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Reminder

Constituents of the present Universe:

Neutrinos:
0.3%

Dark Matter:
25%

Stars:

Free Hydrogen
and Helium:
4%

What is Dark Matter?




Properties of Dark Matter

Nature of dark matter
- TIs it baryonic?
- Is it a new type of elementary particle?

Mass

Lifetime
- Must be long lived or stable.

Kinetic energy expressed in Temperature

Spin

Cross section of self-interaction

Cross section of interaction with ordinary matter




‘Temperature’ of Dark Matter

- Hot

- Moving fast
- Can overcome and escape potential wells

- If all dark matter was hot, structure could not form
» Contradicts findings of WMAP.

- Warm

- Cold

- Moving slowly
- Could seed structure




Baryonic Dark Matter

* Cold hydrogen
- 25% of the hydrogen is in single-atom state.

* Massive Compact Halo Objects (MACHOs)

- Brown dwarfs/Large planets
» Not enough around to explain all dark matter
- Compact stars, such as White Dwarfs
» Too many of them will need more He than could be produced by
Big Bang nucleosynthesis
- Neutron stars and Black holes
* Rarer than white dwarfs.

» Constraints from micro-lensing
- Observed several millions stars for years
* In Large Magellan Cloud, found 4 candidates
* Near the galactic centre, found 45 candidates

- < 20% of the Milky Way halo is MACHOS with




Non-baryonic Dark Matter

* Hot - Neutrinos
* Warm -Sterile neutrinos, gravitino
- Cold

- LSP (Lightest Super-symmetric Particle, eg. heutralino, axino)
- LKP (Lightest Kaluza-Klein particle)

- Axions, axion clusters

- Solitons (Q-balls, B-balls)

- WIMPs (Weakly Interacting Massive Particles),
wimpzilla




Finding The Correct Dark-matter Candidate

* In early Universe, candidate x is in thermal equilibrium by annihilation

and couples to ordinary matter:
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* How to find the correct dark-matter candidate?
- choose a particle
- work out all the possible annihilation channels

- calculate Q,




Dark-matter Candidate: Neutrinos

Promising candidate

- Neutral

- Weakly interacting

- Possess mass

- Their abundance in the Universe is known

From relic abur Sm, = 113/cm3 per favour :
= 50ev

From WMAP+BAO+H, combined result (2010):
Y m, <0.58 eV

QV « Qm

Active neutrinos are not abundant and massive enough
to account for dark matter.




Dark-matter Candidate: Sterile Neutrinos

* Mass of sterile neutrinos < ~keV (Tremaine-Gann bound)

* Have no coupling to W and Z

- Interact with ordinary matter extremely weakly through
mixing with the active neutrinos:

Strength ~6, 6

where 6 <« 1 is the IE\IXI% qﬁglle

a=e,u,t v

Majorana neutrino mass, M, < 107 GeV

Yukawa couplings A;; ~107VM, /GeV (proportional to Am?)
. Sterile neutrinos can decay to active neutrinos

’Vs —> + Y
- to be a dark-matter candidate, v, must have a very long lifetime

greater than the age of the Universe, setting a bound on 0,..




Bound on Mass of Sterile Neutrinos

Mass of sterile neu’rr'mos < ~keV (Tr'emame Gann bound)
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Dark-matter Candidate: Axion

Arise from the Peccei-Quinn's idea to solve the strong CP problem.

Axion got its mass during the QCD phase transition:

7
m, ~0.62eV 10" GeV f, = energy scale of the

a Transition
- For cold dark matter, f_ < 1012 GeV, implying m_ = 10°-10* eV.

* Axion is extremely weakly interacting.
» It can couple to electromagnetic field:

a Yayy The Birth of Axions

Frank Wilczek

Institute for Advanced Study
Princeton, NJ 08540

usual, very light particle. | called this particle
the axion, after the laundry detergent, because
that was a nice catchy name that sounded like
a particle and because this particular particle
solved a problem involving axial currents.
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GammeV: Search For Axion
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Supersymmetry (SUSY)

A new kind of symmetry between fermions and bosons

- Every particle in SM has a superpartner with same quantum numbers

Ordinary Particles Supersymmetric Partners F Particles

Higgs Boson (spin-0) Higgsino (spin-1/2) ﬂ

Fermions (spin-1/2) Bosons (spin-0) ’
Quarks Leptons Squarks Sleptons . X

_ _ _ (~Supersymmetnc
Gauge Bosons (spin-1) Gauginos (spin-1/2) - "shadow " partlcleej

W= Z, B Winos Zinos, Binos
gluons, photons gluinos, photinos

charged neutral charginos neutralinos

Graviton (spin-2) Gravitino (spin-3/2)

* Interactions of SUSY particles = interactions of quarks and leptons.
+ If SUSY was exact, Mg, ricle = Mpgetice aNd would have contributed to
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Goodies of SUSY

- Remove divergences in calculating m,;:

— e o e e e e e e e mm = = = =

» Coupling constants are unified to a single coupling

constant at M3U>Y:

g SUSY

Esur
g1 NON-SUSY

14 —
M 10 10 GeV

SUSY

M- 10 Gev
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MSSM

MSSM (Minimal Supersymmetric Standard Model) contains the
smallest number of new particles and new interactions as well as
all supersymmetry-breaking terms.

H, H;
Hd= s Hu= 0
H, H

u

with vacuum expectation values:

Vi
O 9

such that

2 2 2 _ VY
vV, +V, =V tanfd =
Vi

R-parity (to prevent proton decay):
- R = (-1)3B+l+2s B = baryon no., L = lepton no., s = spin
- R=+1(even) for particles; R=-1(odd) for SlISY hnr"fialﬂ
- R-parity is conserved
- The lightest sparticle (LSP) is

absolute stable, e.g. gravitino, neutralino




The Lightest SUSY Particle

- Gravitinos

- Could be overproduced in the early Universe and destroy
abundance of primordial elements

« Sheutrinos

- Scattering cross section is much larger than the limits found
by direct-detection experiments

- Neutralinos

- 4 Majorana fermionic eigenstates arise from mixing of bino,

wino and higgsimgs 0 ~Mycys,  Mysgsy
Iy 0 m, M,cgey,  —Mysgey,
%’ -M,cgsy,  Mycgey, 0 —u
M,sgsy,  —Mysgcy, —-u 0
m, = bino mass parameter Cg = cosby S = sinb,
m, = wino mass parameter Cy = €osO,, sy, =sino,

u = higgsino mass parameter 7




Minimal Supergravity (mMSUGRA)

* Reduce to the ~100 parameters to 4 parameters and
1 sign:

tan

M,,, unified gaugino mass at M.,

mo unified scalar masses at Mg, (M = 0.4 m,)
A, trilinear soft-breaking mass

- Theslgguhil)esfgm&mrgglsm e ShiaRAer
x, =cB+c,W+c.H +c,H)
Photino Wino Higgsinos

> XP=CU(B+W+HS+H2)
. The mass of y; : 100 GeV - 1 TeV, weak scale.
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Where To Look For Neutralino ?

mSUGRA with tanf =10; A;=0; u>0
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K. Matchev hep-ph/0402088
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Neutralino As Dark Matter Candidate

- At present, neutralinos are moving at non-relativistic
speed:

o,V =a+bv +00v") =a

+ The dominant modes of annihilation are
- Fermion-antifermion pairs X h HA Z
- Gauge boson pairs
- Final states containing the Higgs :
+ Other interactions for dark-matter searches are:
- Co-annihilation, especially when M_~ M~

1




Elastic Scattering of Neutralinos

* Processes for detecting neutralinos with ordinary matter:

X X X X X x
-> > q > : >
q q q q q q
Spin-dependent both Spin-independent
* The cross sections of these processes:
2
m, M
0, =4G, | ——=-| C,F(q")
m,+ M,

C,%L: for spin-independent coherent interaction « A?
C,%P: for spin-dependent inferaction « (S, )?

F(q%) : nuclear form factor, important for large q* and large A

21




Universal Extra Dimensions (UED)

All particles can move into the extra compact
dimensions with R ~ 1 TeV.,

For each particle, there is an infinite tower of states
with identical quantum numbers and co_u4plinqs but with
masses given by "

Mzoc n=3

n2
R
SM particles have n = 0.

n=2
n=1
n=0 $

* In the simplest UED model, along the fifth dimension
- The lightest Kaluza-Klein (KK) state is stable




Lightest Kaluza-Klein Particle

First KK-mode spectrum
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* Possible interactions of LKP with ordinary matter:
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