The Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector

B.Mellado University of Wisconsin-Madison & Wits University

HEP Seminar, Tsinghua University August 15th 2012

Outline

□H→bb

□ Summary results reported in Dec. 2011
□ Description of the excess
□ The discovery (July 2012)
□ H→ YY
□ H→ ZZ^(*)
□ H→ WW^(*)
□ H→ TT

New ATLAS combination
The future is indeed bright!

Standard Model of Particle Physics

Quarks and Leptons interact via the exchange of force carriers

Force	Carrier	
Strong	Gluons (g)	
Electro-Weak	Electro-weak bosons (γ,W,Z)	
Gravitation	?	

A Higgs boson in predicted and required to give mass to particles

Indirect Evidence: Electro-Weak Fits

Experimental constraints so far:

□ Indirect measurements from fitting the EW data using new world average for M_{top}=172.4±1.2 GeV and M_w=80.399±0.025 GeV:

Data prefers low mass Higgs

• m_{H} < 161 GeV @ 95%CL (including LEP exclusion m_{H} < 185 GeV)

4

Higgs Cross-Sections at LHC

Low Mass Higgs And Jets

Slicing phase space in regions with different S/B seems more optimal when inclusive analysis has little S/B

SM Higgs + ≥2jets at the LHC

Wisconsin Pheno (D.Zeppenfeld, D.Rainwater, et al.) proposed to search for a Low Mass Higgs in association with two jets with jet veto

□ Central jet veto initially suggested in V.Barger, K.Cheung and T.Han in PRD 42 3052 (1990)

SM Higgs + \geq 1jet at the LHC

- 1. Large invariant mass of leading jet and Higgs candidate
- 2. Large P_T of Higgs candidate
- 3. Leading jet is more forward than in QCD background

S.Abdullin et al PL B431 (1998) for H→γγ

B.Mellado, W.Quayle and Sau Lan Wu Phys.Lett.B611:60-65,2005 for H→ττ

B.Mellado, W.Quayle and Sau Ian Wu Phys.Rev.D76:093007,2007 for H→WW^(*)

Higgs Decay

Analysis strategy of slicing phase-space according according to jet multiplicity:

B. Mellado, Tev4LHC, FermiLab, September 16-18 2004. http://conferences.fnal.gov/tev4lhc/

Low Mass SM Higgs Potential at LHC

Bruce Mellado, Higgs Session TEV4LHC 09/17/04

3

Summary of Results Reported on December 13th 2011

$H \to \gamma \gamma$

□ 22489 events with $100 < m_{YY} < 160$ GeV observed in the data □ expected signal efficiency: ~ 35% for m_H=125 GeV

Background modeling : ±0.1-5.6 events

 $m_{\gamma\gamma}$ spectrum fit with exponential function for background plus Crystal Ball + Gaussian for signal \rightarrow background determined directly from data

Systematic uncertainties on signal expectation

Type and source	Uncertainty	
Event yield		
Photon reconstruction and identification	$\pm 11\%$	
Effect of pileup on photon identification	$\pm 4\%$	
Isolation cut efficiency	$\pm 5\%$	
Trigger efficiency	$\pm 1\%$	
Higgs boson cross section	+15%/-11%	
Higgs boson $p_{\rm T}$ modeling	$\pm 1\%$	
Luminosity	$\pm 3.9\%$	
Mass resolution		
Calorimeter energy resolution	$\pm 12\%$	
Photon energy calibration	$\pm 6\%$	
Effect of pileup on energy resolution	$\pm 3\%$	
Photon angular resolution	$\pm 1\%$	
Migration		
Higgs boson $p_{\rm T}$ modeling	$\pm 8\%$	
Conversion reconstruction	$\pm 4.5\%$	

In the region 117< m₄₁ <128 GeV (containing ~90% of a m_H=125 GeV signal):
Similar contributions expected from signal and background: ~ 1.5 events each
S/B ~ 2 (4μ), ~ 1 (2e2μ), ~ 0.3 (4e)
Background dominated by ZZ* (4μ and 2e2μ), ZZ* and Z+jets (4e)

Main systematic uncertainties				
Higgs cross-section	: ~ 15%			
Electron efficiency	:~2-8%			
ZZ* background	: ~ 15%			
Zbb, +jets background	ls : ~ 40%			

Excluded (95% CL): $134 < m_H < 156$ GeV and $182 < m_H < 415$ GeV (except 233-256GeV) Expected (95% CL): $136 < m_H < 157$ GeV and $184 < m_H < 400$ GeV

$$H \to ZZ \to 4\ell$$

Conclusions from Dec. 13th 2011 Results

Strong enhancement of exclusion in almost entire range of 115 – 600 GeV except for:

115.5-131 GeV

□ ATLAS sees an excess, but need more data

126 GeV with 3.5σ (local) 2.2σ (global)

□ Three most sensitive channels seemed to give consistent results

 $H \to \gamma \gamma, H \to ZZ^{(*)} \to \ell^+ \ell^- \ell'^+ \ell'^- \text{ and } H \to WW^{(*)} \to \ell^+ \nu \ell'^- \overline{\nu},$ 2.8 σ 2.1 σ 1.4 σ 21

Higgs to γγ Results with 5.9 fb⁻¹ of 2012 Data

Higgs decay to yy

yy Backgrounds

Reducible _{yj} and jj Backgrounds

Diphoton Invariant Mass

- Primary vertex reconstruction :
 - Photon calorimeter pointing
 - Use conversion tracks when available
- Energy scale calibration from Z to electrons applied
- Crystal Ball + Gaussian model with narrow widths (of the core of the distribution) :

Background Composition

Composition	γγ	γj	jj	Drell-Yan
Events	$16000 \pm 200 \pm 1100$	$5230 \pm 130 \pm 880$	$1130 \pm 50 \pm 600$	$165\pm2\pm8$
Relative fraction	$(71 \pm 5)\%$	$(23 \pm 4)\%$	$(5\pm 3)\%$	$(0.7 \pm 0.1)\%$

27

First group of experimentalists who revised the parton-level study by Raiwater and Zeppenfeld. The sensitivity of this channel at ATLAS and CMS today is compatible with this study. Here an attempt for parton shower and ME merging for backgrounds was performed before these tools appeared in the field

Search for Higgs Bosons Decay $H \rightarrow \gamma \gamma$ Using Vector Boson Fusion

Kyle Cranmer, Bruce Mellado, William Quayle, Sau Lan Wu

Physics Department University of Wisconsin - Madison Madison, Wisconsin 53706 USA

Abstract

The sensitivity of the ATLAS experiment to low mass SM Higgs produced via Vector Boson Fusion mechanism with $H \rightarrow \gamma \gamma$ is investigated. A cut based event selection has been chosen to optimize the expected signal significance with this decay mode. A signal significance of 2.2σ may be achieved for $M_H = 130 \text{ GeV}$ with 30 fb⁻¹ of accumulated luminosity.

Jet variables are overall well described by tree-level ME based MC. Situation becomes more complicated when looking at well separated jets. Work in progress.

Both ATLAS and CMS have signal strengths for the VBF higher than for ggF. Is this a hint or a statistical fluctuation? Very exciting times ahead

Signal strength (µ)

Higgs to ZZ^(*) Results with 5.8 fb⁻¹ of 2012 Data

Higgs decay to Z⁰Z⁰

Irreducible Z⁰Z⁰ backgrounds Reducible 41 backgrounds

Bruce Mellado, Magurele 26/10/11

Mass resolution plots after the application of a mass constraint. Gain in resolution ~15-20%

Invariant mass distribution of the second lepton pair: $\mu\mu$ and *ee.* The kinematic selections of the analysis have been applied. Isolation requirements have been applied on the first lepton pair. No charge requirements were applied to the second lepton pair.

Higgs to WW^(*) Results with 5.8 fb⁻¹ of 2012 Data

Higgs decay to W⁺W⁻

Two leptons + neutrinos No mass peak Event counting experiment

W⁺W⁻ backgrounds

Main References for H→WW

From the official ATLAS document ATLAS-CONF-2011-005 http://cdsweb.cern.ch/record/1328619

[16] V. Barger, G. Bhattacharya, T. Han, and B. A. Kniehl, Phys. Rev. D 43 (1991) 779.				
[17] M. Dittmar and H. Dreiner, Phys. Rev. D 55 (1997) 167.	H+0 jets			
[18] D. Rainwater and D. Zeppenfeld, Phys. Rev. D 60 (1999) 113004.	H+2 jets			
[19] N. Kauer, T. Plehn, D. Rainwater, and D. Zeppenfeld, Phys. Lett. B	503 (2001) 113.			
[20] B. Mellado, W. Quayle, and S. L. Wu, Phys. Rev. D 76 (2007) 0930	07. H+1 jet			

Experimental analysis strategy of slicing phase-space according according to jet multiplicity: B. Mellado, TeV4LHC, FermiLab, September 16-18 2004. http://conferences.fnal.gov/tev4lhc/ The reconstruction of missing energy is real is a crucial element to the search. Shown are the METRel distribution of the neutrino momenta in the presence of two charged leptons Overall, good control of the data $E_{\mathrm{T,rel}}^{\mathrm{miss}} = \begin{cases} E_{\mathrm{T}}^{\mathrm{miss}} & \text{if } \Delta \phi \geq \pi/2 \\ E_{\mathrm{T}}^{\mathrm{miss}} \cdot \sin \Delta \phi & \text{if } \Delta \phi < \pi/2 \end{cases}$

A real challenge this time around!

N_{jets}

Extraction of W+jets

□ Following similar procedure as in CDF for the H+0j and H+1j and H+2j analyses

Define "feakable" objects for electrons/muons

Extraction of top (H+0j)

- □ The extraction of top is complicated both experimentally and theoretically
 - Note that our MCs do not have the interference between double, single and non-resonant WWbb
- Adopted a quasi-data-driven method:
 - B.Mellado, X.Ruan & Z.Zhang, Phys. Rev. D 84, 096005 (2011)
 - □ Use a control sample with at least one b-jet to extract the jet veto efficiency in the signal region
 - Relate the jet veto efficiency in events with at least one b-jet to that without any jets

$$P_{2}^{\text{Estimated}} = \left(P_{1}^{\text{Btag,Data}}\right)^{2} \frac{P_{2}^{\text{MC}}}{\left(P_{1}^{\text{Btag,MC}}\right)^{2}}$$

Extraction of Z+jets

- Z+jets contributes little in the H+0j analysis but significant in H+1j. Limited statistics both in control sample and MC
- □ Moved to "ABCD" method used by CMS

Closure performed with MC

Flow chart for Back. Extraction

Complete propagation of systematic errors

Higgs to ττ Results with 4.7 fb⁻¹ of 2011 Data

Overview of Analysis

□ Use the three decay modes:

 $H \to \tau^+ \tau^- \to \ell \ell 4 \nu, \ \ell \tau_h 3 \nu, \ \tau_h \tau_h \nu \nu$

Jet binning is essential to curve large backgrounds:

D. L. Rainwater, D. Zeppenfeld, and K. Hagiwara, Phys. Rev. D59 (1998) 014037,
B. Mellado, W. Quayle, and S. L. Wu, Phys. Lett. B611 (2005) 60–65.

□ Main backgrounds are obtained with data □ **Z**→**T**T

• Embedding technique with Z $\rightarrow \mu\mu$ events

- - Using QCD enriched samples, whether by loosening isolation of looking at SS events

-1.	$ee + \mu\mu + e\mu$	$ee + \mu\mu + e\mu$	$ee + \mu\mu + e\mu$	еμ
	H +2-jet VBF	H +2-jet VH	<i>H</i> +1-jet	H +0-jet
$gg \rightarrow H$ signal	$0.26 \pm 0.06 \pm 0.10$	$0.8 \pm 0.1 \pm 0.2$	$3.9 \pm 0.2 \pm 1.0$	23±1±3
VBF H signal	$1.08 \pm 0.03 \pm 0.11$	$0.10 \pm 0.01 \pm 0.01$	$1.15 \pm 0.03 \pm 0.01$	$0.75 \pm 0.03 \pm 0.06$
VH signal	$0.01 \pm 0.01 \pm 0.01$	$0.53 \pm 0.02 \pm 0.07$	$0.40 \pm 0.02 \pm 0.03$	$0.52 \pm 0.02 \pm 0.04$
$Z/\gamma^* \to \tau^+ \tau^-$	$24 \pm 3 \pm 2$	$107 \pm 12 \pm 9$	$(0.52 \pm 0.01 \pm 0.04) \cdot 10^3$	$(9.68 \pm 0.05 \pm 0.07) \cdot 10^3$
$Z/\gamma^* \to \ell^+\ell^- \; (\ell{=}\mathrm{e}{,}\mu)$	$2\pm1\pm1$	$25 \pm 4 \pm 9$	$80 \pm 10 \pm 30$	$185 \pm 11 \pm 14$
$t\bar{t}$ +single top	$7\pm1\pm2$	$41 \pm 2 \pm 6$	$95 \pm 3 \pm 12$	$169 \pm 4 \pm 14$
WW/WZ/ZZ	$0.9 \pm 0.3 \pm 0.3$	6±1±1	$21 \pm 1 \pm 3$	$221 \pm 3 \pm 18$
Fake leptons	$1.3 \pm 0.8 \pm 0.6$	$13 \pm 2 \pm 5$	$30 \pm 4 \pm 12$	$(1.2\pm0.5)\cdot10^3$
Total background	$34 \pm 3 \pm 4$	$191 \pm 7 \pm 20$	$(0.75 \pm 0.01 \pm 0.05) \cdot 10^3$	$(11.4 \pm 0.5) \cdot 10^3$
Observed data	27	185	702	11420

In $\tau_h \tau_h$ channel it was chosen to use one bin, an inclusive H+1j analysis

Higgs to bb Results with 4.7 fb⁻¹ of 2011 Data

$(W/Z)H, H \rightarrow b\bar{b}: \ell\nu bb, \ell\ell bb, \nu\nu bb$

Selection requires exactly two b-tagged jets: $E_T^{b1} > 45$ GeV, $E_T^{b2} > 25$ GeV.

W/Z and H boson recoil away with significant p_T :

- 4 p_T^W -categories in $WH \rightarrow \ell \nu bb$: <50, [50,100), [100,200), \geq 200 GeV
- 4 p_T^Z -categories in $ZH \rightarrow \ell\ell bb$: <50, [50,100), [100,200), \geq 200 GeV
- 3 E_T^{miss} -categories in $ZH \rightarrow \nu\nu bb$: [120,160), [160,200), \geq 200 GeV

Higgs Combination using results from 2011 and 2012 data

What Goes into the Combination

Subsequent Decay	Sub-Channels	m _H Range [GeV]	$\int L dt$ [fb ⁻¹]	
	$2011 \sqrt{s} = 7 \text{ TeV}$			
48	4ℓ {4e, 2e2µ, 2µ2e, 4µ}	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	4.8
llvv	$\{ee, \mu\mu\} \otimes \{low, high pile-up\}$	200-280-600	4.7	
llgg	{b-tagged, untagged}	200-300-600	4.7	
-	10 categories $\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	110-150	4.8	
lvlv	$\{ee, e\mu/\mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{\text{low, high pile-up}\}$	110-200-300-600	4.7	
$H \rightarrow WW''$ $\ell v q q'$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	300-600	4.7	
$\tau_{lep}\tau_{lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\}$	110-150	4.7	
$\tau_{\rm lep} \tau_{\rm had}$	$ \{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_{\mathrm{T}}^{\mathrm{miss}} < 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \ge 20 \text{ GeV} \} \\ \oplus \{e, \mu\} \otimes \{1\text{-jet}\} \oplus \{\ell\} \otimes \{2\text{-jet}\} $	110-150	4.7	
Thad Thad	{1-jet}	110-150	4.7	
$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	110-130	4.6	
$W \rightarrow \ell \nu$	$p_T^W \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7	
$Z \rightarrow \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7	
	$2012 \sqrt{s} = 8 \text{ TeV}$			
48	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	5.8	
	10 categories $\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	110-150	5.9	
ενμν	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	110-200	5.8	
	Subsequent Decay 4ℓ $\ell\ell\nu\nu$ $\ell\ell qq$ - $\ell\nu\ell\nu$ $\ell\nu qq'$ $\tau_{lep}\tau_{lep}$ $\tau_{lep}\tau_{had}$ $T_{had}\tau_{had}$ $Z \rightarrow \nu\nu$ $W \rightarrow \ell\nu$ $Z \rightarrow \ell\ell$ 4ℓ - $e\nu\mu\nu$	$\begin{array}{c c} Subsequent \\ \hline Decay \\ \hline Sub-Channels \\ \hline 2011 \sqrt{s} = 7 \ TeV \\ \hline 4\ell & \{4e, 2e2\mu, 2\mu2e, 4\mu\} \\ \ell\ell\nu\nu & \{ee, \mu\mu\} \otimes \{low, high pile-up\} \\ \ell\ell qq & \{b\text{-tagged, untagged}\} \\ \hline - & 10 \ categories \{p_{Tt} \otimes \eta_{\gamma} \otimes conversion\} \oplus \{2\text{-jet}\} \\ \ell\nu\ell\nu & \{ee, e\mu/\mue, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{low, high pile-up\} \\ \ell\nu qq' & \{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{low, high pile-up\} \\ \ell\nu qq' & \{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \\ \hline \tau_{lep}\tau_{lep} & \{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\} \\ \{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_{T}^{miss} < 20 \ GeV, E_{T}^{miss} \geq 20 \ GeV\} \\ \hline \tau_{lep}\tau_{had} & \{l\text{-jet}\} \\ \hline Z \rightarrow \nu\nu & E_{T}^{miss} \in \{120 - 160, 160 - 200, \geq 200 \ GeV\} \\ \hline W \rightarrow \ell\nu & p_{T}^{W} \in \{<50, 50 - 100, 100 - 200, \geq 200 \ GeV\} \\ \hline Z \rightarrow \ell\ell & p_{T}^{Z} \in \{<50, 50 - 100, 100 - 200, \geq 200 \ GeV\} \\ \hline 2012 \ \sqrt{s} = 8 \ TeV \\ \hline 4\ell & \{4e, 2e2\mu, 2\mu2e, 4\mu\} \\ \hline - & 10 \ categories \ \{p_{Tt} \otimes \eta_{\gamma} \otimes conversion\} \oplus \{2\text{-jet}\} \\ e\nu\mu\nu & \{e\mu, \mue\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \\ \hline \end{array}$	$\begin{array}{c c} Subsequent \\ \hline Decay \\ \hline Bub-Channels \\ \hline CeV \\ \hline 2011 \sqrt{s} = 7 \ TeV \\ \hline 2011 \sqrt{s} = 7 \ TeV \\ \hline 4\ell & \{4e, 2e2\mu, 2\mu2e, 4\mu\} & 110-600 \\ \ell\ell\nu\nu & \{ee, \mu\mu\} \otimes \{low, high pile-up\} & 200-280-600 \\ \ell\ell qq & \{b-tagged, untagged\} & 200-300-600 \\ \hline - & 10 \ categories \{p_{T1} \otimes \eta_{\gamma} \otimes conversion\} \oplus \{2\text{-jet}\} & 110-150 \\ \ell\nu\ell\nu & \{ee, e\mu/\mue, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} & 410-200-300-600 \\ \hline \nu\ell\nuqq' & \{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} & 110-200-300-600 \\ \hline \nutep^{T}_{lep} & \{e\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} & 110-200-300-600 \\ \hline \tau_{lep}\tau_{lep} & \{e\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} & 110-200-300-600 \\ \hline \tau_{lep}\tau_{lep} & \{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}\} & 110-150 \\ \hline \tau_{had}\tau_{had} & \{e, \mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{2\text{-jet}\} & 110-150 \\ \hline Z \rightarrow \nu\nu & E_T^{miss} \in \{120-160, 160-200, \geq 200 \ GeV\} & 110-130 \\ \hline W \rightarrow \ell\nu & p_T^{W} \in \{<50, 50-100, 100-200, \geq 200 \ GeV\} & 110-130 \\ \hline Z \rightarrow \ell\ell & p_T^{Z} \in \{<50, 50-100, 100-200, \geq 200 \ GeV\} & 110-130 \\ \hline Z \rightarrow \ell\ell & p_T^{Z} \in \{<50, 50-100, 100-200, \geq 200 \ GeV\} & 110-130 \\ \hline 2012 \ \sqrt{s} = 8 \ TeV \\ \hline 4\ell & \{4e, 2e2\mu, 2\mu2e, 4\mu\} & 110-600 \\ \hline - & 10 \ categories \{p_{T1} \otimes \eta_{\gamma} \otimes conversion\} \oplus \{2\text{-jet}\} & 110-150 \\ \hline e\nu\mu\nu & \{e\mu, \mue\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} & 110-200 \\ \hline \end{array}$	

With the addition of WW a 6 sigma effect is reached

Signal strength (μ)

Excesses come, excesses go. This one stayed! Whether it is the SM Higgs or not the future is bright!

