. Bachlechner, D. Marsh, L. McAllister and T. Wrase,
Introduction
The Large Volume Scenario in Type IIB String Theory
Multi-Complex Structure Moduli
Summary

10^{500} \text{ possible solutions with different } \Lambda \text{ values.}

Pressing Question
The Stringy Mechanism

Background

There is very strong evidence that we are living in a de-Sitter vacuum with a very small positive cosmological constant \(\Lambda \),

\[\Lambda \sim +10^{-122} M_P^4 \]
Background

- There is very strong evidence that we are living in a de-Sitter vacuum with a very small positive cosmological constant Λ,

$$\Lambda \sim +10^{-122} M_P^4$$

- There is strong evidence that our universe has gone through an inflationary period, when the vacuum energy is below the Planck scale but much higher than the TeV scale.
Background

- There is very strong evidence that we are living in a de-Sitter vacuum with a very small positive cosmological constant Λ,

$$\Lambda \sim +10^{-122} M_P^4$$

- There is strong evidence that our universe has gone through an inflationary period, when the vacuum energy is below the Planck scale but much higher than the TeV scale.

- Given the scale of the underlying theory, how the observed value emerges? E.g., String theory has string scale M_S, so it must generate both M_P and Λ from M_S.
The situation in string theory: J types of 4-form fluxes $F_{i\mu\nu\rho\sigma}$

(Brown and Teitelbaum)

$\lambda = \lambda_{\text{bare}} + \frac{1}{2} \sum_{i=1}^{J} n_i^2 q_i^2$

[CC = 0]

[Before, After Stabilization: Bousso, Polchinski, 00]
Pressing Question

String theory may have 10^{500} possible solutions. Surely many will have Λ at about the right value.
Pressing Question

String theory may have 10^{500} possible solutions. Surely many will have Λ at about the right value.

Why nature picks such a very small positive Λ?
Pressing Question

String theory may have 10^{500} possible solutions. Surely many will have Λ at about the right value.

Why nature picks such a very small positive Λ?

- We present a possible Stringy Mechanism why a very small Λ may be preferred.
- We use a simple but non-trivial model to illustrate the main idea.
- The key points can be understood with little knowledge about string theory.
- The key idea may be applied to other hierarchy problems.
Consider a string model with a set of moduli \(\{u_i\} \). Treat all parameters \(\{a_j\} \) in the model as random variables with some probability distributions.
Consider a string model with a set of moduli \(\{u_i\} \). Treat all parameters \(\{a_j\} \) in the model as random variables with some probability distributions.

In the SUGRA approximation, solve \(V(a_j, u_i) \) for the meta-stable vacuum, so all \(\{u_i\} \) are determined in terms of \(\{a_j\} \). Determine \(\Lambda(a_j) = V_{\text{min}}(a_j) \) in terms of \(\{a_j\} \).
Consider a string model with a set of moduli \(\{u_i\} \). Treat all parameters \(\{a_j\} \) in the model as random variables with some probability distributions.

In the SUGRA approximation, solve \(V(a_j, u_i) \) for the meta-stable vacuum, so all \(\{u_i\} \) are determined in terms of \(\{a_j\} \). Determine \(\Lambda(a_j) = V_{\text{min}}(a_j) \) in terms of \(\{a_j\} \).

Find the probability distribution \(P(\Lambda) \) for \(\Lambda(a_j) \) as we sweep through allowed \(\{a_j\} \).
Consider a string model with a set of moduli \(\{u_i\} \). Treat all parameters \(\{a_j\} \) in the model as random variables with some probability distributions.

In the SUGRA approximation, solve \(V(a_j, u_i) \) for the meta-stable vacuum, so all \(\{u_i\} \) are determined in terms of \(\{a_j\} \). Determine \(\Lambda(a_j) = V_{\text{min}}(a_j) \) in terms of \(\{a_j\} \).

Find the probability distribution \(P(\Lambda) \) for \(\Lambda(a_j) \) as we sweep through allowed \(\{a_j\} \).

As we shall see in examples, \(P(\Lambda) \) tends to peak at \(\Lambda = 0 \).
Consider a string model with a set of moduli \(\{u_i\} \). Treat all parameters \(\{a_j\} \) in the model as random variables with some probability distributions.

In the SUGRA approximation, solve \(V(a_j, u_i) \) for the meta-stable vacuum, so all \(\{u_i\} \) are determined in terms of \(\{a_j\} \). Determine \(\Lambda(a_j) = V_{\text{min}}(a_j) \) in terms of \(\{a_j\} \).

Find the probability distribution \(P(\Lambda) \) for \(\Lambda(a_j) \) as we sweep through allowed \(\{a_j\} \).

As we shall see in examples, \(P(\Lambda) \) tends to peak at \(\Lambda = 0 \).
This peaking behavior of $P(\Lambda)$ at $\Lambda = 0$ is quite generic.

The Basic Idea is very simple:

It is based on the properties of the probability distribution of functions of random variables.

Does Λ have the right functional form? Do the random parameters have the right range and distribution?
This peaking behavior of $P(\Lambda)$ at $\Lambda = 0$ is quite generic.

The Basic Idea is very simple:

It is based on the properties of the probability distribution of functions of random variables.

Does Λ have the right functional form? Do the random parameters have the right range and distribution?

An example:

Consider a set of random variables $x_i \ (i = 1, 2, \ldots, n)$. Let the probability distribution of each x_i be uniform in the range $[-1, +1]$. What is the probability distribution of their product z?
Probability distribution of $z = x_1 x_2$ and $z = x_1 x_2 x_3$

$$P(z) = \frac{1}{2(n-1)!} \left(\ln \frac{1}{|z|} \right)^{n-1}$$
Let x_j to have a uniform distribution $P(x_j) = 1$ between 0 and 1. What is the probability distribution $P(z)$ of the product $z = x_1 x_2$?

$$P(z) = \int_0^1 dx_1 \int_0^1 dx_2 \delta(x_1 x_2 - z) = \int_z^1 dx_1 \frac{1}{x_1} = \ln \left(\frac{1}{z} \right)$$

for $0 \leq z \leq 1$.

$Z = X_1 X_2$
Introduction
Basic Idea
The Large Volume Scenario in Type IIB String Theory
Multi-Complex Structure Moduli
Summary

Basic property
$P(z)$ of $z = x_1 x_2$ and $z = x_1 x_2 x_3$
Non-interacting case: e.g., Sum of terms

Figure: The product distribution $P(z)$ is for $z = x_1$ (solid brown curve for normal distribution), $z = x_1 x_2$ (red dashed curve), and $z = x_1 x_2 x_3$ (blue dotted curve), respectively. In general, the curves are given by the Meijer-G function.
Probability distribution $P(z)$ for $z = x_1^n$

$P(z) \sim z^{-1+1/n}$
No peaking behavior for $P(\Lambda)$ if Λ is a sum of terms.

\[\Lambda = \Lambda_{\text{bare}} + \frac{1}{2} \sum_{i} n^2_i q^2_i \]
Typical Manifolds Studied

\[\chi(M) = 2(h^{1,1} - h^{2,1}) \]

<table>
<thead>
<tr>
<th>Manifold</th>
<th>(N_K = h^{1,1})</th>
<th>(N_{cs} = h^{2,1})</th>
<th>(\chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{P}^4_{[1,1,1,6,9]})</td>
<td>2</td>
<td>272</td>
<td>-540</td>
</tr>
<tr>
<td>(\mathcal{F}_{11})</td>
<td>3</td>
<td>111</td>
<td>-216</td>
</tr>
<tr>
<td>(\mathcal{F}_{18})</td>
<td>5</td>
<td>89</td>
<td>-168</td>
</tr>
<tr>
<td>(\mathcal{CP}^4_{[1,1,1,1,1]})</td>
<td>1</td>
<td>(\mathcal{O}(100))</td>
<td>(\mathcal{O}(-200))</td>
</tr>
</tbody>
</table>
\[V = e^K \left(K^{I\bar{J}} D_I W D_{\bar{J}} \bar{W} - 3 |W|^2 \right), \]
\[K = -2 \ln(V + \hat{\xi}/2) - \ln(S + \bar{S}) - \sum_j \ln(U_j + \bar{U}_j) \]
\[\mathcal{V} = \text{Vol}/\alpha'^3 = \gamma_1 (T_1 + \bar{T}_1)^{3/2} - \sum_{i=2} \gamma_i (T_i + \bar{T}_i)^{3/2}, \]
\[\hat{\xi} = -\frac{\zeta(3) \chi(M)}{4\sqrt{2}(2\pi)^3} \left(\frac{S + \bar{S}}{2} \right)^{3/2}, \]
\[W = W_0(U_i, S) + \sum_{i=1}^{N_K} A_i e^{-a_i T_i}, \]
\[W_0(U_i, S) = c_1 + \sum_j b_j U_j - s(c_2 + \sum_j d_j U_j) \]
Consider the above simplified Large Volume Scenario (LVS) in Type II B string theory.
Consider the above simplified Large Volume Scenario (LVS) in Type II B string theory.

Introduce the dilation S, $N_K = h^{1,1}$ number of Kähler moduli T_k, and $N_{cs} = h^{2,1}$ number of complex structure moduli U_i.
Consider the above simplified Large Volume Scenario (LVS) in Type II B string theory.

Introduce the dilation S, $N_K = h^{1,1}$ number of Kähler moduli T_k, and $N_{cs} = h^{2,1}$ number of complex structure moduli U_i.

All parameters introduced are treated as random variables with some probability distributions.
Consider the above simplified Large Volume Scenario (LVS) in Type II B string theory.

- Introduce the dilation S, $N_K = h^{1,1}$ number of Kähler moduli T_k, and $N_{cs} = h^{2,1}$ number of complex structure moduli U_i.

- All parameters introduced are treated as random variables with some probability distributions.

- Find the supersymmetric solution $w_0 = W_0|_{\min}$ of W_0 for the complex structure moduli and insert this w_0 into V to stabilize the Kähler moduli.

- The functional form of $\Lambda = V_{\min}$ (and $w_0 = W_0|_{\min}$) in terms of the parameters are non-trivial.
The form of $V(x)$ with $W_0A_1 \leq 0$

$$\frac{2C}{9x^{9/2}} - \frac{e^{-x}}{x^2}$$
\[P(\Lambda) \propto \ln \left(\frac{1}{|\Lambda|} \right) \] at \(\Lambda \sim 0 \)
\[D_S \mathcal{W}_0 = \partial_S \mathcal{W}_0 + K_S \mathcal{W}_0 = 0, \quad D_i \mathcal{W}_0 = 0 \]

\[\mathcal{W}_0(u_i, s) = c_1 + \sum_j b_j u_j - s(c_2 + \sum_j d_j u_j) \]

Solution:

\[(N_{cs} - 2) \frac{c_1 + sc_2}{c_1 - sc_2} = \sum_{i=1}^{N_{cs}} \frac{b_i + sd_i}{b_i - sd_i} \]

\[w_0 = \mathcal{W}_0|_{\text{min}} = \frac{2(c_1 + sc_2) \prod_{i=1}^{n}(b_i - sd_i)}{\sum_i (b_i + sd_i) \prod_{j \neq i}(b_j - sd_j)} \]

Then insert \(w_0 \) into the \(V \) for the Kähler moduli and solve:

\[\Lambda = \frac{e^{-5/2}}{9} \left(\frac{2}{5} \right)^2 - w_0 a_1^3 A_1 \frac{x_m - \frac{5}{2}}{\gamma_1^2} \]
Introduction
Basic Idea
The Large Volume Scenario in Type IIB String Theory
Multi-Complex Structure Moduli
Summary

Supersymmetric Solution
Probability Distribution $P(w_0)$
$P(\Lambda)$ as a function of $h^{2,1} = N$

Yoske Sumitomo and Henry Tye
If $P(W_0)$ and $P(D_i W_0)$ are truly independent:
The Large Volume Scenario in Type IIB String Theory

Multi-Complex Structure Moduli

Summary

Supersymmetric Solution

Probability Distribution $P(w_0)$ as a function of $h^{2,1} = N$

M. Rummel and A. Westphal for $P(w_0)$

N_{cs}=10

N_{cs}=15

N_{cs}=25

Yoske Sumitomo and Henry Tye

How to get a Very Small Λ
Imposing the conditions $V_{\text{barrier}} \leq 1$, $s > 1$ and $u_i \geq 0$, for meta-stable vacua:
$P(\Lambda)$ is sharply peaked at $\Lambda = 0$ but with a long tail. So $<\Lambda>$ may not be a good measure of what is going on.
$P(\Lambda)$ is sharply peaked at $\Lambda = 0$ but with a long tail. So $< \Lambda >$ may not be a good measure of what is going on.

Suppose there are 10^6 data points at $\Lambda = 10^{-100}$ and 1 data point at $\Lambda = 1$. The likely value is $\Lambda = 10^{-100}$ even though $< \Lambda > \approx 10^{-6}$.
\(P(\Lambda) \) is sharply peaked at \(\Lambda = 0 \) but with a long tail. So \(\langle \Lambda \rangle \) may not be a good measure of what is going on.

Suppose there are \(10^6 \) data points at \(\Lambda = 10^{-100} \) and 1 data point at \(\Lambda = 1 \). The likely value is \(\Lambda = 10^{-100} \) even though \(\langle \Lambda \rangle \approx 10^{-6} \).

So we ask: what is the cut-off \(\Lambda_{Y\%} \) if \(\int_0^{\Lambda_{Y\%}} P(\Lambda) \, d\Lambda = Y\% \)? That is, there is a \(Y\% \) chance that \(\Lambda \leq \Lambda_{Y\%} \).

In the above example, \(\Lambda_{99\%} = \Lambda_{10\%} = 10^{-100} \).
Likely value of Λ as a function of $h^{2,1}$
< \Lambda > versus \Lambda_{10\%}

There is a \(Y\% \) probability that \(\Lambda_{Y\%} \geq \Lambda \geq 0 \).

At \(h^{2,1} = 10 \),

\[< \Lambda > \sim 10^{-8} \text{ while } \Lambda_{80\%} \sim 10^{-10} \text{ and } \Lambda_{10\%} \sim 10^{-19} \]

At \(h^{2,1} = 30 \),

\[< \Lambda > \sim 10^{-9} \text{ while } \Lambda_{80\%} \sim 10^{-29} \text{ and } \Lambda_{10\%} \sim 10^{-41} \]

That is, for 30 complex structure moduli, there is a 10% chance that \(\Lambda \) is smaller than \(10^{-41} \).
There is a $\gamma\%$ probability that $\Lambda_{\gamma}\% \geq \Lambda \geq 0$.

At $h^{2,1} = 10$,
$< \Lambda > \sim 10^{-8}$ while $\Lambda_{80}\% \sim 10^{-10}$ and $\Lambda_{10}\% \sim 10^{-19}$

At $h^{2,1} = 30$,
$< \Lambda > \sim 10^{-9}$ while $\Lambda_{80}\% \sim 10^{-29}$ and $\Lambda_{10}\% \sim 10^{-41}$

That is, for 30 complex structure moduli, there is a 10% chance that Λ is smaller than 10^{-41}.

For $h^{2,1} > 5$, $\Lambda_{50}\% \sim 10^{-h^{2,1}}$
Summary

- At high vacuum energies, no meta-stable vacua (because most extrema are unstable)
- At very low vacuum energies, meta-stable vacua begin to appear
Before Stabilization:

\[\text{CC} = 0 \]

[References: Bousso, Polchinski, 00; Sumitomo, Tye]

After Stabilization:

\[\text{CC} = 0 \]

[References: Bousso, Polchinski, 00; Sumitomo, Tye]
Summary and Remarks

- At high vacuum energies, no stable vacua (because most extrema are unstable)
- At very low vacuum energies, meta-stable vacua begin to appear

Many technical questions to be further studied:
- What is the back-reaction due to SUSY breaking?
- What about higher (α' and loop) corrections?
- How about the cosmological light moduli problem?

The picture is very encouraging: many directions to be explored.

One can apply this statistical property to other hierarchy problems.