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Discovery of Discovery of νν flavor changeflavor change
-- Solar neutrinos Solar neutrinos (MSW effect)(MSW effect)
-- Reactor neutrinos Reactor neutrinos (vacuum oscillation)(vacuum oscillation)
-- Atmospheric neutrinosAtmospheric neutrinos (vacuum oscillation)
-- Accelerator neutrinos Accelerator neutrinos (vacuum oscillation)

Last 20 yrs: the age of Last 20 yrs: the age of νν physicsphysics

We found that:
•• ν masses are non-zero
• there are 2.981±0.008 ν (Z lineshape)
• 3 ν flavors were active in Big Bang Nucleosynthesis
• The Sun emits neutrinos as expected
• Supernovae emit neutrinos
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Neutrinos have other peculiarities:
They are the only electrically neutral fermions
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What about lepton 
number?
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Could it be that the mass and charge 
peculiarities are somehow related?

Say that for neutrinos , since they have no charge…νν =

But… isn’t there a lepton number to conserve?

No worries: lepton number conservation is not as 
“serious” as energy conservation  

Lepton number conservation is just an empirical notion.

Basically lepton number is conserved “because”,
experimentally,           Of course this is verified 
only to a certain accuracy

νν ≠
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We have two possible ways to describe
the neutrino:

“Dirac” neutrinos 
(some “redundant” information but the 
“good feeling” of things we know…)

“Majorana” neutrinos
(more efficient description, no lepton 
number conservation, new paradigm…)

Which way Nature chose to proceed 
is an experimental question

But the two descriptions are distinct and 
distinguishable only if mν≠0
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5.63.367150Nd→150Sm
8.92.479136Xe→136Ba
34.52.533130Te→130Xe
5.642.228124Sn→124Te
7.52.802116Cd→116Sn
11.82.013110Pd→110Cd
9.63.034100Mo→100Ru
2.83.35096Zr→96Mo
9.22.99582Se→82Kr
7.82.04076Ge→76Se
0.1874.27148Ca→48Ti

Candidate       Candidate       Q  Q  AbundAbund..
((MeVMeV)) (%)(%)

DoubleDouble--beta decaybeta decay::
a seconda second--order processorder process
only detectable if firstonly detectable if first
order beta decay isorder beta decay is

energetically forbiddenenergetically forbidden

Candidate nuclei with Q>2 Candidate nuclei with Q>2 MeVMeV
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There are two varieties of ββ decay

2ν mode: 
a conventional
2nd order process 
in nuclear physics

0ν mode: a hypothetical 
process can happen 
only if:   Mν ≠ 0

ν = ν
 |∆L|=2
 |∆(B-L)|=2
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F. Sim
kovic, N

eutrino 2010

Good news: a number of new groups and ideas 
are entering the game!
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Calculations differ by about a factor of two
(but care is necessary in treating some of them

generally regarded as obsolete) S.M
. Bilenky

and C.Giunti
arX

iv:1203.5250v2
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Note, however, that to discover Majorana
neutrinos and lepton number violation the 
value of the nuclear matrix element is 
inessential!

0νββ decay always implies new physics

This is comforting for the ones of us 
spending their time building experiments!
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Candidate  Detector                   Present                <m> (eV)
nucleus      type      (kg yr)         T1/2

0νββ (yr)

48Ca                                  >5.8*1022 (90%CL)
76Ge        Ge diode     47.7     >1.9*1025 (90%CL)     <0.35
82Se                                  >2.1*1023 (90%CL)   
96Zr                                  >9.2*1021 (90%CL)
100Mo      Foil.Geiger tubes       >5.8*1023 (90%CL)
116Cd                                 >1.7*1023 (90%CL)
128Te                                 >1.1*1023 (90%CL)
130Te       TeO2 cryo ~12        >3*1024 (90%CL)      <0.19–0.68
136Xe       Xe scint ~4.5       >1.2*1024 (90%CL)    <1.1-2.9
150Nd                                 >1.8*1022 (90%CL)
160Gd                                 >1.3*1021 (90%CL)Sim
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ββ0ν discovery claim
Fit model:

6 gaussians + linear bknd.

Fitted excess @ Qββ
28.75 ± 6.86.

Claimed significance: 4.2 σ

[H.V.Klapdor-Kleingrothaus
and I.Krivosheina, 
Mod.Phys.Lett. A21 (2006) 1547]

However, this is a 
very controversial matter

Q value

???

214Bi
214Bi

eVm
yrT

03.032.0
1023.2 2544.0

31.02/1

±=

⋅= +
−

ν
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Before moving on, let’s take a look at the 2Before moving on, let’s take a look at the 2ννββββ decay,decay,
a Standard Model process a Standard Model process 

that has been observed in many isotopes that has been observed in many isotopes 

§Geochemical experiment
*Radiochemical experiment

(2.0±0.6)•1021 *238U
(1.4±0.7)•1020150Nd

>1.1•1022 90% CL136Xe
(7±0.9±1.1)•1020130Te

(7.2±0.4)•1024 §128Te
(2.9±0.4)•1019116Cd
(5.7±1.2)•1020100Mo

(9.4±3.2)•1018 §

(2.1±0.6)•1019
96Zr

(9.6±1)•101982Se
(1.77±0.12)•102176Ge
(4.3±2.2)•101948Ca

Experimental T1/2
2ν (yr)Isotope

Pre-Aug 2011 table 
arbitrarily simplified
from PDG

More on this later!



Background due to the 
Standard Model  2νββ decay

The two can be separated in a detector with
sufficiently good energy resolution

Topology and particle ID are also important to recognize backgrounds

σ/E=1.6%
(EXO conservative

E resolution)
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Need very large fiducial
mass  (tons) of isotopically
separated material 
(except for 130Te)
[using natural material typically 
means that 90% of the source
produced background but not signal]

This is expensive and provides 
encouragement to use the
material in the best 
possible way:

For no For no bkgndbkgnd

For statistical For statistical bkgndbkgnd subtractionsubtraction

NtTm /1/1 0
2/1 ∝∝ νββ

ν

( ) 4/10
2/1 /1/1 NtTm ∝∝ νββ

ν

5.63.367150Nd→150Sm
8.92.479136Xe→136Ba
34.52.533130Te→130Xe
5.642.228124Sn→124Te
7.52.802116Cd→116Sn
11.82.013110Pd→110Cd
9.63.034100Mo→100Ru
2.83.35096Zr→96Mo
9.22.99582Se→82Kr
7.82.04076Ge→76Se
0.1874.27148Ca→48Ti

Candidate       Candidate       Q  Q  AbundAbund..
((MeVMeV)) (%)(%)
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Shielding a detector from gammas is difficult
because the absorption cross section is small.

Example: 
γ interaction length 
in Ge is 4.6 cm, 
comparable to the size 
of a germanium detector.

Typical ββ0ν
Q values

Gamma interaction cross section

Shielding ββ decay detectors is much harder 
than shielding Dark Matter ones

We are entering the “golden era” of ββ decay 
experiments as detector sizes exceed int lengths



Tsinghua-IHEP - Aug 2012 EXO: results and future 23

- High Q value reduces backgrounds and 
increases the phase space & decay rate,

- Large abundance makes the experiment cheaper
- A number of isotopes have similar matrix element performance

Better
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It is very important to understand that a healthy 
neutrinoless double-beta decay program requires 
more than one isotope.   This is because:

• There could be unknown gamma transitions and a
line observed at the “end point” in one isotope 
does not necessarily imply that 0νββ decay was 
discovered 

• Nuclear matrix elements are not very well known and
any given isotope could come with unknown liabilities

• Different isotopes correspond to vastly different
experimental techniques

• 2 neutrino background is different for various 
isotopes (apparently quite small for 136Xe)

• The elucidation of the mechanism producing the decay
requires the analysis of more than one isotope
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How to How to ““organizeorganize”” an experiment: the techniquean experiment: the technique

•• Final state ID: Final state ID: 1) “Geochemical”: search 1) “Geochemical”: search for an abnormal abundancefor an abnormal abundance
of (A,Z+2) in a material contaiof (A,Z+2) in a material containing (A,Z)ning (A,Z)

2) “Radiochemical”: store in a mine some m2) “Radiochemical”: store in a mine some material (A,Z)aterial (A,Z)
and after some time try to findand after some time try to find (A,Z+2) in it(A,Z+2) in it

+ Very specific signature+ Very specific signature
+ Large live times (particularly for 1)+ Large live times (particularly for 1)
+ Large masses+ Large masses
-- Possible only for a few isotopes (in the case of 1)Possible only for a few isotopes (in the case of 1)
-- No distinction between 0No distinction between 0νν, , 22νν or other modesor other modes

•• “Real time”: “Real time”: ionization or scintillation is detected in the decayionization or scintillation is detected in the decay
a) “Homogeneous”: source=detectora) “Homogeneous”: source=detector
b) “Heterogeneous”: b) “Heterogeneous”: sourcesource≠≠detectordetector

+ Energy/some tracking available (can distinguish modes)+ Energy/some tracking available (can distinguish modes)
+ In principle universal (b)+ In principle universal (b)
-- Many Many γγ backgrounds can fake signaturebackgrounds can fake signature
-- Exposure is limited by human patienceExposure is limited by human patience
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XeXe is ideal for a large experimentis ideal for a large experiment
•• No need to grow crystalsNo need to grow crystals
•• Can be reCan be re--purified during the experimentpurified during the experiment
•• No long lived No long lived XeXe isotopes to activateisotopes to activate
•• Can be easily transferred from one detector to Can be easily transferred from one detector to 

another if new technologies become availableanother if new technologies become available
•• Noble gas: Noble gas: easy(ereasy(er) to purify) to purify
•• 136136Xe enrichment easier and safer:Xe enrichment easier and safer:

-- noble gas (no chemistry involved)noble gas (no chemistry involved)
-- centrifuge feed rate in gram/s, all mass usefulcentrifuge feed rate in gram/s, all mass useful
-- centrifuge efficiency centrifuge efficiency ~~ ΔΔm.m. For For XeXe 4.7 4.7 amuamu

•• Only known case where final state identification Only known case where final state identification 
appears to be not impossible appears to be not impossible 

elominateelominate all nonall non--ββββ backgrounds backgrounds 
•• 129129Xe is a Xe is a hyperpolarizablehyperpolarizable nucleus, under study for NMR nucleus, under study for NMR 

tomography… a joint enrichment program ?tomography… a joint enrichment program ?
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BaBa--tagging, added to a high resolution tagging, added to a high resolution XeXe imagingimaging
detector may provide the tools to develop a detector may provide the tools to develop a 

backgroundbackground--free experiment with the free experiment with the 
highest possible sensitivityhighest possible sensitivity

Assume an ultimate Assume an ultimate fiducialfiducial mass of mass of 
5 tons of 5 tons of 136136Xe at 80%Xe at 80%

A somewhat natural scale:A somewhat natural scale:
•• World production of World production of XeXe is ~40 ton/yris ~40 ton/yr
•• Detector sizeDetector size
•• 22••101033 size increase: good match to the size increase: good match to the 

1010--22 eVeV mass regionmass region

Mainly going inMainly going in
light bulbs, light bulbs, 

plasma displays andplasma displays and
satellite propulsionsatellite propulsion
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Substantial R&D program to tag 
in quasi-real-time the final state Ba atom

Test several techniques

• Retrieve Ba from LXe and feed it to an 
ion trap with spectroscopic identification
- Hot probe mover
- Icy probe

• RIS probe
• Tag from gas



Tsinghua-IHEP - Aug 2012 EXO: results and future 30

BaBa transport/tagging by transport/tagging by 
Resonant Ionization SpectroscopyResonant Ionization Spectroscopy

• Ba+ or Ba++ is electrostatically attracted
(from LXe) onto a clean substrate (Si works well)

• The substrate is 
transported to vacuum

• An 1064nm YAG laser
pulse is used to 
desorb the Ba

• ~1μs later a pair
of laser pulses of
appropriate freq
re-ionize to Ba+

• For the moment test uses stationary substrate in vacuum

~2mm
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Clean apparatus, never exposed to Ba beam

Radioisotope
Ba+ ion source

Ion transport
(can be switched off)

Ion detector

Si target
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• Loading/retrieving efficiency is now ~2%
(preliminary, involves some assumptions, not very reproducible yet)

• Background is negligible
• New setup to fish from LXe being commissioned

6s2 1S0

553.5nm

389.7nm

Ba+ 6s

Ba+ 5d

6s6p 1P1

5d8d 1P1

RIS lasers ON

RIS lasers OFF
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New system to go fishing for Ba in LXe

Probe access tube

LXe cell

LN2 reservoir

RIS chamber and 
TOF spectrometer

(not installed)
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EXOEXO--200:200:
an intermediate detector an intermediate detector withoutwithout BaBa taggingtagging
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EXO-200EXO-200

2150 ft (655 m)2150 ft (655 m)

• ~1600 meter water equivalent flat overburden 

• Relatively low levels 
of U and Th
(<100 ppb in 
EXO-200 drift)

• Low levels of Rn
(~20 Bq/m3)

• Rather convenient
access with large
conveyance

35

Underground location: 
Waste Isolation Pilot Plant (WIPP) Carlsbad, NM
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EXO-200 does not
have Ba tagging 

but
it is compatible 
with Ba tagging
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1 kV/cm

~570 ~570 keVkeV

EXO R&D showed the way to improved energy 
resolution in LXe: Use (anti)correlations between 

ionization and scintillation signals



QE > 1 at 175nm

Gain set at 100-150
V~1500V
∆V < ±0.5V 
∆T < ±1K   APD is the driver

for temperature stability
Leakage current OK cold

APDs are ideal for our
application: 

- very clean & light-weight, 
- very sensitive to VUV

~500 “Bare” LAAPD
R.

 N
ei
ls
on

, 
et

 a
l.
 N

IM
 A

 6
08

 (
20

09
) 
68

75
 



Tsinghua-IHEP - Aug 2012 EXO: results and future 39



Tsinghua-IHEP - Aug 2012 EXO: results and future 40

Ultra-low activity Cu vessel

• Very light (~1.5mm thin, 
~15kg) to minimize materials

•Different parts e-beam 
welded together

• Field TIG weld(s) to seal 
the vessel after assembly 
(TIG technology tested 
for radioactivity)

• All machining done by in the
CR-shielded HEPL building)
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EXO-200 TPC Assembled



Tsinghua-IHEP - Aug 2012 EXO: results and future 42

•Copper vessel 1.37 mm thick
•175 kg LXe, 80.6% enr. in 136Xe
•Copper conduits (6) for:
•APD bias and readout cables
•U+V wires bias and readout
•LXe supply and return
•Epoxy feedthroughs at cold and 
warm doors
•Dedicated HV bias line

42

EXO-200 detector:            JINST 7 (2012) P05010
Characterization of APDs:     NIM  A608 68-75 (2009)
Materials screening:            NIM  A591, 490-509 (2008)
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> 25 cm

25 mm ea

High purity 
Heat transfer fluid
HFE7000 
> 50 cm

1.37 mm

VETO PANELS

The EXO-200 Detector
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Massive effort on material radioactive qualification using:

• NAA
• Low background γ-spectroscopy
• α-counting
• Radon counting
• High performance GD-MS and ICP-MS

At present the database of characterized materials
includes >300 entries

D.S. Leonard et al., Nucl. Ins. Meth. A 591, 490 (2008)

The impact of every screw within the Pb shielding is evaluated
before acceptance

Goal: 40 cnts/2yr in the 0νββ ±2σ ROI in 140kg of LXe
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A substantial system 
is required to

• protect the 1.5mm 
thin LXe container 
from pressure

• recirculate Xe in gas
phase to purify it

• fill/empty the detector
• manage emergencies
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Xenon gas is forced 
through heated Zr 
getter by a custom 
ultraclean pump.

Electron lifetime τe: 
measure ionization 

signal attenuation as a 
function of drift time 
for the full-absorption 
peak of γ ray sources

At τe = 3 ms:
- drift time <110 µs
- loss of charge: 3.6% 

at full drift length

Data taking phases and Xenon Purity

Run I
~250 μs

This analysis
This 

analysis

Ultraclean pump: 
Rev Sci Instr. 82 (10) 105114 

Xenon purity with mass spec:
NIM A675 (2012) 40

Gas purity monitors: 
NIM A659 (2011) 215

Run I Run 2 (this analysis)

Period May 21, 11 – Jul 9, 11 Sep 22, 11 – Apr 15,12

Live Time 752.7 hr 2,896.6 hr

Exposure 3.2 kg-yr 32.5 kg-yr

Publ. PRL 107 (2011) 212501 arXiv:1205:5608 (May 2012)

2011-07-12 2011-09-01 2011-11-01 2011-12-31 2011-03-01Jul 2      Sep 1      Nov 1       Jan 1      Mar 1
2011                                2012
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A two-site Compton
scattering event.
All scintillation light arrives at 
the same time, indicating that 
the two energy depositions 
are simultaneous.

The scintillation light is 
Brighter and more localized 
on Side 1 where the 
scattering occurs
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γ γ

granularity from
9 mm wire spacing

single ‐ cluster multiple ‐ cluster

2νββ
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Pattern recognition can be a very powerful tool 
against background
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zoomed in

single ‐ cluster multiple ‐ cluster

T1/2 = (2.11 ± 0.04 stat ± 0.21 sys) · 1021 yr             
[Ackerman et al Phys Rev Lett 107 (2001) 212501]

720720

720

First observation of the 2νββ decay in 136Xe

2νββ
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zoomed in

single ‐ cluster multiple ‐ cluster

T1/2 = (2.11 ± 0.04 stat ± 0.21 sys) · 1021 yr             
[Ackerman et al Phys Rev Lett 107 (2001) 212501]

720720

720

First observation of the 2νββ decay in 136Xe

2νββ

In significant disagreement with previous limits:
T1/2 > 1.0·1022 yr (90% C.L.)   (R. Bernabei et al. Phys. Lett. B 546 (2002) 23) 
T1/2 > 8.5·1021 yr (90% C.L.)   (Yu. M. Gavriljuk et al., Phys. Atom. Nucl. 69 (2006) 2129)

Later confirmed by KamLAND-ZEN 
T1/2=(2.38 ± 0.02stat ± 0.14sys)·1021 yr

[A.Gando et al. Phys Rev C 85 (2012) 045504]
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Combining Ionization and Scintillation
cutting this region 
removes α particles 
and events with 
imperfect charge 
collection

228Th source
SS

Qββ

Rotation angle chosen to optimize 
energy resolution at 2615 keV

Anticorrelation between 
scintillation and ionization in 
LXe known since EXO R&D
E.Conti et al. 

Phys Rev B 68 (2003) 054201

Scintillation: 6.8%
Ionization: 3.4%
Rotated: 1.6%
(at 2615 keV γ line)

Qββ
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Energy Calibration
Energy resolution 
model:

Residuals <0.1%

Resolution dominated by 
constant (noise) term p1

At Qββ (2458 keV):

σ/Ε = 1.67 % (SS)
σ/Ε = 1.84 % (MS)

MS

SS

22
2

2
1

2
0

2 EppEptot ++=σ
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Source Data/MC Agreement

Single site fraction agrees to within 8.5%
Source activities measured to within 9.4%

53

228Th 60Co
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214Bi – 214Po correlations 
in the EXO-200 detector

Rn Content in Xenon

β‐decay

α‐decay

Scintillation

Ionization

Total 222Rn in LXe after initial fill

Long-term study shows a constant source of 
222Rn dissolving in enrLXe: 360 ± 65 μBq (Fid. vol.)

900          1000        1100         1200        1300        1400
Time (μs)

0         500       1000      1500      2000      2500
Time (hr)
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Low Background 2D SS Spectrum

Events removed by diagonal cut:

• α (larger ionization density more recombination more scintillation light) 
• events near detector edge not all charge is collected

208Tl linecut region

α

zoomed-out
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Low Background Spectrum
Maximum likelihood fit

Low background
run livetime:

120.7 days

Active mass: 
98.5 kg LXe
(79.4kg 136LXe) 

Exposure:
32.5 kg.yr

Vetos dead time:
8.6%

Overflow bin

No events in
overflow bin
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Overflow bin

No events in
overflow bin

~22,000 2νββ
events !

This is a mode
that until Aug 2011 

we did not know 
existed!
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1σ 2σ

R
O

I

Low background spectrum zoomed around 
the 0νββ region of interest (ROI) 

No 0ν signal 
observed

in the ROI

Use likelihood 
fit to establish 

limit
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Background counts in ±1,2 σ   ROI

Expected events from fit

±1 σ ±2 σ
222Rn in cryostat air-gap 1.9 ±0.2 2.9 ±0.3
238U in LXe Vessel 0.9 ±0.2 1.3 ±0.3
232Th in LXe Vessel 0.9 ±0.1 2.9 ±0.3
214Bi on Cathode 0.2 ±0.01 0.3 ±0.02
All Others ~0.2 ~0.2
Total 4.1 ±0.3 7.5 ±0.5
Observed 1 5
Background index b (kg-1yr-

1keV-1)
1.5·10-3 ± 0.1 1.4·10-3 ± 0.1

R
O

I
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Limits on T1/2
0νββ and〈mββ〉

From profile 
likelihood:

T1/2
0νββ > 1.6·1025 yr

〈mββ〉< 140–380 meV

(90% C.L.)
Phys Rev Lett

109 (2012) 032505
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QRPA‐2
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R‐QRPA
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IBM‐2
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NSM
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GCM
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nEXO, a 5-tonne detector
EXO-200 success shows that 
a larger detector using the 
same technology 
can be built NOW.

This will do at least as well 
as other, un-demonstrated 
technologies

Ba-tagging can 
be retrofitted, 
if needed and 
when availablenEXO TPC

concept EXO-200 
TPC
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nEXO projected sensitivity
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nEXO projected sensitivity
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nEXO projected sensitivity
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nEXO projected sensitivity
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nEXO projected sensitivity
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nEXO projected sensitivity
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Concept of nEXO with shielding
17m diameter

15.5m
high

10m3.5m

4.3m2m

LXe

H2O

H2O

Ba tag lab
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Summary
• EXO-200  taking data since Jun 2011
• Detector already reached nominal 

performance for resolution and 
background

• Discovered the 2νββ decay in 136Xe
• Very competitive limit on the 0νββ decay

with the first 4 month of data: almost
exclude the Klapdor claim

• Also KamLAND-ZEN and GERDA taking data 
and EXO-200 has by now ~3x data set

• Working on the design of nEXO
• Next few years will be very exciting!
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The possibility of neutrinosThe possibility of neutrinos--less decay wasless decay was
first discussed in 1937:first discussed in 1937:

E. E. MajoranaMajorana, , NuovoNuovo CimentoCimento 14 (1937) 17114 (1937) 171

G. G. RacahRacah, , NuovoNuovo CimentoCimento 14 (1937) 32214 (1937) 322

Even earlier the study of nuclear Even earlier the study of nuclear 
structure led to the conclusion that structure led to the conclusion that 
the 2 neutrino mode would have the 2 neutrino mode would have 
half lives in excess of 10half lives in excess of 102020 yearsyears

M.GoeppertM.Goeppert--Mayer, Phys. Rev. 48 (1935) 512Mayer, Phys. Rev. 48 (1935) 512

The idea of doubleThe idea of double--beta decay is almost as old as beta decay is almost as old as 
neutrinos themselves:neutrinos themselves:
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Note that along with the double Note that along with the double ββ-- decaydecay

there is also a there is also a ββ++ mode that in practice would appear mode that in practice would appear 
as a single or double electron captureas a single or double electron capture

All these processes are phaseAll these processes are phase--space suppressed respectspace suppressed respect
to the to the ββ-- casecase and isotope fractions low in natural mix:and isotope fractions low in natural mix:

usually not consideredusually not considered
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Spatial distributions

• 2νββ rate does not change with fiducial volume• Background gammas rates drop towards the 
inside of the detector• Events in the ±1,2σ ROIs: statistics is too low 
to conclude on their parent distribution

Events within   Events within   ±±11σσ Events within Events within ±±11––22σσ

Black Black –– 22νββνββ Blue Blue –– 238238U X10U X10
Red Red –– 4040K X10       K X10       Green Green –– 232232Th X10Th X10

Cathode

Fiducial vol.
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Systematics and sensitivity

Error breakout: expected 90% CL 
limit given absolute knowledge (0 
error) of a given parameter or 
set of parameters 

Distribution of 0νββ T1/2 90% CL

Upper limits 
from Monte 
Carlo

From estimated background, expect to   
quote a 90% CL upper limit on T1/2 :

≥ 1.6 x 1025 yr   6.5%  of the time
≥ 7   x 1024 yr    50%   of the time

Term %
Fiducial Volume 12.34
β scale 9.32
SS / (SS + MS) 0.93
232Th LXe Vessel 0.11
238U LXe Vessel 0.04
222Rn Air Gap 0.04
Calibration offsets 0.04


