Top Quark Measurements at the Tevatron

- Experimental setup
- Top quark pair production and decay
- Top quark pair cross section
- Top quark mass measurements
- Single top quark measurements
- Conclusion and outlook

Liang Li
Shanghai Jiao Tong University
The Tevatron Accelerator

Tevatron Collider
- Proton-antiproton collider with $\sqrt{s}=1.96$ TeV
- 36x36 bunches with 396ns between crossings
- ~5 collisions per bunch crossing
- $L_{\text{pInst}} \sim 4 \times 10^{32} \text{cm}^{-2}\text{s}^{-1}$

Run I 1992-1995
- Top quark discovered!

Run II 2001-2011
- Single Top quark discovered!
- Many more exciting physics results

Tevatron collected significant amount of data
- ~12 fb$^{-1}$ delivered, ~11 fb$^{-1}$ recorded, ~10 fb$^{-1}$ after data quality per experiment
• **Tracking**
 - Momentum measurement of charged particles
 - Vertex and b-jet identification

• **Calorimeter**
 - Energy measurement of jets, electrons and neutrinos

• **Muon system**
 - Momentum measurement of muons

• **Three level trigger system**
Top Quark Physics

Top Quark is unique

- Heaviest fundamental particle now
 - Mass = 173.2 ± 0.9 GeV
 - ~40 times heavier than bottom quark
- Strong coupling to the Higgs

\[g_{Ht} = \sqrt{2} \frac{m_t}{VEV} = \sqrt{2} \cdot 173.1 \text{ GeV}/246 \text{ GeV} \approx 1 \]

- Very short lifetime (~ \(5 \times 10^{-25}\) s)
 - Decays before hadronization and makes it the only “bare quark” to study
 - Decays almost 100% of the time to \(Wb\)

Top Quark Physics is a rich field

- Production rates and properties
- Precise test of SM and search for new phenomena
- Study top pair and single top separately
Discovered in 1995 at the Tevatron:

- Very few events at the beginning
- Thousands of events now
- Era of precision measurements
- Some area difficult for LHC to catch up
Top Quark Physics at Tevatron

Top (Rare) Decay $|V_{tb}|$, Anomalous Coupling

Top Mass

Top Charge

Top Production

Top Width, Lifetime

W Helicity

Charge Asymmetry

New Particles Resonances

Single Top

Tevatron legacy:

• Top quark mass, production x_s, kinematics
• Charge asymmetry, spin correlation complementary to LHC
Top Pair Production and Decay

Pair production via strong production
- Discovery mode (1995)
- Main production mode at Tevatron

\(\sigma_{\text{NNLO+NNLL}} = 7.24^{+0.24}_{-0.27} \) [arXiv:1204.5201]

\(M_t = 172.5 \text{ GeV} \)

\(\sigma_{\text{LHC}} \approx 187 \text{ pb (7 TeV)} \)

85% 15%

Top Pair Branching Fractions

"alljets" 46%
\(\tau + \text{jets} \) 15%
\(\mu + \text{jets} \) 15%
\(e + \text{jets} \) 15%
"lepton+jets"
Signal and Background

lepton+jets

- Dominant background: W+jet
- Isolated, energetic leptons

dilepton

- Dominant background: Z+jet
- Large missing Energy (neutrino)

pure hadronic

- Dominant background: Multijet
- High momentum (b-)jets
Jet Energy Scale (JES)

- Important instrument in experimental particle physics
- Determine the energy of the quarks produced in the hard scattering
- “Correct” back to particle jet energy

Major systematic for many top quark analyses (top mass, cross section etc.)

- Due to energetic decay products
- Count for difference between data and Monte Carlo simulation
- Mostly measured by independent (photon+jet and dijet) samples
Separate b-jets from light quark and gluon jets

- B-hadron travels some millimeter before decay
- Use a Neural Network algorithm with input variables based on track impact parameters and reconstructed secondary vertex
 - Displaced tracks & vertex
 - NN discriminant output
- Reject most $W/Z+$jets background
- Require single-tag or double-tag

Multivariate Method (MVA)

- Inputs from multiple variables to build on discriminants
- Optimizes sensitivity to signal
- Takes into account correlations and extract full information
Two Analysis Methods

- Use b-tagging to suppress background
 - Form binned likelihood from data, \(\tt \) cross section and predicted background, maximize it as function of \(\sigma_{\tt} \) and nuisance parameters
 - D0: \(\sigma_{\tt} = 8.13 \pm 0.25 \) \(\text{(stat)} +0.99_{-0.86} \) \(\text{(syst)} \) pb
 - CDF: \(\sigma_{\tt} = 7.22 \pm 0.35 \) \(\text{(stat)} \pm 0.56 \) \(\text{(syst)} \pm 0.44 \) \(\text{(lumi)} \) pb
- Use kinematic discriminant to distinguish signal from background
 - Topological method (no b-tagging)
 - Fit discriminant output to data in all channels to extract cross section
 - D0: \(\sigma_{\tt} = 7.68 \pm 0.31 \) \(\text{(stat)} +0.64_{-0.56} \) \(\text{(syst)} \) pb
 - CDF: \(\sigma_{\tt} = 7.71 \pm 0.37 \) \(\text{(stat)} \pm 0.36 \) \(\text{(syst)} \pm 0.45 \) \(\text{(lumi)} \) pb
Top Pair Cross Section: Lepton+jets Channel

D0 Combination

- Use both kinematic information and b-tagging information
- Construct discriminant for channels dominated by backgrounds, otherwise use b-tagging method; multiply likelihood functions in each channel and fit to data
- \(\sigma = 7.78^{+0.77}_{-0.64} \) (sta + sys + lumi) pb

CDF Combination

- Measure ratio of \(\bar{t}t \) to \(Z/\gamma^* \rightarrow ll \) cross sections to reduce luminosity uncertainty, \(\sigma_{\text{theo} \ Z/\gamma^* \rightarrow ll} = 251.3 \pm 5.0 \) pb
- B-tagging: \(\sigma = 7.32 \pm 0.36 \) (sta) \(\pm 0.59 \) (sys) \(\pm 0.14 \) (theo) pb
- Topological: \(\sigma = 7.82 \pm 0.38 \) (sta) \(\pm 0.37 \) (sys) \(\pm 0.15 \) (theo) pb
- Combined using BLUE method (best linear unbiased estimate)
 - \(\sigma = 7.70 \pm 0.52 \) (sta + sys + theo) pb
 - Total uncertainty: 6.8%
Top Pair Cross Section: Dilepton Channel

Counting method

- Two high pT isolated leptons with two jets
- Clean signal with low yields, only channel with favorable S/B
- Subtract expected background from data
- Pretag (not requiring b-tagging):
 \[\sigma_{tt} = 7.66 \pm 0.46 \text{ (stat)} \pm 0.66 \text{ (syst)} \pm 0.47 \text{ (lumi)} \text{ pb} \] (625 signal events)
- B-tagged (at least one b-tagged jet):
 \[\sigma_{tt} = 7.47 \pm 0.50 \text{ (stat)} \pm 0.53 \text{ (syst)} \pm 0.46 \text{ (lumi)} \text{ pb} \] (254 signal events)
Summary of Top Pair Production Cross Section

New Result: September, 2012

- Tested many other channels: all hadronic, tau+lepton, tau+jets, missing E_T + jets
 - Important to measure different channels
 - Different sensitivity to new physics
 - All measurements consistent with Standard Model
- Combined uncertainty 5.5%, working on full data set...
Motivation

- Free parameter of the Standard Model
- Most fundamental and best known top quark property!

Measurement

- Combinatorics: assign jets to partons
- Need to calibrate jet energies to particle level (JES)
- Many methods: template, matrix element, ideogram, lepton momenta etc.

Template method

- Compare data to MC with different mass hypothesis
- Take info from W mass to constrain JES: χ^2 fit with m_t, m_W
- CDF all-hadronic: $m_t = 172.5 \pm 1.4$ (stat) ± 1.4 (syst) GeV

CDF Conf. Note 10456

CDF Run II Preliminary (5.8 fb$^{-1}$)
Top Quark Mass: Matrix Element Method

- Probability density functions for an event characterized by a set of measurements x, given parameter(s) α

$$P(x \mid \alpha)$$

- Sum over all (signal) states that can lead to the measurements

$$P(x \mid \alpha) = \sum_{states} c_s \, P_s(x \mid \alpha)$$

- For an ideal detector we have

$$P_s(x \mid \alpha) \, dx = \frac{d\sigma_s(x \mid \alpha)}{\sigma(\alpha)}$$

- In reality, we have

$$P_s(x \mid \alpha) = \frac{1}{\sigma_s(\alpha)} \int d\sigma_s(y \mid \alpha) W(y, x \mid \alpha)$$

measured variables

parameters

partonic variables

mapping between partonic and measured variables

LO Matrix Element X phase space
Top Quark Mass: Matrix Element Method

- Extract parameter(s) α by maximizing the overall event likelihood (C_s is the signal fraction)

$$L(\alpha) = \prod_{i=1}^{N} (C_s P_s(x_i | \alpha) + (1-C_s) P_b(x_i | \alpha))$$

- In case of one parameter: M_{top}

- In case of two parameters: M_{top} & JES
 - in-situ JES fit
 - Most precise measurement method
 - CDF lepton + jets:

 $$m_t = 173.0 \pm 0.9 \text{ (stat+JES)} \pm 0.9 \text{ (syst)} \text{ GeV}$$

PRL 105 252001 (2010)
Top Quark Mass: Pole Mass

Quark mass definition

- Pole mass: classic definition, four-momentum squared
 - Quarks cannot exist as free particles and this definition becomes ambiguous; in perturbation theory only on order by order

 - Different definitions based on different orders and other renormalization schemes (\(\overline{MS}\)-mass)

Extract \(M_{top}\) from cross section

- Different assumptions: pole mass or \(\overline{MS}\)-mass, extract separately

 - Compare measurement with high-order theoretical predictions

 \[
 m_t^{\text{pole}}(\text{NNLO}_{\text{approx}}) = 167.5^{+5.4}_{-4.9} \text{GeV} \\
 m_t^{\overline{MS}}(\text{NNLO}_{\text{approx}}) = 160.0^{+5.1}_{-4.5} \text{GeV}
 \]

 - Only pole mass value consistent with direct measurement
Summary of Top Quark Mass

- 0.54% relative uncertainty!
- All channels, methods consistent
- Detailed study on systematics!
- Main sources: JES, statistics, signal modeling
- Improving results with 10fb⁻¹ data
Single Top Quark Production

Not $W^+ (W', H^+?)$

FCNC ($g\to tu, g\to tc$)

Width

Lifetime

Tau decay

Separate t-channel, s-channel cross sections

Anomalous Wtb couplings

CKM matrix element V_{tb}
Single Top Quark Event Selection

Event Topology:
- High energy isolated lepton (e or mu from W) p_T(lepton) > 15 GeV
- Missing E_T (ν from W) Missing E_T > 20 GeV
- One b-quark jet (from t) and a light flavor jet and/or another b-jet
 2–4 jets with p_T > 15 GeV, $|\eta| < 3.4$
- Leading jet p_T > 25 GeV

Parton distributions

$\sigma_{SM} = 1.04 \pm 0.04$ pb

$M_t = 172.5$ GeV

$\sigma_{SM} = 2.26 \pm 0.12$ pb

PRD 74, 114012 (2006)
Single Top Quark Cross Section

DØ e/μ+jets 2.3 fb⁻¹
- $3.94_{-0.88}^{+0.88}$ pb

DØ τ+jets 4.8 fb⁻¹
- $3.4_{-1.8}^{+2.0}$ pb

CDF e/μ+jets 3.2 fb⁻¹
- $2.17_{-0.55}^{+0.56}$ pb

DØ e/μ+jets 5.4 fb⁻¹
- $3.70_{-0.80}^{+0.78}$ pb

s-channel evidence promising

Tevatron result complementary!

Kidonakis PRD 74, 114012 (2006)

$m_t = 170$ GeV
Top quark couplings to W boson is a good place to look for deviations from SM

- Effective single top production cross section: \(\sigma = A (L_V)^2 + B (R_V)^2 + C (L_V \cdot L_T) + D (R_V \cdot R_T) + E (L_T)^2 + F (R_T)^2 \)
 - \(L_{V,T} = V_{tb} \cdot f_{LV,T} \)
 - SM (left-handed vector coupling, \(L_V \)): \(L_V = |V_{tb}| \sim 1, \) all other \(=0 \)
 - Non-SM (anomalous couplings): left-handed tensor (\(L_T \)), right-handed vector (\(R_V \)), right-handed tensor (\(R_T \)) couplings

- Single top production directly sensitive to the \(Wtb \) interaction: rate, kinematics and angular distributions
 - Direct constraint on all four couplings
Single Top Quark Physics: Anomalous Wtb Couplings

- Simultaneous limit setting for two signals by calculating two dimensional posterior probability density

NO evidence for anomalous couplings in single top production

Strong direct constraints on non-SM Wtb couplings

- Improved limits by a factor of 3 to 5 compared to previous 0.9 fb^{-1} analysis
 - $|V_{tb} \cdot f_{LT}|^2 < 0.06$, $|V_{tb} \cdot f_{RV}|^2 < 0.93$, $|V_{tb} \cdot f_{RT}|^2 < 0.13$ at 95% C.L.
- Further improvement when combining with W helicity measurements
W helicity:

- Three helicity states for W boson from top quark decay
- Standard model precise predictions (right-handed W suppressed)

Left handed f_- ~ 0.30
Longitudinal f_0 ~ 0.70
Right handed $f_+ \sim 1.4 \times 10^{-3}$

• Measure W helicity through $\cos(\theta^*)$ distribution: best-fit using templates
Combined Top Quark Results

- Non-SM Wtb couplings can alter W helicity fractions significantly
- W helicity measurements from top pair production and single top quark measurements provide complementary information
- Combination gives the best limits

<table>
<thead>
<tr>
<th>Significant improvement on couplings limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
</tr>
</tbody>
</table>
Learned a lot from 17 years of study on the top quark:

- \(M_t = 173.2 \pm 0.9 \text{ GeV}, \ \sigma_{tt} = 7.6 \pm 0.4 \text{ pb} \)
- \(\sigma_t = 2.7 \pm 0.6 \text{ pb}, |V_{tb}| = 0.88 \pm 0.07 \)
- Top charge: exclude -4/3 e @ 95% C.L.
- \(\Gamma_t = 2.0 \pm 0.4 \text{ GeV} \) (SM \(\Gamma_t = 1.3 \text{ GeV} \)), \(\tau_t < 4.88 \times 10^{-25} \text{ s} \) @ 95%
- Longitudinally polarized W: \(f_0 = 0.72 \pm 0.08 \) (SM \(f_0 = 0.7 \))
- Spins in top pair are correlated: \(C_F = 0.85 \pm 0.29 \) (>3\(\sigma \) sig.)
- and many more...

Expect (already) stronger results from LHC data

- Adopt similar techniques: e.g. W helicity and t-channel single top quark production
- Many complementary analyses: s-channel single top, spin correlation, charge asymmetry
- Tevatron legacy measurement: top quark mass