Physics of CP Violation (III) Special Lecture at Tsinghua Univiersity, Beijing, China 21-25 March 2011

Tatsuya NakadaÉcole Polytechnique Fédéale de Lausanne (EPFL)

Experimental observation of CP violation in the decay amplitudes

From: $\operatorname{Re} \varepsilon \neq 0$ *CP* in oscillations

From: $Im \eta_{+-} \neq 0$ e^{p} in interplay between decay and oscillations

From: $\operatorname{Re}\eta_{+-} \neq 0$ CP in decay amplitudes is inconclusive...

→dedicated experiments to look for this...

Comparing η_{+-} and η_{00} .

$$|\eta_{+-}|^{2} = \frac{\left|A\left(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+}\pi^{-}\right)\right|^{2}}{\left|A\left(\mathbf{K}_{\mathrm{S}} \rightarrow \pi^{+}\pi^{-}\right)\right|^{2}} = \frac{N_{\mathrm{S}}^{+-}}{N_{\mathrm{L}}^{+-}} \frac{N\left(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+}\pi^{-}\right)}{N\left(\mathbf{K}_{\mathrm{S}} \rightarrow \pi^{+}\pi^{-}\right)} = \varepsilon + \varepsilon'$$

$$|\eta_{00}|^{2} = \frac{\left|A\left(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{0} \pi^{0}\right)\right|^{2}}{\left|A\left(\mathbf{K}_{\mathrm{S}} \rightarrow \pi^{0} \pi^{0}\right)\right|^{2}} = \frac{N_{\mathrm{S}}^{00}}{N_{\mathrm{L}}^{00}} \frac{N\left(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{0} \pi^{0}\right)}{N\left(\mathbf{K}_{\mathrm{S}} \rightarrow \pi^{0} \pi^{0}\right)} = \varepsilon - 2\varepsilon'$$

$$\frac{\left|\eta_{00}\right|^{2}}{\left|\eta_{+-}\right|^{2}} = 1 - 6 \operatorname{Re} \frac{\varepsilon'}{\varepsilon}$$
$$= \frac{N_{\mathrm{S}}^{00} N_{\mathrm{L}}^{+-}}{N_{\mathrm{L}}^{00} N_{\mathrm{S}}^{+-}} \frac{N\left(\mathrm{K}_{\mathrm{L}} \to \pi^{0} \pi^{0}\right) N\left(\mathrm{K}_{\mathrm{S}} \to \pi^{+} \pi^{-}\right)}{N\left(\mathrm{K}_{\mathrm{S}} \to \pi^{0} \pi^{0}\right) N\left(\mathrm{K}_{\mathrm{L}} \to \pi^{+} \pi^{-}\right)}$$

NA48

Regeneration

Measure

 $\pi^{+}\pi^{-}$ and $\pi^{0}\pi^{0}$ at the same time: $N_{\rm S}^{00} = N_{\rm S}^{+-}, N_{\rm L}^{00} = N_{\rm L}^{+-}$

NA31, NA48

K_L is regenerated from K_S: $N_L^{00} = rN_S^{00}, N_L^{+-} = rN_S^{+-}$ E731, KTeV

No normalization is required,

but efficiencies, acceptances etc. have to be corrected...

Kaon interferometer

Projection to a momentum state

$$\sum_{m=-1}^{1} \{Y_{1m}(\vec{e}) | \mathbf{K}_{\vec{e}} \rangle | \overline{\mathbf{K}}_{-\vec{e}} \rangle + Y_{1m}(-\vec{e}) | \mathbf{K}_{-\vec{e}} \rangle | \overline{\mathbf{K}}_{\vec{e}} \rangle \}$$
$$= \sum_{m=-1}^{1} Y_{1m}(\vec{e}) \{ | \mathbf{K}_{\vec{e}} \rangle | \overline{\mathbf{K}}_{-\vec{e}} \rangle - | \mathbf{K}_{-\vec{e}} \rangle | \overline{\mathbf{K}}_{\vec{e}} \rangle \}$$

$$\left|\mathbf{K}^{0}\overline{\mathbf{K}}^{0}{}_{L=1}(t)\right\rangle \propto \left|\mathbf{K}_{S\vec{p}}\right\rangle e^{-i\lambda_{S}t} \left|\mathbf{K}_{L-\vec{p}}\right\rangle e^{-i\lambda_{L}t} - \left|\mathbf{K}_{L\vec{p}}\right\rangle e^{-i\lambda_{L}t} \left|\mathbf{K}_{S-\vec{p}}\right\rangle e^{-i\lambda_{S}t}$$

It cannot decay into a same final state, e.g. $\pi^+ \pi^-$ at the same time. $\left\langle \left(\pi^+ \pi^-\right)_{\vec{p}} \left(\pi^+ \pi^-\right)_{-\vec{p}} | H_W | K^0 \overline{K}^0_{L=1}(t) \right\rangle \propto A_{S-\vec{p}}^{+-} A_{S-\vec{p}}^{+-}(\eta_{+-} - \eta_{+-})$ = 0

It can decay into $\pi^+ \pi^-$ and $\pi^0 \pi^0$ at the same time only if $\eta_{+-} \neq \eta_{00}$.

$$\left\langle \left(\pi^{+}\pi^{-}\right)_{\vec{p}}\left(\pi^{0}\pi^{0}\right)_{-\vec{p}}|H_{W}|\mathbf{K}^{0}\mathbf{\overline{K}}^{0}{}_{L=1}(t)\right\rangle \propto A_{S}^{+-}{}_{\vec{p}}A_{S}^{00}{}_{-\vec{p}}(\eta_{+-}-\eta_{00})$$

KLOE experiment at DAFNE storage ring (@Frascati)

An ideal way to produce K_S beam
1) Identify K_L decay with the decay time.
2) opposite side is K_S.

To summarise CP violation can be generated through three interference mechanisms:		
Interfering processes	CR phase	CP phase
Dispersive (M_{12}) and absorptive (Γ_{12}) paths in P-P oscillations	Weak interaction phases	Dispersion vs absorption (<i>i</i>)
CP violation in the oscillation		
Different decay amplitudes	Weak interaction phases	Strong interaction phases
CP violation in the decay amplitudes		

Decay with and withoutWeak interactionTime evolutionoscillationsphasesfunctionsCP violation in the interplay between the decay and oscillation

All three mechanisms seen in the neutral kaon system: Re ϵ , Re ϵ' , Im η_{+-} , Im η_{00}

Standard Model and CP violation

$$u_{L}, c_{L}, t_{L}$$

$$\overline{u}_{L}, \overline{c}_{L}, \overline{t}_{L}$$

$$V_{ud}, V_{us}, V_{ub}, ..., \stackrel{?}{\longrightarrow} + V_{ud}^{*}, V_{us}^{*}, ..., \stackrel{?}{\longrightarrow} \stackrel{?}{\longrightarrow}$$

$$d_{L}, s_{L}, b_{L}$$

$$d_{L}, \overline{s}_{L}, \overline{b}_{L}$$

$$L \propto V_{ij} \overline{U_{i}} \gamma^{\mu} (1 - \gamma_{5}) D_{j} W_{\mu}^{\dagger} + V_{ij}^{*} \overline{D}_{i} \gamma^{\mu} (1 - \gamma_{5}) U_{j} W_{\mu}$$

$$CP \text{ conjugation}$$

$$L_{CP} \propto V_{ij} \overline{D_{i}} \gamma^{\mu} (1 - \gamma_{5}) U_{j} W_{\mu} + V_{ij}^{*} \overline{U_{i}} \gamma^{\mu} (1 - \gamma_{5}) D_{j} W_{\mu}^{\dagger}$$
If $V_{ij}^{*} = V_{ij} \rightarrow L = L_{CP}$: i.e. CP conservation

Let us look at now: $V_{ij} \overline{U}_i \gamma^{\mu} (1-\gamma_5) D_j$

One family

 $V \quad \frac{1 \text{ free phase}}{1 \text{ free modula}} = |V| e^{i\phi}$

 $|V| \ e^{i\phi} \ \overline{u} \ \gamma^{\mu}(1-\gamma_5) \ d \qquad \longrightarrow \qquad |V| \ \overline{u} \ \gamma^{\mu}(1-\gamma_5) \ d$

Changing u quark phase: $u \rightarrow u e^{i\phi}$

Unitarity: $V^{\dagger}V = VV^{\dagger} = E$ (one constraint) $|V|^2 = 1$

> 0 free phase 0 free modula

Two families
$$V = \begin{pmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \end{pmatrix}$$
 4 free phase
4 free moduli (or rotation angles)

1) The phase of V_{ij} can be absorbed by adjusting the phase differences between i- and j- quark

4 quarks = 3 phase differences 4 - 3 = 1 phase left

2) Unitarity $V^{\dagger}V = VV^{\dagger} = E$: four constraints:

1 off-diagonal constraint for the phase 1 - 1 = 0 phase left

three constraint for the rest 4-3 = 1 rotation angle left

V is real, i.e. no \mathcal{P} .

Explicit demonstration

$$\begin{aligned} &|V_{\rm ud}|e^{i\phi_{\rm ud}} \overline{u} \,\overline{\gamma}^{\mu}(1-\gamma_5) \,d + |V_{\rm us}|e^{i\phi_{\rm us}} \,\overline{u} \,\overline{\gamma}^{\mu}(1-\gamma_5) \,s \\ &+ |V_{\rm cd}|e^{i\phi_{\rm cd}} \,\overline{c} \,\overline{\gamma}^{\mu}(1-\gamma_5) \,d + |V_{\rm cs}|e^{i\phi_{\rm cs}} \,\overline{c} \,\overline{\gamma}^{\mu}(1-\gamma_5) \,s \end{aligned}$$

$$\begin{split} u &\rightarrow u \ e^{i\phi_{ud}} \\ & |V_{ud}| \ \overline{u} \ \gamma^{\mu} (1-\gamma_5) \ d + |V_{us}| e^{i(\phi_{us} - \phi_{ud})} \ u \ \overline{\gamma^{\mu}} (1-\gamma_5) \ s \\ & + |V_{cd}| e^{i\phi_{cd}} \ \overline{c} \ \gamma^{\mu} (1-\gamma_5) \ d + |V_{cs}| e^{i\phi_{cs}} \ \overline{c} \ \overline{\gamma^{\mu}} (1-\gamma_5) \ s \\ s &\rightarrow s \ e^{-i(\phi_{us} - \phi_{ud})}, \ c \rightarrow c \ e^{i(\phi_{cs} - \phi_{us} + \phi_{ud})} \\ & |V_{ud}| \ \overline{u} \ \gamma^{\mu} (1-\gamma_5) \ d + |V_{us}| \ \overline{u} \ \gamma^{\mu} (1-\gamma_5) \ s \\ & + |V_{cd}| e^{i\delta} \ \overline{c} \ \gamma^{\mu} (1-\gamma_5) \ d + |V_{cs}| \ \overline{c} \ \gamma^{\mu} (1-\gamma_5) \ s \end{split}$$

Out of four quark, three quark phases can be adjusted: 4 free phase \rightarrow 1 free phase

Unitarity: $V^{\dagger}V = VV^{\dagger} = E$ (4 constraints) $\begin{pmatrix} V_{ud} & V_{cd} \\ V_{us} & V_{cs} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} \\ V_{us} & V_{cs} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \end{pmatrix}$

$$V_{ud}^{*} V_{us} + V_{cd}^{*} V_{cs} = 0 \rightarrow |V_{ud}| |V_{us}| + |V_{cd}| |V_{cs}| e^{-i\delta} = 0$$

$$\delta = \pi :0 \text{ free phase}$$

$$|V_{ud}| |V_{cd}| - |V_{us}| |V_{cs}| = 0$$

$$|V_{ud}|^{2} + |V_{cd}|^{2} = 1, |V_{us}|^{2} + |V_{cs}|^{2} = 1$$

1 free modula or rotation angle

$$|V_{11}| = \cos \theta, |V_{22}| = \cos \theta, |V_{12}| = \sin \theta, |V_{21}| = -\sin \theta$$

$$V = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

One rotation angle without phase: $\rightarrow NO \ CP$
(Cabibbo angle)

Three families

$$\begin{bmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{bmatrix}$$

9 free phase9 free moduli (or rotation angles)

Out of six quark, five quark phases can be adjusted: 9 free phase \rightarrow 4 free phase

Out of nine unitarity constraints, three are for the phases 4 free phase \rightarrow 1 free phase

The rest (six) are for the rotation angles

9 free rotation angles \rightarrow 3 free rotation angles

Three rotation angles with one phase: $\rightarrow \mathscr{C} \mathbf{P}$ can be generated CKM matrix and Wolfenstein's parameters

$$V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \end{pmatrix}$$

$$\hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2} \right), \ \hat{\eta} = \rho \left(1 - \frac{\eta^2}{2} \right)$$

 $| A \sim 1, \lambda \sim 0.22, \rho \neq 0$ but $\eta \neq 0$???

Electroweak theory with 3 families can naturally accommodate CP violation in the charged current induced interactions through the complex Cabibbo-Kobayashi-Maskawa quark mixing matrix V, with 4 parameters.

Standard Model for the kaon system

Large uncertainties in the theoretical calculations of $|M_{12}|$

Short distance part

$$H_{\text{effective}}^{\Delta S=2} = \frac{G_{\text{F}}^2 m_{\text{W}}^2}{16\pi^2} \sum_{\substack{i,j=\\u,c\,t}} \lambda_i \lambda_j \left(\left\langle \mathbf{K}^0 | M_{V-A} | \overline{\mathbf{K}}^0 \right\rangle B_{ij} + \left\langle \mathbf{K}^0 | M_{S-P} | \overline{\mathbf{K}}^0 \right\rangle C_{ij} \right)$$

 $G_{\rm F}$: Fermi constant $m_{\rm W}$: W mass

quark operators

CKM elements

$$M_{V-A} = \left[\overline{d} \gamma_{\mu} (1 - \gamma_{5}) s \right] \left[\overline{d} \gamma^{\mu} (1 - \gamma_{5}) s \right]$$
$$M_{S-P} = \left[\overline{d} (1 - \gamma_{5}) s \right] \left[\overline{d} (1 - \gamma_{5}) s \right]$$
$$\lambda_{i} = V_{is} V_{id}^{*}$$

integrating out W $\begin{pmatrix} B_{ij} \\ C_{ii} \end{pmatrix}$ Real part $\rightarrow M_{12}$, Imaginary part $\rightarrow \Gamma_{12}$ $C_{\rm ii} = 0$ for $m_{\rm s}/m_{\rm c} <<1$

$$\langle \mathbf{K}^{0} | M_{V-A} | \overline{\mathbf{K}}^{0} \rangle = \langle \mathbf{K}^{0} | [\overline{d} \gamma_{\mu} (1 - \gamma_{5}) s] [\overline{d} \gamma^{\mu} (1 - \gamma_{5}) s] \overline{\mathbf{K}}^{0} \rangle$$

$$= \frac{8}{3} B_{\mathrm{K}} \langle \mathbf{K}^{0} | \overline{d} \gamma_{\mu} (1 - \gamma_{5}) s | 0 \rangle \langle 0 | \overline{d} \gamma^{\mu} (1 - \gamma_{5}) s | \overline{\mathbf{K}}^{0} \rangle$$
vacuum insertion
$$\langle \mathbf{K}^{0} | \underbrace{\overset{\mathbf{d}}{\underset{\mathrm{states}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}{\overset{\mathrm{states}}}}}}}}}}}}}}$$

$$\left\langle \mathbf{K}^{0} \middle| \overline{d} \gamma_{\mu} (1 - \gamma_{5}) s \middle| 0 \right\rangle = \left\langle \mathbf{K}^{0} \middle| (CP)^{\dagger} (CP) \overline{d} \gamma_{\mu} (1 - \gamma_{5}) s (CP)^{\dagger} (CP) \middle| 0 \right\rangle$$
$$= \left\langle \overline{\mathbf{K}}^{0} \middle| (CP) \overline{d} \gamma_{\mu} (1 - \gamma_{5}) s (CP)^{\dagger} \middle| 0 \right\rangle e^{-i\theta_{CP}}$$
$$= -\left\langle \overline{\mathbf{K}}^{0} \middle| \overline{s} \gamma_{\mu} (1 - \gamma_{5}) d \middle| 0 \right\rangle e^{-i\theta_{CP}}$$

$$\left\langle \mathbf{K}^{0} | \boldsymbol{M}_{V-A} | \mathbf{K}^{0} \right\rangle = -\frac{8}{3} B_{\mathrm{K}} \left| \left\langle 0 \right| \overline{d} \gamma^{\mu} (1 - \gamma_{5}) s \left| \mathbf{K}^{0} \right\rangle \right|^{2} e^{-i\theta_{CP}}$$

$$= -\frac{4 B_{\mathrm{K}} f_{\mathrm{K}}^{2} m_{\mathrm{K}}}{3} e^{-i\theta_{CP}} \qquad \begin{array}{c} m_{\mathrm{K}}: \text{ Kaon mass} \\ f_{\mathrm{K}}: \text{ decay constant} \end{array} \right.$$

$$\left\langle 0 \right| \xrightarrow{\mathbf{s}}_{\mathbf{t}} \left| \mathbf{K}^{0} \right\rangle \qquad \longrightarrow \qquad \underbrace{\frac{\overline{v}}{e^{-}}}_{e^{-}} \left\langle 0 \right| \xrightarrow{\mathbf{s}}_{\mathbf{T}} \left| \mathbf{K}^{-} \right\rangle = f_{\mathrm{K}} / \sqrt{2}$$

$$\left[M_{12} = \frac{G_{\mathrm{F}}^{2}}{12\pi^{2}} f_{\mathrm{K}}^{2} B_{\mathrm{K}} m_{\mathrm{K}} m_{\mathrm{W}}^{2} \\ \times \left[\lambda_{c}^{2} \eta_{1} S_{0}(x_{c}) + \lambda_{t}^{2} \eta_{2} S_{0}(x_{t}) + \lambda_{c} \lambda_{t} \eta_{3} S_{0}(x_{c}, x_{t}) \right] e^{i(\pi - \theta_{CP})}$$

$$\left\{ x_{c} = (m_{c}/m_{\mathrm{W}})^{2}, x_{t} = (m_{t}/m_{\mathrm{W}})^{2} \qquad \begin{array}{c} \eta_{1} = 1.38 \pm 0.20 \\ \eta_{2} = 0.57 \pm 0.01 \\ \eta_{3} = 0.47 \pm 0.04 \end{array} \right\} \text{ QCD corrections}$$

If no $\mathcal{P} \to \text{CKM}$ is real \longrightarrow arg $M_{12} = -\theta_{CP} + \pi$ (if $B_{\text{K}} > 0$)

$$\begin{aligned} |\lambda_{t}^{2}| &= |V_{ts}^{2}V_{td}^{*2}| &\approx A^{4}\lambda^{10} & S_{0}(x_{t}) \approx 2.5 & 6.6 \times 10^{-7} \\ |\lambda_{c}^{2}| &= V_{cs}^{2}V_{cd}^{*2} &\approx \lambda^{2} & S_{0}(x_{c}) \approx 0.00024 & 1.2 \times 10^{-5} \\ |\lambda_{c}\lambda_{t}| &= V_{cs}V_{cd}^{*}V_{ts}V_{td}^{*} &\approx A^{2}\lambda^{6} & S_{0}(x_{c}, x_{t}) \approx 0.0021 & 2.4 \times 10^{-7} \\ & & total \\ & & total \\ contributions \end{aligned}$$

the biggest contribution to $|M_{12}|$ is from the charm loop

Standard Model Γ_{12} for the kaon system

Theoretical calculation on Γ_{12} very difficult.

However, $|M_{12}|$. $|\Gamma_{12}|$ are measured experimentally; $\Rightarrow \arg M_{12}$ can be determined from the short distance interactions.

$$\arg M_{12} = \frac{\operatorname{Im} M_{12}}{|M_{12}|} = \frac{2 \operatorname{Im} M_{12}}{|m_{S} - m_{L}|}$$
theoretical short distance
calculation

$$\arg \Gamma_{12} = -\theta_{CP}$$
in the CKM phase convention

$$\varepsilon = \frac{|M_{12}||\Gamma_{12}|\Delta_{M-\Gamma}}{4|M_{12}|^{2} + |\Gamma_{12}|^{2}} \left(1 + i\frac{2|M_{12}|}{|\Gamma_{12}|}\right)$$

$$\longrightarrow \operatorname{Re} \varepsilon = \frac{\Delta m \Delta \Gamma}{4\Delta m^{2} + \Delta \Gamma^{2}} \operatorname{arg} M_{12}$$
Standard Model

$$\begin{split} \operatorname{Im} \lambda_{t}^{2} &= \operatorname{Im} V_{ts}^{2} V_{td}^{*2} &\approx 2A^{4} \lambda^{10} (1-\hat{\rho}) \hat{\eta} \approx 3.7 \times 10^{-7} (1-\hat{\rho}) \hat{\eta} \\ \operatorname{Im} \lambda_{c}^{2} &= \operatorname{Im} V_{cs}^{2} V_{cd}^{*2} &\approx -2A^{2} \lambda^{6} \eta \approx -1.9 \times 10^{-4} \eta \\ \operatorname{Im} \lambda_{c} \lambda_{t} &= \operatorname{Im} V_{cs} V_{cd}^{*} V_{ts} V_{td}^{*} &\approx 2A^{2} \lambda^{6} \hat{\eta} \approx 1.9 \times 10^{-4} \hat{\eta} \\ \operatorname{S}_{0}(x_{t}) &\approx 2.5 & 9.3 \times 10^{-7} (1-\hat{\rho}) \hat{\eta} \\ \operatorname{S}_{0}(x_{c}) &\approx 0.00024 & -4.5 \times 10^{-8} \eta \\ \operatorname{S}_{0}(x_{c}, x_{t}) &\approx 0.0021 & 4.0 \times 10^{-7} \hat{\eta} \end{split}$$

The t-t and t-c box diagrams dominate $\text{Im } M_{12}$

QCD and non-perturbative effects very very complicated calculations !!

Current Standard Model prediction

Re
$$\frac{\varepsilon'}{\varepsilon} = (10 \pm 2^{+9}_{-6} \pm 6) \times 10^{-4}$$
 (Pich 04)
Errors are due to
- renormalization scale
- m_s
- short-long distance QCD matching

- 1) The Standard Model predictions are compatible with the measurement.
- 2) Hadronic uncertainties in the theoretical predictions are too large to make a precision test.

$$A_{K \to \pi \upsilon \upsilon} = \left\langle \pi^+ \overline{\upsilon} \upsilon \middle| H_{eff} \middle| K^+ \right\rangle$$

$$H_{\rm eff} = \frac{G_{\rm F}}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} \sum_{l=e,\mu,\tau} \left(\lambda_c^* X_{NL}^l + \lambda_t^* X(x_t) \right) \left(\overline{s} \gamma_\mu (1 - \gamma_5) d \right) \left(\overline{\upsilon}_L \gamma^\mu (1 - \gamma_5) \upsilon_L \right)$$

 $\operatorname{Re}\left(\lambda_{c}^{*}X_{NL}^{l}\right) \approx 2 \times 10^{-4}, \quad \operatorname{Im}\left(\lambda_{c}^{*}X_{NL}^{l}\right) \approx 4 \times 10^{-7} \eta$ $\operatorname{Re}\left(\lambda_{t}^{*}X(x_{t})\right) \approx 6 \times 10^{-4} (1-\hat{\rho}), \quad \operatorname{Im}\left(\lambda_{t}^{*}X(x_{t})\right) \approx 6 \times 10^{-4} \hat{\eta}$ $\operatorname{real part} \approx \operatorname{imaginary part}$

Use $K^+ \rightarrow \pi^0 e^+ \nu$ (data) for the hadronic matrix element.

$$\left\langle \pi^{+} \right| \xrightarrow{\overline{d}} \underbrace{\overline{s}}_{u} \left| K^{+} \right\rangle = \sqrt{2} \left\langle \pi^{0} \right| \xrightarrow{\overline{u}} \underbrace{\overline{s}}_{u} \left| K^{+} \right\rangle$$

$$= \sqrt{2} \left\langle \pi^{0} \right| \xrightarrow{\overline{u}} \underbrace{\overline{s}}_{u} \left| K^{+} \right\rangle$$

$$\overline{s} \gamma_{\mu} (1 - \gamma_{5}) d \quad \text{isospin relation} \quad \overline{s} \gamma_{\mu} (1 - \gamma_{5}) d$$

 \rightarrow *Br* prediction with a relatively small theoretical uncertainty.

Current Standard Model predictions:

Br(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}) = (0.80 \pm 0.11) \times 10^{-10}$ (isospin breaking taken into account)

BNL787, 1995 data:
$$(4.2 + 9.7) + 9.7 + 9$$

More data taken, no new candidate

BNL787, 1995-97:
$$(1.5 + 3.4) \times 10^{-10}$$
 PRL 2000
Further data taken, one more candidate
BNL787, 1995-98: $(1.57 + 1.75) \times 10^{-10}$ PRL 2002

E787(95-98)/E949(02) combined results (1.47 + 1.30 - 0.89)×10⁻¹⁰ PRL 2004

Standard Model prediction $(8.8 \pm 1.2) \times 10^{-11}$

The data is compatible with the Standard Model prediction.

Could become a way to extract (ρ, η) from the kaon decays.

CERN NA62 under construction expect ~100 K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ events

$$\left\langle \pi^{0} \overline{\upsilon} \upsilon \middle| H_{eff} \middle| \overline{K}^{0} \right\rangle = a$$

$$\left\langle \pi^{0} \overline{\upsilon} \upsilon \middle| H_{eff} \middle| \overline{K}^{0} \right\rangle = \left\langle \pi^{0} \overline{\upsilon} \upsilon \middle| (\overrightarrow{CPT})^{\dagger} (\overrightarrow{CPT}) H_{W} (\overrightarrow{CPT})^{\dagger} (\overrightarrow{CPT}) \middle| \overline{K}^{0} \right\rangle$$

$$= a^{*} e^{i(\theta_{CP} - \overline{\theta}_{T})}$$

CPT symmetry No hadronic final state interactions. As for the K⁺ decay,

$$H_{\rm eff} = \frac{G_{\rm F}}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} \sum_{l=e,\mu,\tau} \left(\lambda_c^* X_{NL}^l + \lambda_t^* X(x_t)\right) \left(\overline{s} \gamma_\mu (1-\gamma_5) d\right) \left(\overline{\upsilon}_L \gamma^\mu (1-\gamma_5) \upsilon_L\right)$$

$$\operatorname{Re}\left(\lambda_{c}^{*}X_{NL}^{l}\right) \approx 2 \times 10^{-4}, \quad \operatorname{Im}\left(\lambda_{c}^{*}X_{NL}^{l}\right) \approx 4 \times 10^{-7} \eta \qquad \text{neglected}$$
$$\operatorname{Re}\left(\lambda_{t}^{*}X(x_{t})\right) \approx 6 \times 10^{-4} \left(1-\hat{\rho}\right), \quad \operatorname{Im}\left(\lambda_{t}^{*}X(x_{t})\right) \approx 6 \times 10^{-4} \hat{\eta}$$

real part ≈ imaginary part
imaginary part is given by λ_t

$$\begin{split} \left\langle \pi^{0} \overline{v} v | H_{W} | K_{L} \right\rangle &= \frac{1}{\sqrt{2}} \Big[a_{\pi \upsilon \upsilon} - (1 - 2\varepsilon) e^{-i\phi_{\Gamma}} \overline{a}_{\pi \upsilon \upsilon} \Big] \\ &= \frac{a_{\pi \upsilon \upsilon}}{\sqrt{2}} \Big[1 - (1 - 2\varepsilon) e^{-i(2\phi_{\pi \upsilon \upsilon} + \theta_{\Gamma} - \theta_{CP} + \phi_{\Gamma})} \Big] \\ &= \frac{a_{\pi \upsilon \upsilon}}{\sqrt{2}} \Big[1 - (1 - 2\varepsilon) e^{-i(2\phi_{\pi \upsilon \upsilon} - 2\phi_{0})} \Big] \qquad \Delta \phi_{\pi \upsilon \upsilon} = \phi_{\pi \upsilon \upsilon} - \phi_{0} \\ &= \frac{a_{\pi \upsilon \upsilon}}{\sqrt{2}} \Big[1 - \cos 2\Delta \phi_{\pi \upsilon \upsilon} + i \sin 2\Delta \phi_{\pi \upsilon \upsilon} - 2\varepsilon e^{-i2\Delta \phi_{\pi \upsilon \upsilon}} \Big] \\ &= \sqrt{2} a_{\pi \upsilon \upsilon} \Big[\sin^{2} \Delta \phi_{\pi \upsilon \upsilon} + i \sin \Delta \phi_{\pi \upsilon \upsilon} \cos \Delta \phi_{\pi \upsilon \upsilon} + o(\varepsilon) \Big] \\ &= \sqrt{2} i a_{\pi \upsilon \upsilon} \sin \Delta \phi_{\pi \upsilon \upsilon} \Big[\cos \Delta \phi_{\pi \upsilon \upsilon} - i \sin \Delta \phi_{\pi \upsilon \upsilon} + o(\varepsilon) \Big] \\ &\approx \sqrt{2} i |a_{\pi \upsilon \upsilon}| e^{i\phi_{\pi \upsilon \upsilon}} \sin \Delta \phi_{\pi \upsilon \upsilon} e^{-i\Delta\phi_{\pi \upsilon \upsilon}} = \sqrt{2} i |a_{\pi \upsilon \upsilon}| \sin \Delta \phi_{\pi \upsilon \upsilon} e^{i\phi_{0}} \end{split}$$

$$\left|\left\langle \pi^{0} \overline{v} v | H_{W} | K_{L} \right\rangle\right| = \sqrt{2} |a_{\pi \overline{v} v}| \sin \Delta \phi_{\pi \overline{v} v} \equiv \sqrt{2} \operatorname{Im} a_{\pi \overline{v} v} \text{ (CKM phase convention)}$$

1

CP due to the interplay between decays and oscillations much bigger than $\mathscr{C}P$ in the oscillations \Leftrightarrow different from 2π Imaginary part can come only from $\overline{s} \rightarrow \overline{t} \rightarrow d$. hadronic part: $K^0 \rightarrow \pi^0 \overline{v} v = K^+ \rightarrow \pi^0 e^+ v$

Only one term \rightarrow simpler than K⁺ decays \Rightarrow more reliable calculation Br(K⁰ $\rightarrow \pi^0 \bar{\nu} \nu) < 1.6 \times 10^{-6} 90\%$ CL (KTeV, PLB 99) $\pi^0 \rightarrow \gamma\gamma$ 5.9×10^{-7} $\pi^0 \rightarrow ee\gamma$

future experiment planned but a tough experiment

Note:

$$\begin{split} \left\langle \pi^{0} \overline{v} v \middle| H_{eff} \middle| K_{S} \right\rangle &= \frac{a_{\pi \overline{v} v}}{\sqrt{2}} \Big[1 + (1 - 2\varepsilon) e^{-i(2\phi_{\pi \overline{v} v} + \theta_{T} - \theta_{CP} + \phi_{\Gamma})} \Big] \\ &= \frac{a_{\pi \overline{v} v}}{\sqrt{2}} \Big[1 + (1 - 2\varepsilon) e^{-i(2\phi_{\pi \overline{v} v} - 2\phi_{0})} \Big] \\ &= \frac{a_{\pi \overline{v} v}}{\sqrt{2}} \Big[1 + \cos 2\Delta \phi_{\pi \overline{v} v} - i \sin 2\Delta \phi_{\pi \overline{v} v} - 2\varepsilon e^{-i2\Delta \phi_{\pi \overline{v} v}} \Big] \\ &= \sqrt{2} a_{\pi \overline{v} v} \Big[\cos^{2} \Delta \phi_{\pi \overline{v} v} - i \sin \Delta \phi_{\pi \overline{v} v} \cos \Delta \phi_{\pi \overline{v} v} + o(\varepsilon) \Big] \\ &\approx \sqrt{2} a_{\pi \overline{v} v} \cos \Delta \phi_{\pi \overline{v} v} \Big[\cos \Delta \phi_{\pi \overline{v} v} - i \sin \Delta \phi_{\pi \overline{v} v} \Big] \\ &= \sqrt{2} |a_{\pi \overline{v} v}| \cos \Delta \phi_{\pi \overline{v} v} e^{i\phi_{0}} \end{split}$$

$$\eta_{\pi^{0}\overline{\nu}\nu} = \frac{\left\langle \pi^{0}\overline{\nu}\nu \middle| H_{eff} \middle| K_{\rm L} \right\rangle}{\left\langle \pi^{0}\overline{\nu}\nu \middle| H_{eff} \middle| K_{\rm S} \right\rangle} = i \tan \Delta \phi_{\pi\overline{\nu}\nu} \approx O(1)$$

Theoretical accuracy of the Standard Model predictions in the kaon sector will be limited to >10% (may be) except $K^0 \rightarrow \pi^0 v \overline{v}$ which will be experimentally challenging!